
Table 1. RV table for battery

Points: __/1

Requirements Verification

Battery can supply Vout>3.3V. 1. Setup a mock circuit with a 10kΩ
resistor (large enough to prevent
burning the resistor).

2. Connect the battery to resistor.
3. Measure voltage across resistor and

confirm that V>3.3V.

Table 2. RV table for voltage regulator

Points: __/5

Requirements Verification

Output voltage is within the range of
3.3V±5%.

1. Power on the regulator with 5V supply
voltage.

2. Measure voltage between output and
ground and confirm that the value is
3.3V±5%.

Voltage regulator can output up to 1A of
current.

1. Connect the output to a resistor
network with ~3.3Ω total resistance.

2. Power on the regulator with 5V supply
voltage.

3. Measure current and confirm that the
value is ~1A.

Table 3. RV table for water flow sensor

Points: __/2.5

Requirements Verification

Functions for supply voltage 5VDC. 1. Connect sensor output to oscilloscope.
2. Connect sensor to 5V power source.
3. Pour water through the sensor.
4. Confirm that the oscilloscope shows

output in the form of square waves
with 5V amplitude.

Flow rate and frequency relation is described
by the mathematical model F=11Q where F is
frequency in Hz and Q is flow rate in LPM.

1. Connect sensor output to oscilloscope.
2. Connect sensor to 5V power source.
3. Provide a constant stream of water to

the sensor for 30s, storing the water to
a bucket.

4. Calculate the frequency of the output
square waves from the oscilloscope
data.

5. Measure the amount of water in the
bucket.

6. Calculate the flow rate from the
amount of water and time.

7. Check if the frequency and flow rate
obtained fits the mathematical model;
if not, update the mathematical model.

Table 4. RV table for ammeter

Points: __/2.5

Requirements Verification

Functions for supply voltage 3.3V±5% DC. 1. Connect sensor output to oscilloscope.
2. Connect sensor to 3.3V power source.
3. Run current through the sensor.
4. Confirm that the oscilloscope shows

output in the form of voltage readings.

Current measurement is accurate up to a 5%
margin.

1. Connect sensor output to oscilloscope.
2. Connect sensor to 3.3V power source.
3. Run a 15A current through the sensor.
4. Confirm that the oscilloscope shows

an output voltage of 675mV/A±5%.

Table 5. RV table for temperature sensor

Points: __/2.5

Requirements Verification

Functions for supply voltage 3.3V±5% DC. 1. Connect sensor output to mock
microcontroller.

2. Connect sensor to 3.3V power source.
3. Probe the air for its temperature.
4. Run a mock code to check if the

sensor outputs any values.

The sensor can differentiate between pump
normal operating temperature and pump
overheating temperature.

1. Connect sensor output to mock
microcontroller.

2. Connect sensor to 3.3V power source.
3. Probe room temperature water to

simulate pump in normal operating
temperature.

4. Run a mock code and note the output
value.

5. Probe boiling water to simulate pump
overheating temperature.

6. Run a mock code and note the output
value.

7. Confirm that both readings’ values are
visibly distinct.

Table 6. RV table for vibration sensor

Points: __/2.5

Requirements Verification

The sensor can differentiate between pump
normal operating vibration and pump
excessive vibration.

1. Connect sensor output to oscilloscope.
2. Connect sensor to 3.3V power source.
3. Shake the sensor moderately to

simulate pump normal operating
vibration.

4. Note down the output voltage on the
oscilloscope.

5. Shake the sensor harder to simulate
pump excessive vibration.

6. Note down the output voltage on the
oscilloscope.

7. Confirm that both readings’ values are
visibly distinct.

Table 7. RV table for microcontroller

Points: __/15

Requirements Verification

The C program on the microcontroller should
be able to process data from the sensor
module into a format that is suitable for
transmitting data. This will be JSON.

1. Run test C program to check if
signal/data from I/O pins can be
recognized by the software.

2. Write test data within the C program
to check if it can process data into the
correct format.

3. Test the C program with sensor input
to check if the data is processed
correctly.

The C program can transmit data using built-
in Wi-Fi capabilities to AWS server.

1. Design and run test C program in
Arduino IDE to transmit mock data to
AWS server.

2. Check server log of received data to
confirm it matches the mock data
provided in the code.

Table 8. RV table for SIM module
Points: __/3

Requirements Verification

The module can establish a GPRS internet
connection through the 2G network.

1. Design and run test C program in
Arduino IDE to establish internet
connection on the ESP32.

2. Run test C program to transmit mock
data to AWS server.

3. Check server log to confirm received
data matches mock data.

Table 9. RV table for database

Points: __/10

Requirements Verification

AWS Lambda receives data given that the

transmission module successfully sent data.

Send test data from hardware, and log the
input received. Check if log matches with test
data sent from hardware. Test this after
cellular modem is tested.

Data is processed by script on AWS Lambda
correctly, and processed data is stored into the
database without corruption of data.

1. Create dummy data input within the
script and log the processed data.
Check if it is successfully processed.

2. Check database table after processed
data is inserted to database. Make sure
it does not affect past data, and new
data is inserted without alteration.

Whenever the database is updated, AWS
Lambda script should be executed to update
json files in AWS S3 bucket.

Send a single data packet every minute and
check if the csv files in AWS S3 bucket
updates.

Table 10. RV table for website

Points: __/6

Requirements Verification

The Javascript component of the website can

read and process data from csv files on AWS

S3 through ajax in real time.

Upload dummy json file with dummy data to
S3. Log the read data on console, and check if
data matches with dummy data on csv.

Warnings should be generated through

analysis of data read from csv files.

Create dummy json files. One has data
satisfying warning conditions, and another
does not. Test warning analysis part of code
with both of csv files. Check if warnings are
generated if only if the csv file has data that
satisfies warning conditions.

Data and warnings can be visualised on the
website using d3.js.

Given the csv file, check if the website can
display all data in graph and highlight the data
with warnings.

