

Digitizing the Restaurant Experience

Design Document

Team #36
Aman Kishore (amank2@illinois.edu)
Jun Woo Seo (jseo35@illinois.edu)

Patrick Moore (ptmoore2@illinois.edu)

UIUC ECE445

TA: Sophie Liu (yiqiaol3)

Table of Contents

I. Introduction …………………………………..………………………………….. 2
A. Background ...….……………………………………………………….... 2
B. Overview ………………………………………………………………..... 2
C. Visual Aid ………………………………………………………………... 3
D. High-Level Requirements ………………………………………………. 4

II. Design ………………………………………..…………………………………… 5
A. Block Diagram …………………………………………………………... 5
B. Physical Design ………………………………………………………….. 6
C. Schematics ……………………………………………………………….. 7
D. Subsystems ……………………………………………………………..... 8
E. Risk Analysis …………………………………………………………… 12
F. Contingency Plan ………………………………………………..……... 12

III. Cost and Schedule ……………………………..……………………………….. 13
A. Cost Analysis …………………………..……………………………….. 13
B. Schedule …….…………………………..……………………………….. 14

IV. Safety & Ethics …………………………………..……………………………... 15
V. References ………………………………………..……………………………... 16

1

I. INTRODUCTION

A. Background

Throughout the Covid-19 pandemic, many businesses have been experiencing huge
losses. Restaurants have been one of the businesses hit the hardest, and this is since most
restaurants can only function when people can come in and sit down. Over 60%[1] restaurants that
closed during the pandemic are closed for good; the restaurants that are still open may face a
similar fate. The main problem that these restaurants are facing is that customers do not want to
dine-in, as that would mean interacting with servers. Currently, servers have a lot of unnecessary
contact with customers. The majority of restaurants have limited seating with most operating
with takeout only and while others operate with minimal outdoor seating. As the weather gets
colder, it will further reduce the amount of seating at restaurants. The huge problem that
restaurants are facing is that most customers feel that it is too risky to dine inside.

Currently, the restaurant industry is unable to provide a safe environment indoors as there

is too much interaction between servers and the customers. Many industry solutions offer
contactless service, but no products exist to provide a contactless dine-in experience. For
example, many third-party services, like Uber Eats and GrubHub, offer contactless delivery. The
most similar service would be Rooam, but that is only a solution for contactless payment. The
issue is, especially with fine dining, tables need to get filled. There are currently no effective
solutions on the market that offer contactless dine-in. The lack of contactless dine-in options
costs restaurants magnitudes in lost revenue and safety. Solving this challenge would allow
restaurants to survive through the winter and generate enough revenue to sustain themselves
through the pandemic. .

B. Overview

Our goal is to reduce the amount of time a server spends with each customer. We want
our final solution to remove as much unnecessary contact between customers and servers as
possible to create a safe dine-in experience. We have designed a system that will aid servers in
determining if a table is clean and available for the next patron. Additionally, the system will
limit the amount of time that each customer needs to interact with the server. This is achieved
through an on table unit where the customers can order food and request drinks. This solution
will limit the amount of interaction that a server has with each customer. The on-table units
encompass an RFID scanner, a series of labeled buttons, and a WiFi module to communicate
requests to the servers. A 3D-printable case will house all the components; this allows for
low-cost production while maintaining a sleek look.

2

Our solution would be a cost-effective way to make indoor dining safer and limit any
unwanted interactions. The system we will be building includes a table module, through which a
customer can make requests, and an application where servers can see active requests. The
on-table unit will also indicate when a staff member has cleaned the table. This module will
communicate with a React app using a Flask API to populate a SQL database with all of these
customers' requests. It would give smaller restaurants the ability to offer customers a novel way
to order and keep everyone safer during the pandemic.

C. Visual Aid

Fig 1. Visual Aid for this project

3

D. High-Level Requirements

● The first requirement is an in-unit RFID reader that will interact with a unique RFID Tag

held by the staff with an accuracy of 90% +/- 10% when the server scans the tag. This
will indicate if a table is sanitized and ready for the next customer or if the table is
unavailable.

