

Ankle Injury Prevention

ECE 445 Fall 2020: Group #14: Matt Miller, Skyler Shi, Erin Sarver

Introduction

- 13% of injuries at NBA level
- 40% of injuries at High School level
- Prevent this by monitoring stress

- NBA injuries: loss of revenue, disappointed fans, less competitive team
- High School injuries: affect performance, might result in chronic effects

Objectives

Overall objective is to monitor a user's ankle to determine when they are putting stress on their ankle and how much stress they are inducing

- Collect and stream data for a 30-minute period
- Ability to detect a player's range of motion in two planes
- Ability to detect jumps and landings
- User interface displays informative metrics describing a player's ankle stress

Physical Design

System Overview

- Hardware
 - Power Unit: Battery and DC-DC Buck Converter
 - Signal Collection Unit: Flex Sensors, Pressure Sensor, Microcontroller, and Bluetooth Transmitter
- Software
 - Signal Processing Unit: Model to Identify Key Events & Map Ankle
 Angle, Model to Determine Injury Risk, and User Interface

Block Diagram

Power Unit

Battery

Time (minutes)	LED on?	
0	Yes	
5	Yes	
10	Yes	
15	Yes	
20	Yes	
25	Yes	
30	Yes	

DC-DC Buck Converter

- Vmax: 5 + 5(0.05) = 5.25 V
- Vmin: 5 5(0.05) = 4.75 V
- $5.00795 V \rightarrow \text{within } 5\% \text{ of}$ 5V DC output

Signal Collection Unit

Flex Sensors

- Four 4.5" flex sensors located on inside, outside, front, and back of ankle
 - Frontal Plane: inside and outside measurements
 - Sagittal Plane: front and back measurements

Flex Sensor Configuration

Flex Sensor Measurements

Angle	$V_{o}(V)$ – trial #1	$V_{o}(V)$ – trial #2	Average V_0 (V)
0°	3.88	4.00	3.94
10°	3.73	3.95	3.84
20°	3.62	3.82	3.72
30°	3.56	3.65	3.605
40°	3.43	3.51	3.47
50°	3.35	3.44	3.395
60°	3.26	3.38	3.32
70°	3.16	3.31	3.235
80°	3.12	3.26	3.19
90°	3.04	3.19	3.115

Flex Sensor Bend Angle vs Output Voltage

98.28% > 90%

Pressure Sensor

- One pressure sensor located under the heel of the foot
 - Can measure up to 100 pounds
 - Useful for detecting jumps and landings

Pressure Sensor Configuration

Pressure Sensor Measurements

Force (pounds)	V ₀ (V) – trial #1	V ₀ (V) – trial #2	Average V _o
10	0.265	0.242	0.2535
20	0.378	0.365	0.3715
30	0.530	0.451	0.4905
40	0.624	0.536	0.5800
50	0.737	0.687	0.7120
60	0.854	0.755	0.8045
70	0.940	0.928	0.9340
80	1.024	1.009	1.0165
90	1.092	1.071	1.0815
100	1.225	1.127	1.1760

