

Software Controlled Physical
Sound Sources

ECE 445 Design Document
Won Woo Lyu - Wlyu2

Micki Rentauskas - Mar3
Ben Sisserman - Bens3

Group 26

TA: AJ Schroeder
9/29/20

Table of Contents
1 Introduction …………………………………………………………... 2-3

1.1 Objective ………………………………………………………………….... 2

1.2 Background ………………………………………………………………… 2

1.3 High-Level Requirements ………………………………………………… 3

2 Design …………………………………………………………….... 4 - 23
2.1 Block Diagram ………………………………………………………….. 5 - 8
2.2 Physical Overview …………………………………………………….. 9 - 11
2.3 Requirements & Verification ………………………………………... 11 - 16
2.4 Software Design Plot ………………………………………………...…… 17
2.5 Circuit Schematic ………………………………………………….… 18 - 19
2.6 Tolerance Analysis …………………………………………………... 20 - 21
2.7 COVID-19 Contingency Plan …………………………………………….. 22

3 Costs ……………………………………………………….………. 23 - 24
4 Schedule …………………………………………………...…………… 25
5 Ethics & Safety …………………………………………….…………… 26
6 Citations ……………………………………………………………….... 27

1

1 Introduction ​(Written by Won and Ben)

1.1 Objective
We will build three unique Software Controlled Physical Sound Source (SCPSS) devices

for our client, postdoctoral student Ryan Corey, who conducts research on hearing aids at the
Illinois Augmented Listening Laboratory​ (IALL). Testing hearing aids has always been a task to
audiologists since soundfield speakers with the introduction of background noise through a
soundfield speaker cannot replicate real-world experiences. Improvements of technologies have
made a smallear leap between lab testing of hearing aids and actual real-world listening, but
these systems are very complex and still not fully capture the real-world sounds [1]. They are
complex, because replication of real-world environments requires a variety of different types of
sounds from different distances and angles. The best way to produce a sound from a speaker
that yields accurate real-world results is to put eight speakers around the person for every 45
degrees [2], which tells that it will be harder to produce accurate real-world sound if the lab
environment gets complex.

Currently, Ryan uses speakers placed throughout the lab to demo prototypes. The
speakers use pre-recorded sounds that must be originally recorded in anechoic chambers,
which can be expensive. Speakers also direct their audio output, unlike their physical
counterparts. Our physical sound sources will create a sound wave that would go in all
directions and reflect off of the walls of the room creating a new sound that a speaker would not
be able to mimic since the sound wave of the speaker will be directly away from the speaker
along its axis [3]. Our product solves these problems by allowing various physical and electronic
devices to be used and controlled by our own Python Module, which can be easily utilized by
the IALL.

1.2 Background

Ryan Corey, a postdoctoral student at University of Illinois at Urbana-Champaign, does
research on audio-processing for noise cancelling hearing aids using speakers placed
throughout a room to emulate various sound sources for testing. He has requested that we
create software controlled real sound sources for his lab. In his lab, most of the sounds are
outputted from a series of speakers, and sounds are produced by using specialized software.
The below picture is from the article [4] of his team working on Cooperative Listening Devices,
and they used 12 speakers to test Cooperative Listening Devices. These speakers can be
replaced by our project, which will produce various real sounds while not using a speaker.

2

Figure 1. The conference room used for the massive distributed array dataset

1.3 High-Level Requirements

● The devices must be able to control at least three different physical sound sources.
● Latency variation must be kept to a minimum. Latency itself is not a concern, but latency

must not vary by more than 30 milliseconds.
● Devices must function with at least six feet of distance between devices for simulating

real-world environments and circumstances.

3

2 Design ​(Written by Micki and Ben)

Our design will trigger the sound devices from commands sent via a Python module that will be
running on the host PC. Our Python module will initialize all SCPSS on the network by listening
for broadcasts from the devices to the local router. The devices will broadcast their device type
(relay, servo, or ringer) and ID (MAC address) when turned on, and will continue broadcasting
until they are powered off or initialized by the control unit. The devices will receive and decode
commands sent from a router communicating with the PC using an ESP32 microcontroller.
There are three different board types, each will be powered by a 6V power source, and consists
of different mechanisms for sound generation with electronic components on a printed circuit
board (PCB). The relay mechanism contains relays which will toggle wall power to various
“switch type” electronic devices like a vacuum or blender. The servo mechanism will use a PWM
(pulse-width modulation) from the microcontroller to control a servo motor to strike an object
with a mallet. Finally, the ringing mechanism utilizes an H-bridge to amplify PWMs to create an
LC resonant circuit to control a vintage telephone ringer.

