

Pedal-Powered Smart Bike

ECE 445 Points Tables
Alex Sirakides, Karl Kamar, and Anshul Desai

Team 29
TA: Yifan Chen

November 13th, 2020

Our listed high level requirements:

1. The user produces at least 9V by pedaling in order to charge the 8V battery. That is
100RPM for the bike tire. (covered in the power module points)

2. LCD interfaces with the GPS module and displays the user's speed, distance traveled,
longitude, latitude, current time, current date, time of ride at a refresh rate of at least 1 Hz
(1 update per second) upon time/location fix.

3. The ON/OFF button must open the circuit at the battery output, and Reset button must
reset distance traveled and ride time to 0. (control module)

4. Turn-light buttons must make turning lights blink at a rate of 60 flashes per minute at
least when pressed and turn them off when pressed again. (control module)

2

Power Module

3

Requirement Requirement Points

Pedals need to turn
with no more than
5N-m of torque as
user input.

Due to the nature of pedaling a bike (push pull
interaction) measuring a constant force will be
difficult. Since the end product here is that the
torque requirement means it can be pedaled, this
can be verified by inspection.

Generator must
generate 9 volts of
power.

Prop up the back tire so that the bike may be tested
in place with a voltmeter wired in parallel between
it and the charge controller. 9V is the target
voltage.

The generator rod
must rotate with the
tire.

While the bike has its back wheel propped up for
the motor verification, the wheel will be watched
to see if consistent contact is made. If consistent
contact is made, >90% of the time, the rod is
effective.

Has a diode
preventing current
flowing from battery
to generator.

If current flows in the opposite direction, our
generator will become a motor. Therefore, we can
verify this by seeing if the wheels turn without user
input when the battery is connected.

Prevents the battery
from overcharging

Charge Controller 7-segment displays voltage at
the battery terminals. Charge should stop flowing
to the battery after it reaches its max voltage
(9.6V). Verifiable by hearing the tick from the
charge controller which is the relay disconnecting
the battery from the motor. The display instantly
shows a reduced voltage value because the battery
is not charging anymore.
Same process when charge is starting with min
voltage (7.2V)

Needs to have the
capacity to power up
the circuit.

System powers up when the on switch is flipped,
while battery is charged. Max capacity of 3.2Ah.
Duration and capacity values in datasheet

Steps down 8V
battery input to 5V
output for the rest of
the system.

Use multimeters to test input and output voltages
of the buck converter.

Total 15

GPS Sensor Module

4

Requirement Verification Points

Refresh rate ≥ 1 Hz The default baud rate of 9600bps gives us an update
rate of 1 Hz. With a max baud rate of 230400, this
gives us a frequency past what is required. Using the
Serial monitor of Arduino IDE, we tested data next to
time stamps to see how many updates per second we
get for our different baud rates. The default 9600bps
gives us one update per second and we set our baud
rate to 304800 to allow for more updates for more
accurate speed measurements.

MCU does not
interface with
garbage metrics
from GPS Module

We ensure that garbage data doesn’t feed into our
calculations or LCD display. We set up multiple
conditionals to ensure that any odd occurrences of
data from the GPS sensor get ignored. For example,
if our current latitude or longitude is equal to 0.0f,
then it is likely that it is garbage data. Therefore, we
do not consider this location when calculating total
distance, average speed, or the displayed coordinates
on the LCD.

Total 5

Display Module

5

Requirement Verification Points

Microcontroller buffers
display correctly

The requirements for the
LCD display is that the
SRAM from the
microcontroller is at least
1KB. This is a minimum
requirement in order to hold
our display buffer. Our MCU
has an SRAM of 2KB, but we
can verify that the MCU can
buffer the display by testing
our template which updates
every second.

Display updates at rate of 1
Hz.

Since we are expecting
updates of once per second
from the GPS Module, we
want our display to reflect
these updates. We therefore
require updates every second
on the LCD display. This is
ensured by only clearing and
drawing the video buffer
when our serial connection to
our GPS module is available,
and this only occurs at our
refresh rate of 1 Hz defined
above. We verified by
printing to our Serial monitor
with a timestamp in Arduino
IDE every time the video
buffer was drawn

Display shows heading, time,
speed, current speed, total
distance, ride time, and
coordinate location when
GPS gets relevant time and/or
location fix

When we only have a time
fix, we can only increment
our current time and ride
time. Speed, distance, and
location information happens
after a location fix. This was
tested when we first
purchased the GPS sensor, as
the LED indicator flashes 1
Hz when there is a time or

6

location fix. Again, we
ensure to filter our garbage
data using conditionals. GPS
fix behavior was observed
through inspection in testing
the complete product.

Total 10

Control Module

7

Requirement Verification Points

Reset switch must reset data
when un-depressed and
record data when depressed.

Test by inspection. Unit
testing performed on Arduino
IDE.

ON/OFF button must power
the whole user interface off
by disconnecting the battery
from the rest of the circuit

Test by inspection.

Turn Light Buttons must
make turn lights flash at a rate
of 60 flashes per minute.
Must turn them off when
pressed again.

Test by inspection.

Headlight and taillight turn on
when the ambient light sensor
detects low visibility.

Turn off lights and check
whether the bike lights come
on. Unit testing performed on
Arduino IDE as well as with a
button and LED to simulate
ALS/FET.

Headlight and taillight turn
off after 30 seconds with the
ambient light sensor detecting
sufficient visibility.

Turn lights on and check
whether the bike lights turn
off. Unit testing performed
on Arduino IDE as well as
with a button and LED to
simulate ALS/FET.

EEPROM saves exercises
statistics according to the
following conditions:

1) Ride time only
incremented when
GPS has time fix

2) Average speed and
distance only
calculated when GPS
has location fix

3) When device is off,
this duration of time is
NOT factored into any
of these three

State machines to preserve
statistics as well as any
relevant values to the
EEPROM. Upon test by
inspection and unit testing on
Arduino IDE, we were able to
verify that everything is saved
correctly.

8

statistics.

Average speed only
calculated for speeds > 0.5
mph and total distance only
calculated for speed > 1.0
mph

Conditionals included in each
relevant function to check
current speed and ensure that
it is within bounds. Put in
place due to wandering
behavior of GPS module.
Unit tested on Arduino IDE.

Total 20