Pressure Sensor Force vs Output Voltage

99.5% > 90%

Microcontroller

{'timestamp': 614715, 'flex1': 2.978516, 'flex2': 0, 'flex3': 0.004883, 'flex4': 3.969727, 'pres1': 0.00 4883} {'timestamp': 614817, 'flex1': 2.96875, 'flex2': 0.004883, 'flex3': 0, 'flex4': 3.974609, 'pres1': 0} {'timestamp': 614910, 'flex1': 2.93457, 'flex2': 0, 'flex3': 0, 'flex4': 3.994141, 'pres1': 0} {'timestamp': 614996, 'flex1': 2.929688, 'flex2': 0, 'flex3': 0.004883, 'flex4': 4.008789, 'pres1': 0.00 4883} {'timestamp': 615099, 'flex1': 2.924805, 'flex2': 0.004883, 'flex3': 0, 'flex4': 3.994141, 'pres1': 0} {'timestamp': 615193, 'flex1': 2.910156, 'flex2': 0, 'flex3': 0, 'flex4': 4.013672, 'pres1': 0} {'timestamp': 615281, 'flex1': 2.890625, 'flex2': 0, 'flex3': 0, 'flex4': 3.999023, 'pres1': 0} {'timestamp': 615368, 'flex1': 2.871094, 'flex2': 0, 'flex3': 0, 'flex4': 4.023438, 'pres1': 0} {'timestamp': 615455, 'flex1': 2.866211, 'flex2': 0, 'flex3': 🜈 flex4': 4.023438, ``res1': 0} {'timestamp': 615543, 'flex1': 2.866211, 'flex2': 0, 'flex3': 0, 'flex4<u>: 4.023438, 'pres1': 0</u>} {'timestamp': 615630, 'flex1': 2.861328, 'flex2': 0, 'flex3': 0, 'flex4': 4.008789, 'pres1': 0} {'timestamp': 615717, 'flex1': 2.851563, 'flex2': 0, 'flex3': 0, 'flex4': 4.008789, 'pres1': 0} {'timestamp': 615805, 'flex1': 2.817383, 'flex2': 0.004883, 'flex3': 0, 'flex4': 4.023438, 'pres1': 0} {'timestamp': 615900, 'flex1': 2.792969, 'flex2': 0, 'flex3': 0, 'flex4': 4.033203, 'pres1': 0} {'timestamp': 615987, 'flex1': 2.807617, 'flex2': 0.004883, 'flex3': 0, 'flex4': 4.023438, 'pres1': 0} {'timestamp': 616082, 'flex1': 2.822266, 'flex2': 0, 'flex3': 0, 'flex4': 4.018555, 'pres1': 0}

{'timestamp': 701159, 'flex1': 3.125, 'flex2': 0, 'flex3': 0, 'flex4': 3.891602, 'pres1': 0} {'timestamp': 701243, 'flex1': 3.125, 'flex2': 0, 'flex3': 0.004883, 'flex4': 3.891602, 'pres1': 0.00488 {'timestamp': 701342. 'flex1': 3.120117. 'flex2': 0. 'flex3': 0. 'flex4': 3.90625. 'pres1': 0} {'timestamp': 701428, 'flex1': 3.115234, 'flex2': 0, 'flex3': 0.004883, 'flex4': 3.891602, 'pres1': 0.01 9531} {'timestamp': 701531, 'flex1': 3.129883, 'flex2': 0, 'flex3': 0, 'flex4': 3.886719, 'pres1': 0} {'timestamp': 701618, 'flex1': 3.120117, 'flex2': 0, 'flex3': 0, 'flex4': 3.876953, 'pres1': 0} {'timestamp': 701705. 'flex1': 3.115234. 'flex2': 0. 'flex3': 0. 'flex4': 3.891602. 'pres1': 0} <u>{'tim</u>estamp': 701 92, 'flex1': 3.115234, 'f)x2': 0, 'flex3': 0, 'flex4': 3.896484, 'pres1': 0} {'timestamp': 701880. 'flex1': 3.115234. 'flex2': 0. 'flex3': 0.004883. 'flex4': 3.891602. 'pres1': 0.00 4883} {'timestamp': 701981, 'flex1': 3.120117, 'flex2': 0.004883, 'flex3': 0, 'flex4': 3.876953, 'pres1': 0} {'timestamp': 702076, 'flex1': 3.125, 'flex2': 0.004883, 'flex3': 0, 'flex4': 3.876953, 'pres1': 0} {'timestamp': 702168, 'flex1': 3.120117, 'flex2': 0, 'flex3': 0, 'flex4': 3.881836, 'pres1': 0} {'timestamp': 702255, 'flex1': 3.120117, 'flex2': 0, 'flex3': 0, 'flex4': 3.90625, 'pres1': 0} {'timestamp': 702342, 'flex1': 3.134766, 'flex2': 0, 'flex3': 0, 'flex4': 3.886719, 'pres1': 0}, {'timestamp': 702429, 'flex1': 3.134766, 'flex2': 0, 'flex3': 0, 'flex4': 3.886719, 'pres1': 0}

Time Elapsed =

1,862,934

ms

=

1,862.934 s

=31.0489

minutes

Bluetooth Transmitter

Distance (feet)	Communicating?	
0	Yes	
5	Yes	
10	Yes	
15	Yes	
20	Yes	
25	Yes	
30	Yes	