4

2.1 Block Diagram

Figure 2. Block Diagram

5

2.1.1 Relay Board Block Diagram Enlarged
The Relay Board will not be powered via a 6V battery like the other two boards,

because it already has power available from the power outlet which we can step-down to
3.3V for our microcontroller and LCD display. As you can see from the block diagram
below, the ESP32 will manage the activation and deactivation of the relays using the
microcontroller’s GPIO pins. The 120VAC, PWR GND, and 120VAC to 3.3VDC
converter will be placed on a terminal rail in order to safely manage the high voltage from
the wall. The high voltage relays will be located on a separate, off-the-shelf board.

Figure 3. Enlarged Relay Board Block Diagram

6

2.1.2 Ringer Board Block Diagram Enlarged
The Ringer Board will be powered by a 6VDC battery and will two 180 degree out

of phase square waves from the ESP32 and a 3.3VDC to 35VDC boost converter to
effectively create a 60V PWM used in a resonant LC circuit to create a magnetic field
from a very large inductor to oscillate the ringing hardware we extracted from an old
phone. This type of sound was a specific request from our sponsor, and required reverse
engineering an antique phone ringer.

Figure 4. Enlarged Ring Board Block Diagram

7

2.1.3 Servo Board Block Diagram Enlarged
The Servo Board will include a mount to house the servo motor steadily as it

strikes objects. The servo mount will be held down either by added weights or velcro and
be attached to a mallet of some type to strike an object such as a drum or a bell. The
microcontroller on this board will generate a pre-programmed PWM sequence to move
the servo motor from a rest position to the position of the object to strike. This board will
also be powered by a 6VDC battery.

Figure 5. Enlarged Servo Board Block Diagram

8

2.2 Physical Design ​(Written by Won, Ben and Micki)
2.2.1 System Overview

Figure 6. System Overview Diagram

9

2.2.2 Device Overview

Figure 7. PCB Sketch

2.2.3 External Components

 Figure 8. Servo motor mount Figure 9. Relay enclosure

10

Figure 10. Physical Ringing Hardware

2.3 Requirements and Verification Tables ​(Written by Won, Ben, and Micki)

2.3.1 Control Unit

The control unit will consist of the user’s PC and local router. The PC will communicate
commands using a Python API that the user can integrate into their current Python scripts. The
API should be limited to ​1 ​Python module for simplicity of integration. The local router will send
commands to the boards via Wifi using TCP communication, which will be set up separately for
each board, due to its superior reliability.

Requirements Verification

1. The Python module must be able to
identify and establish TCP communication
with all the boards.

2. Another requirement for this system is to
ensure in software that all messages are
consistent in their timing. We do not care
about latency, but about latency consistency.
Latency should not vary by more than 30 ms.

1. Use the Python module on the host PC to
initialize the boards. Use the API to print out
the number of boards and their type. All
available SCPSS devices should be listed.

2. Measure time at right before issuing
command in Python script and record timing
of sound generation using a sPython audio
listening library and record timestamp of
sound. Repeat five times and check that

11

3. The Control Unit must be OS agnostic. The
user PC should not be limited by the syste​m

results are consistent to within +/- 15 ms (30
ms).

3. Repeat verifications 1 and 2 on Linux,
Windows, and Mac.

2.3.2 120VAC to 3.3VDC Power Converter

Terminal rail mounted power converter. Since the relay board uses wall power, power
converter is essential to change power from wall power of 120VAC to 3.3VDC, which is
appropriate power for the microcontroller and LCD display.

Requirements Verification

1. Capable of supplying at least 1A for
powering ESP32 and LCD display

A. Connect to 120VAC supply, and check
output pins for 3.3VDC +/- 0.5VDC with a
multimeter.
B. Load test with resistor .3ΩR = I

V = 1
3.3 = 3

rated at minimum power
V 1)(3.7) .7WP = I = (= 3

2.3.3 ESP32-S2-SAOLA1

Microcontroller must be able to receive signals over Wifi and decode commands. It
should also be able to receive commands via a wired USB connection. Decoded signals control
the relays and ringer boards via GPIO for the decoded duration, and the servo board takes
PWM. Each board will have its own microcontroller.