● The next requirement is building a screen that will allow the customer to communicate
with the restaurant for 3 tasks which include requesting water, requesting food, and
paying the bill.

● The final requirement is to design and produce a React Native application and a Flask
API to store information from each module's screen and store up to 20 unique tables in a
SQL database (one entry per table). The latency between the React Native application
and the table should be under 30 seconds.

4

II. DESIGN

A. Block Diagram

Fig 2. Block Diagram

5

B. Physical Design

Fig 3. Physical Design

6

C. Schematics

1) RFID Reader schematic:

Fig 4. Schematic for RFID Reader[6]

2) Microcontroller with WiFi schematic:

Fig 5. Schematic for Microcontroller with WiFi[7]

7

D. Subsystems

1) Power Module: A power supply is required to keep the RFID and microcontroller

working. We will use an AC battery and two voltage regulators: a 3.3V regulator for the RFID
module and a 5V regulator for the microcontroller.

a) Li-ion battery: The Li-ion battery will supply the power to the system. We will

use a 9V Lithium battery with a capacity of 500mAh. Since the total current consumption for
RFID and microcontroller is 130mA, the total capacity of the battery needs to be at least
1560mAH to run for 12 hours. Therefore, we need three 9V Lithium batteries.

Requirements Verification

1. A lithium ion battery will need to
output 9V +/- 5%

2. The battery can store at least

1560mAH of charge

1. Connect battery to a multimeter and
ensure that the voltage is 9V +/- 5%

2. Discharge the battery by connecting it to

a positive terminal for 12 hours at 130mA
and use a multimeter to ensure that the
voltage is still 9V +/- 5%

b) Voltage regulators: This integrated circuit supplies the required 9V to the

system. This chip must be able to handle the peak input from the battery (9V) at the peak current
draw (130mA). We will be using two voltage regulators. One voltage regulator that can provide
3.3V for the microcontroller and one voltage regulator that can provide 5V for the RFID reader.
We are going to use LM1086 for the 3.3V voltage regulator and LM2940 for a 5V regulator.

Requirements Verification

1. Provides 3.3V +/- 10% from a 9V
source

2. Provides 5V +/- 10% from a 9V
source

1. Connect a power supply to the voltage
regulator with 9V. Measure the output
voltage using an oscilloscope to see if it
stays within 3.3V +/- 5%

2. Repeat test 1 for each of the required

voltages in requirements 2

8

2) I/O Interface: Every unit will contain an RFID reader which will be an effective way
to indicate when a table is ready or served. The RFID reader will act as a tool usable by the
server to indicate when a customer’s request has been completed as the servers will be equipped
with RFID cards. Reading a proper RFID card will send a signal, indicating the presence of a
card, which will clear the customer’s request from the SQL server.

a) RFID Reader: The RFID reader, contained within the on-table unit, will be

able to recognize the unique RFID card which is in the possession of wait-staff which, when
read, will indicate the table has been helped/cleaned. When the reader recognizes a tag, it will
trigger an LED indicator (which will be placed on the circuit) and send a signal to the SQL
server to clear their request. When the table is occupied, there will be a queue for that table and
once the table is cleaned and the RFID is scanned that queue will be cleared. The queue is
created when the RFID receives a signal that the table is occupied. This information is passed to
the SQL database and shows up on the web application. We are going to use EM18 for our RFID
reader.

Requirements Verification

1. Determine the reader should be
able to receive signals in the 125 -
134 KHz range as that is the
requirement for the low frequency
tags we will be designing.[5]

2. The RFID reader should only

work with the RFID tag used by
the restaurants and no other RFID
enabled electronics

3. Once the RFID reader scans and
RFID tag, the SQL database
should be updated to toggle the
table's state (available or
occupied)

4. The RFID reader needs 5V +/-
10% and the minimum current
consumption is 10mA.

1. Using a frequency generator determine if
the reader is able to pick up frequencies in
the range of 125 -134 KHz

2. Verify that only the RFID reader only
accepts one RFID tag (with the correct
information) by testing multiple RFID
tags (eg. school id)

3. Verify that the SQL database is updated
correctly and that the proper table state is
stored.

4. Connect the voltage input of RFID to a
multimeter and ensure that the voltage is
5V +/- 5% and the current is at least
10mA

9

b) RFID Tag: Each staff member will have an RFID tag (card). The tag will act as
an unobtrusive and swift way to clear notifications from the on-table unit. The RFID reader will
only accept this card’s unique signal.

