Requirements and Verification

Requirements	Verification	
1. When a 10kg load is applied to the top of the physical design foot pad, at least a .05 mV difference is measured.	 Equipment: Multimeter Test Procedure: Attach the load cell wires to appropriate locations according to schematic on a breadboard Use a multimeter to measure the change in voltage Record the average value output by the ATMega328 over 30 seconds with no weight on the foot pad Place the 1kg weight onto the foot pad and record the average value output by the ATMega328 over 30 seconds Repeat steps 1-4 with all load cells. Presentation of Results: The results will be presented in a table which shows the difference in average values with and without the weight. 	
2. After standing on top of the board for 30 minutes, a user does not feel more uncomfortable than if they were standing on plain carpet.	 Method: Ask roommates and friends to test Test Procedure: Survey testers on scale of 1-10 Aggregate scores should average 7 or higher, with 6 being explicitly stated as the comfortability of carpet. Point Value: 2 	
3. When a person of average American weight (+/- 20 kgs) steps onto the foot pads, they are able to stay standing on them without sliding or falling off for 10 minutes.	 Method: Asked testers about comfortability Test Procedure: Survey testers on scale of 1-10 at 10 minute mark Aggregate scores should average 8 or higher Point Value: 3 	

Physical Control Design Requirements

Requirements	Verification
1. The signals on the PCB arrive at the correct locations.	 Equipment: Breadboard Test Procedure: Wire up the breadboard according to the PCB schematic. Confirm functionality of other requirements and expected outputs to PC Rebuild schematic on PCB Confirm that the functionality from the PCB matches the expected response from the breadboard Presentation of Results: A binary confirmation from the product tester
2. The time from when a user applies pressure to the load cell to when the signal is received by the computer must be at or below 60ms.	 Equipment: ATMega328, AD7705, Load Cell Test Procedure: Connect the USB-to-Serial to computer Restart the ATMega328 to begin polling Use the ArduinoIDE and timestamps to count the number of average responses a second Multiply that response time by 4, one for each analog-to-digital converter Presentation of Results: The results will be presented as a chart of average timings Solution: It slows down when we swap channels, so using 4 chips and 1 channel per would significantly decrease the latency. To further decrease latency, instead of using the polling protocol, an interrupt protocol

Electronics Requirements

	can be used using the D_Ready pin on each chip. Point Value: 5
3. Outputs from the microcontroller have an error rate of less than 1%	 Equipment: ATMega328, AD7705, Load Cells Test Procedure: Wire the ATMega328 and AD7705 according to schematic Connect the circuit to the computer via USB Let the ATMega328 run for 5 minutes with no weight on the load cells Check that 99%+ of the outputs fluctuates between a range of +/- 0.05 mv from the baseline voltage Apply a 10 kg weight to the attached load cell and record the new baseline voltage Check that 99%+ of the outputs fluctuates between a range of +/- 0.05 mv from the baseline voltage Presentation of Results: The results will be presented as an average voltage with its standard deviation Provisional Result: Initially failed because of ceramic oscillators on the ATMega328. Succeeded when swapped to crystal oscillator

Software Requirements

Requirements	Verifications
The ATMega328 polls the analog to digital converters correctly and passes that data along to the PC.	Equipment:PC Test Procedure: 1. Connect USB-to-Serial to PC 2. Press down on foot pad 3. Use ArduinoIDE to find voltage values of all inputs

	 Record data Press down again with a different level of force and record data Repeat for each pad 	
	Presentation of Results: Graph that show each sensor being pressed with varying levels of force. Each line represents voltage. X represents time. Y represents voltage level. Point Value: 20	
The software properly sends an input signal (key press) to the PC once a load cell has exceeded a set threshold (a.k.a the user steps on the pad)	 Equipment: PC Test Procedure: Plug in USB-to-Serial converter Restart ATMega328 Open word processor Step on foot pad Record if a key was output to word processor Repeat for each foot pad Presentation of Results: Table comparing input values to output values and expected output values Point Value: 5 	

Verification Data

Weight (kg)	Voltage (V)	Load Cell
0	2.305	1
0	2.307	2
0	2.306	3
0	2.306	4
10	2.298	1
10	2.301	2
10	2.301	3
10	2.301	4

Physical Control Design Requirements: Load Cell Sensitivity

Tester Number	Comfort (1-10)	Comments:
1	7	N/A
2	8	Not bad
3	9	N/A
4	7	Slightly better than carpet
5	8	N/A
6	7	N/A
7	7	Could use more cushion
8	7	N/A
9	6	Felt pretty hard
10	8	N/A
Average Value:	7.4	

Physical Control Design Requirements: Comfortability

Tester Number	Stability(1-10)	Comments:
1	8	N/A
2	9	N/A
3	8	N/A
4	7	Felt wobbly at times
5	8	N/A
6	8	N/A
7	9	Pretty good.
8	9	N/A
9	10	N/A
10	9	N/A
Average Value:	8.5	

Physical Control Design Requirements: Stability

Does the PCB circuit have the same outputs as the breadboard circuit?: **Yes** / No Electronic Requirements: PCB wiring data

	Second 1	Second 2	Second 3	Second 4	Second 5	
Number of inputs	60	64	60	60	60	
Latency	66ms	63 ms	66 ms	66 ms	66 ms	
Average Latency						65.4 ms

Electronic Requirements: Latency Data

Average Voltage (no weight): 2.306 V Std. Voltage Deviation (no weight): +/- .007 V Average Voltage (10kg weight): 2.301 V Std. Voltage Deviation (10kg weight): +/- .008 V

Input Location	Expected Output	Actual Output
Left Back	С	С
Left Front	А	A
Right Back	D	D
Right Front	В	В

Software Requirements: Data Conversion