Requirements Verification

1. Receive and decode commands over
2.4GHz Wifi

2. Receive and decode commands via USB

3. Output 3.3VDC +/- .5VDC GPIO for given
duration

4. Convert input from sense circuitry and
translate into battery status

5. Output data to LCD display

1. Test receiving and sending a string over
UDP and TCP.

2. Connect ESP32 to Host via USB and test
sending and receiving strings.

3. Measure output of GPIO using multimeter.

4. Display battery status on LCD monitor and
measure with multimeter to verify result.

5. Test outputting a few strings to the LCD
display.

12

2.3.4 LCD Display
LCD display will report the status of the device to the user Indicating when it is

broadcasting its identification on the network, successfully initialization of Control Unit, and
when battery is low. Would display which relay is on and for how long. Size of display is 20x2,
and each board will have its own LCD display. Difference between display on relay board with
others’ displays is that it will not display any information about low battery since relay board will
be connected to wall power, which means that power is full as long as it is connected.

Requirements Verification

1. Must be able to receive 3.3V signals from
GPIO

2. Must be large enough to display strings of
at least 20 characters

1. Send data to the display using the ESP32
microcontroller, and check that sent data is
displayed.

2. Send data like in (1), using a string with 20
characters and checking they are all shown.

2.3.5 Off-the-Shelf Quad Relay Board

An off the shelf commercial relay board will be used to ensure that high-voltage of the
outlet does not contact our PCB and damage/burn components. This board will have four relays
which can toggle four different sound-producing objects.

Requirements Verification

1. Toggle positive line voltage for four
separate devices

2.Tolerate up to 12A for each relay at
120VAC

3. <10ms latency between received GPIO
and switch action

1. Apply high signal to relay coil for each
relay, and check for short across NO and
COMMON

2. Use Electronic Load to test each relay
separately.

3.

A. Apply a square wave with 50ms
period and 50% duty ratio

B. Put oscilloscope probes on square
wave and across NO and COMMON

C. Set scope trigger at 0V so it catches
when the relay closes

D. Use horizontal measuring tool on
scope to check delay between the
PWM going high and the relay
shorting

13

2.3.6 Terminal Rail
A terminal rail will be used in order to safely organize and connect positive and negative

wall voltages as well as a 120VAC to 3.3VDC converter.It will provide a safe route for a circuit to
terminate and reduce the risk of short circuit.

Requirements Verification

1. Hold terminal blocks at 120VAC and PWR
GND and provide isolation from each other

2.Support up to 15A of current.

1. Apply 120VAC across terminal nodes
using a power supply and use an electronic
load to apply 48A current.

2.3.7 Battery Sense Circuit

This block, which will be replicated for both the Servo Board and the Ring Board will
monitor the voltage of our onboard battery and convert that to an analog signal between 0 -
3.3V so it can be read by the ESP32-S2 microcontroller.

Requirements Verification

1. Convert voltage of the battery to a level
that the GPIO of the ESP32 can handle and
translate (3.3V)

2. Draw negligible current, at most 5
microAmps

1.
A. Measure voltage of the analog output

when the battery is charged, verify
that it is above 3V but below 3.3V.

B. After part A is verified, display analog
value on LCD display, and compare to
voltage measured on multimeter.
Repeat this for the battery at high,
medium, and low capacity.

2. Use a multimeter to measure current
through the circuit and check that it is within
bounds.

14

2.3.8 6V Battery
The battery must be able to supply 6VDC to the servo motor and 3.3VDC +/- 0.3VDC to

the microcontroller. The battery must be able to keep supplying the power to the microcontroller,
LCD Display and servo motor up to 3 hours with at least 1.5A.

Requirements Verification

1. Must provide at least 1.5A for three hours
of frequent use of both the microcontroller
and the servo motor (once or twice a minute)

1. Run a Python script to turn on and off one
of the SCPSS devices with a delay of 10
seconds between commands, and measure
time until battery dies or low battery is
displayed on LCD.

2.3.9 Step-Down Chip

Off the shelf chip which converts a 6VDC battery to 3.3VDC for powering the ESP32-S2
and the LCD display. This chip would not be necessary if we did not use a servo motor,
microcontroller and display only need 3.3 V.. However, since the servo motor needs 6VDC, we
decided to use a 6V battery and step down it for the other two.