Table 7: Bluetooth Transmitter Test Results

. . . {'timestamp': 1861379, 'flex1': 3.881836, 'flex2': 3.862305, 'flex3': 4.023438, 'flex4': 4.018555, 'pres1': 0} {'timestamp': 1861482, 'flex1': 3.857422, 'flex2': 3.87207, 'flex3': 3.994141, 'flex4': 4.02832, 'pres1': 0} {'timestamp': 1861582, 'flex1': 3.862305, 'flex2': 3.876953, 'flex3': 4.003906, 'flex4': 4.033203, 'pres1': 0} {'timestamp': 1861686, 'flex1': 3.867188, 'flex2': 3.852539, 'flex3': 3.994141, 'flex4': 4.008789, 'pres1': 0.0 048831 {'timestamp': 1861795, 'flex1': 3.867188, 'flex2': 3.862305, 'flex3': 3.999023, 'flex4': 4.018555, 'pres1': 0} {'timestamp': 1861899, 'flex1': 3.87207, 'flex2': 3.857422, 'flex3': 4.008789, 'flex4': 4.013672, 'pres1': 0} {'timestamp': 1862001, 'flex1': 3.87207, 'flex2': 3.857422, 'flex3': 4.023438, 'flex4': 4.013672, 'pres1': 0} {'timestamp': 1862103, 'flex1': 3.852539, 'flex2': 3.857422, 'flex3': 4.008789, 'flex4': 3.994141, 'pres1': 0} {'timestamp': 1862206, 'flex1': 3.862305, 'flex2': 3.867188, 'flex3': 4.008789, 'flex4': 4.023438, 'pres1': 0} {'timestamp': 1862308, 'flex1': 3.862305, 'flex2': 3.876953, 'flex3': 4.003906, 'flex4': 4.033203, 'pres1': 0} {'timestamp': 1862412, 'flex1': 3.862305, 'flex2': 3.857422, 'flex3': 4.008789, 'flex4': 3.999023, 'pres1': 0} {'timestamp': 1862514, 'flex1': 3.867188, 'flex2': 3.852539, 'flex3': 3.994141, 'flex4': 4.008789, 'pres1': 0.0 {'timestamp': 1862625, 'flex1': 3.862305, 'flex2': 3.876953, 'flex3': 4.003906, 'flex4': 4.033203, 'pres1': 0} {'timestamp': 1862727, 'flex1': 3.881836, 'flex2': 3.852539, 'flex3': 4.023438, 'flex4': 4.008789, 'pres1': 0} {'timestamp': 1862831, 'flex1': 3.862305, 'flex2': 3.857422, 'flex3': 4.008789, 'flex4': 4.023438, 'pres1': 0} {'timestamp': 186234, 'flex1': 3.881836, 'flex2': 3.857422, 'flex3': 4.023438, 'flex4': 4.013672, 'pres1': 0}

Signal Processing Unit

Software Data Flow

Process Raw Data into Metrics

User Interface

Collect Session Data

Collect Data

Data Collection

shoe.

Ankle Stress Monitor An App that Helps Basketball Players Minimize Injury Risk Analyze Session Ankle Stress Trend Flex Sensor 1 Use the buttons below to start and stop recording data from the basketball ees) 100 Angle (Degr 50 200 Time Elapsed (s)

Analyze Session Data

Analyze Session Data

Conclusions

- Successful integration of hardware and software modules through Bluetooth
- Ability to represent ankle angles and relative stress levels in both the sagittal and frontal plane

- Key questions our product answers for players/coaches
 - Is a player more injury prone when they are fatigued?
 - Are a player's jump and landing mechanics sustainable?
 - Should we cut back on a player's playing time to reduce injury risk?
 - When a player plays more aggressive, are they more likely to be injured?
 - How important is it to do ankle warm ups? Does it increase ankle ROM?

Improvements & Taking Project Further

- Configure additional sensors to measure full ROM
- Make packaging more compact
- Show comparison data on user interface
- Store user data on backend
- Create a more general solution for all sports

Thank You For Listening!

• Any Questions?