Requirements Verification

1. Must be able to step down 6VDC input to
3.3V +/- 0.3VDC output

1. Verify inputs and outputs using
multimeters.

2.3.10​ ​Servo motor

Servo motor will be equipped with a drumstick or plastic arm to hit objects. Powered by a
6V battery on the board and controlled by a 3.3V PWM signal from the ESP32. Servo motor will
produce an approximate torque of 1.3kg/cm +/- 0.2 kg/cm, powered from a 6V battery. This
amount of torque will be enough to equip with a drumstick and hit since the average weight of
one drumstick is 40 g ~ 70 g.

Requirements Verification

1. Must be able to take as input 3.3VDC
PWM from ESP32 to control the motor.

2. Must provide enough torque to make the
strike audible for at least 10 ft.

1. Use a function generator to create a 3.3V
PWM with various PWMs and check that the
motor steps with the PWM as expected

2. Attach a pen or pencil to the arm of the
servo, and place next to a small piece of
metal or a bell. Have the servo repeatedly
strike the object and check that it is audible at
above 10 ft distance.

15

2.3.11 Servo Mount
Servo must be securely attached to a mount that can hold the servo in place while it

strikes a nearby object. This mount can be held down by weights or by velcro attached to the
bottom.

Requirements Verification

1. Able to hold servo near object to strike for
at least 12 strikes before manual realignment
is required.

1. Trigger motor to hit 12 consecutive times
and listen for any noticeable changes in the
sounds, while visually confirming that servo is
in place.

2.3.12 Ringing circuit driver

We have acquired a ringing hardware from a vintage phone and reverse engineered it to
see precisely what kind of control circuit is required. This circuit will take two 180 degree
out-of-phase 3.3V PWM signals and use an H-bridge with a 35VDC boost converter to generate
a 70VAC square wave to drive the ringing hardware.

Requirements Verification

1. Take two 3.3V PWM signals from ESP32
and use it to toggle 60VAC across the
H-bridge

2. Should be able to ring for at least 30
seconds continuously.

1. Use a function generator to output two
3.3V square waves to the circuit driver for the
mechanism to activate. Listen and verify that
the ring is consistent for at least 30 seconds.

16

2.4 Software Design Plot For Device Algorithm ​(Made by Ben)

Figure 11. Device Main Loop Algorithm

17

2.5 Circuit Schematics ​(Made by Micki)
2.5.1 Relay Type Board Schematic

Figure 12. Circuit Schematic of the Relay Board
2.5.2 Relay Type Board Layout

Figure 13. Relay Board Layout
2.5.3 Ringer Type Board Schematic

18

Figure 14. Ringer Type Board Schematic

2.5.4 Servo Type Board Schematic

Figure 15. Servo Type Board Schematic

19

2.6 Tolerance Analysis ​(Written by Won and Ben)

The main risk for this project is the need for latency consistency. As mentioned in prior

sections, the latency itself is not a risk factor. However, our sponsor has requested that the
devices provide a latency consistency up to less than 30 ms of variation for repeatable testing,
which means that we are limited by our ​network jitter. Network jitter is the inconsistency in
latency of packets being delivered through the network [5]. Network jitter occurs during network
congestion, interference, route changes, etc. Given that the IALL uses the IllinoisNet network,
which is open to all university students, we can expect a decent amount of network jitter. There
is a high chance that some packets could arrive with a 20 ms delay while others can arrive with
a 60 ms or 10 ms delay. To calculate the network jitter, first we have to throw a PING to a
certain destination such as the PC IP address in the terminal. This will lead the terminal to list
PING brackets with inconsistent delay times. To find the average value of jitter, we have to
average the time difference between each packet sequence in the list. An example of a PING
list can be seen in Figure X below.

Figure 16. PING List Example

Credit to ​https://www.pcwdld.com/network-jitter​ for example
To find the average of the network jitter, we have to find out the total difference of time and
divide it with the number of values that had variation above 1ms.

Difference 1 = 1 ms and 58 ms: 57ms
Difference 2 = 58ms and 1ms: 57 ms
Difference 3 = 1 ms and 1 ms: 0 ms
Difference 4 = 1 ms and 1 ms: 0 ms
……
Difference 22 = 1ms and 31 ms: 30 ms

20

https://www.pcwdld.com/network-jitter

Difference 23 = 31 ms and 1ms: 30 ms

There are 23 differences from the beginning to end and 16 differences that have greater
than 0 with total difference equals to 660. Finally, we can calculate the network jitter by dividing
this total number of 660 by 16, which leads us to have 41 ms of network jitter. We formalized
this process using the following pseudocode:

Let ​X ​be the list of times for ping responses.
Let ​N​ be the total number of pings
Let ​C ​be the number of jitter occurrences, initially set to 0
Let ​S​ be the sum of jitters, initially set to 0
For each ​x​i​ ​in ​X ​with ​i​ ranging from 0 to ​N:

If ​x​i​ ​!= ​x​i+1​ :
Increment ​C
Set ​S = S + |x​i​ - x​i+1​|

Jitter​ ​=​ ​S/C

In order to provide the 30 ms maximal jitter requested by our sponsor, we must do
extensive measurement and testing on the network jitter of the IllinoisNet network, preferably
from the IALL’s access point, and use this measurement to create a jitter buffer in software. A
jitter buffer on our system would use the timestamp of the command generated on the host PC,
and wait until a set amount of time is passed before executing the command on the ESP32-s2
microcontroller. As we can see, the latency of these devices is not a bug, but a feature that must
be set in software in response to the network jitter to ensure latency consistency.

21

2.7 COVID-19 Contingency Plan ​(Written by Micki and Ben)

In the case that we are moved to a completely online curriculum and we lose access to
the senior design lab, we intend to shift focus from the relay-based device to the servo and ring
based devices. This is because we would lack the equipment to safely work on and verify the
functionality of high-voltage components, thus we can shift our focus to expanding upon the
devices that are safer to test and measure in our own homes. This would mean that we would
have to get more creative about our servo-based device, since it is the only one left that can
output a variety of sounds. One option would be to expand the functionality of the servo to strike
two objects, one to the left and one to the right of the servo, rather than simply striking one
object. This would require an overhaul of our API and some of the code on the ESP32, but
requires no change to the hardware/electrical design of the device.

22

3 Costs ​(Written by Micki)

Our fixed development costs are estimated to be $40/hour, 10 hours/week for three people. We
consider approximately 60% of our final design in this semester (16 weeks).

.5 80, 003 * hr
$40 * wk

10hr * 0.6
16 wks * 2 = $ 0

Part/Part # Quantity Manufacturer Cost

Terminal Rail Power Converter
(120VAC - 3.3VDC)
PSK-10W-3-DIN

1 CUI Inc. $21.60

ESP32-S2-SAOLA1 3 Espressif Systems Each: $8
Total: $24

LCD Display 3 Sparkfun Each: $7.49
Total: $22.47

Terminal Rail
77-2293-ND

1 Phoenix Contact $5.43

Terminal Rail Partitions
277-2040-ND

10 Altech Corp. Each: $0.80
Total: $8.00

Terminal blocks, various colors
277-3243-ND

9 Phoenix Contact Each: $1.34
Total: $12.06

Ground terminal block
277-17411-ND

1 Phoenix Contact $4.51

Terminal block end plate
277-2038-ND

2 Phoenix Contact Each: $0.64
Total: $1.28

6V Battery
AmazonBasics AA
High-Capacity Ni-MH
Rechargeable Batteries

1 (6V) =
8 (AA)

Amazon Each: 2.14
Total: 17.11

4 AA Battery Holder 2 LampVPath Each: 2.99
Total: 5.98

Servo Motor
FutabaS3003

1 Futaba (already have)

6VDC to 3.3VDC level shifter
chip
AP1509-33SG-13

3 Semtech Corp. Each: $1.60
Total: $4.80

23

H-Bridge 1 n/a (already have)

22KΩ Resistor 2 n/a (already have)

44KΩ Resistor 2 n/a (already have)

High Voltage Quad Relay Board 1 n/a (already have)

Various capacitors n/a n/a (already have)

Vintage phone hardware n/a n/a (already have)

Total $127.24

Our project is meant to be modular to accommodate future additions of sound devices and
changing in and out devices, but for the scope of this class we are designing a system that can
have four wall-powered sound sources, one servo “striking” type sound source, and one ringer
type sounds source. We went over budget here but our sponsor is willing to cover additional
costs. Finally, the actual sound sources aren’t included in the costs at the moment as we plan to
use our own devices and when we ultimately give the system over to our sponsor, they can
source the sound devices they want for their tests.

24

4 Schedule ​(Written by Won, Ben and Micki)

Week Micki Ben Won Woo

10/5 Work on PCB for 3
boards, order minimal
parts

Set up Github Set up Github

10/12 Finish PCB for all three
boards, plan basic tests
for boards

Create protocol for message
structure

Review UDP/TCP
communication in Python

10/19 Breadboard with
components then test on
PCBs

Create and test Network Jitter
buffer

Begin writing Python Module

10/26 Rework PCB if there is
any problem

Begin embedded software for
ESP32

Finish Python module on
Host

11/2 Finalize hardware, build
enclosures

Finish embedded software on
ESP32

Finish embedded software
on ESP32

11/9 Prepare Mock Demo Prepare Mock Demo Prepare Mock Demo

11/16 Prepare Demonstration Prepare Demonstration Prepare Demonstration

11/23 Begin Final Report Begin Final Report Begin Final Report

11/30 Prepare Presentation Prepare Presentation Prepare Presentation

12/7 Finalize Final Report Finalize Final Report Finalize Final Report

25

5 Ethics and Safety ​(Written by Won)

Since the relay-type board will be connected to the wall power, we have to care about

any components that are connected to this board since there is a possibility of getting an electric
shock. In order to avoid this, we are planning to use a terminal block (aka terminal rail) to avoid
any kinds of poor connected wires. Using it will lead to a convenient and safer way to distribute
power from a single input source of the wall power to multiple outputs. We are responsible for
our design and safety, and this safety concern is an implementation of the IEEE Code of Ethics
Section I.1, “disclose promptly factors that might endanger the public or the environment” [6].
We are also considering ordering a commercial relay board to separate between sensitive
components like the microcontroller and the AC power.

One other concern for the relay-type board is the use of high-power consumption
electronics. These electronics are more likely to be used since they produce a lot of noise, for
example vacuums, blenders, or hair-dryers are all high power consumption electronics that are
very loud. However, a standard wall outlet may not be able to provide current for four of these
devices at the same time. For this reason, the user must be aware of the amount of power their
electronics require, and whether they need a high-power outlet rather than the standard.

Since we will lead the project based on using the school's wifi during the demo, we are
responsible for our design that will prevent any circumstances that violate provisions of
University policy over using the school’s WiFi [7].

26

6 Citations
[1] ​Miller, A., 2020. ​Extending Hearing Aid Testing Beyond The Walls Of The Sound Booth |
Phonak Audiology Blog - Phonak Pro - Life Is On​. [online] Phonak Audiology Blog - Phonak Pro
- life is on. Available at:
<https://audiologyblog.phonakpro.com/extending-hearing-aid-testing-beyond-the-walls-of-the-so
und-booth/> [Accessed 28 September 2020].

[2] Staff, H., 2007. ​Developing And Testing A Laboratory Sound System That Yields...​. [online]
Hearing Review. Available at:
<https://www.hearingreview.com/practice-building/practice-management/developing-and-testing
-a-laboratory-sound-system-that-yields-accurate-real-world-results> [Accessed 28 September
2020].

[3] Physics Lecture Demonstration Facility. 2014. ​How Does A Candle Flame Respond To A
Sound Wave? - Question Of The Week 2014 Summer Girls Special Part 1​. [online] Available at:
<https://lecdem.physics.umd.edu/question-of-the-week-archive/154-qotw-020-with-answer.html#
:~:text=Sound%20propagates%20as%20a%20longitudinal,the%20speaker%20along%20its%2
0axis.> [Accessed 28 September 2020].

[4] Housing, U., n.d. ​Connection Speeds​. [online] Illinois University Housing. Available at:
<https://housing.illinois.edu/Resources/Technology/Help/connection-speeds> [Accessed 1
October 2020].

[5] Wilson, M., 2019. ​Network Jitter - What Is It And How To Monitor It With Software/Tools​.
[online] PC & Network Downloads. Available at: <https://www.pcwdld.com/network-jitter>
[Accessed 1 October 2020].

[6] Ieee.org. n.d. ​IEEE Code Of Ethics​. [online] Available at:
<https://www.ieee.org/about/corporate/governance/p7-8.html> [Accessed 28 September 2020].

[7] Campus Admin. Manual. 2001. ​Appropriate Use Of Computers And Network Systems​.
[online] Available at: <https://cam.illinois.edu/policies/fo-07/> [Accessed 29 September 2020].

27