Requirements Verification

1. The RFID Tag should emit at a
frequency of 125 - 134 KHz (Low
Frequency Tag)[4]

2. RFID Tag should communicate to the
SQL database and update the table's
status every time it is scanned.

1. Using a frequency meter ensure that
the frequency that the RFID Tag
emits is in the range of 125 - 134
KHz +/- 5%

2. Verify that the database entry
corresponding to the table is
modified each time the RFID is
swiped

3. POS/Customer Interface: The Customer Interface’s primary use is to communicate a

customer’s needs with the client. This is accomplished through a series of labeled buttons which,
when pressed, will cause the control unit to send a signal which populates a server with the
appropriate data which is monitored by the client via a web-portal. This will be used by the
customer to send requests to the server and all of this information will be sent through the
backend to the Client Module.

a) Client Module: The Client Module includes the server which stores the data,

and the customer is trying to communicate with the establishment and a web-portal to view such
data. The restaurant will use the portal to see which tables are making requests and will have the
ability to clear requests through the portal. The data will be stored in SQL tables and organized
to be displayed through the web-portal. The data on the SQL tables will be managed by a
flask-based backend which will interpret API calls from the table units to determine their status
and update the database accordingly. The Client portal will be a simple javascript React portal.
Both the React portal and on-table units communicate data via our API calls. Most of all
software will be hosted by Google Cloud Services and Heroku. By using an ID and password
unique to the restaurant, the staff will be able to see the status of tables through this portal.
Ideally, in the future, this project will expand to having a customer-facing application that will
allow diners to accomplish much of this project’s functionality through a mobile application (out
of the scope of this project).

Requirements Verification

1. The web application properly
fetches data from the SQL

1. Check SQL tables to ensure that the
application shows ALL data from a single

10

tables

2. The web app properly
refreshes to display
new/current data within 15
seconds when updating SQL
tables.

3. Ensure that the web app is
responsive on desktop and
mobile.

4. Be able to update status and

tables via the web platform

table (and that the table is different for every
account).

2. Add new data via API call and ensure that the
new data is viewable via the platform within
15 seconds of updating the SQL tables.

3. Use Chrome’s dev tools to test multiple
devices.

4. Check the SQL tables to ensure the web
platform has made the proper changes

4. Control Unit: The Control Unit is the bridge between the I/O Interface and Client
Module. It will interpret signals from the RFID reader and buttons and send data to Flask API
through the WiFi.

a) Microcontroller with WiFi: We are going to use ESP32-pico-d4 for our
microcontroller. This microcontroller contains a WiFi integrated circuit. The WiFi IC allows for
the microcontroller to send data to the Flask API hosted on the Heroku. There are a series of API
commands in the flash storage of the microcontroller for certain conditions. For example, when
the button is pressed, the microcontroller receives the data via GPIO. Then, data is sent back to
LEDs via GPIO, one of the three LEDs turns on (green), and an API call is made.

Requirements Verification

1. Ensure SPI flash holds all the
proper API commands

2. Ensure all sensors produce

signals as expected

3. Ensure circuit recognizes all
signals

4. The microcontroller needs 3.3V

+/- 10% and the average

1. Reading the contents of flash will prove this
to be true or false

2. Use oscilloscope to verify the sensors are

not flawed

3. Use meter to verify that our controller
attempts to send data to the Flask

4. Connect the voltage input of RFID to a

multimeter and ensure that the voltage is

11

operating current is 80mA and
the minimum current is 50mA

3.3V +/- 5%, the average current is 80mA,
and the minimum current is 50mA

E. Risk Analysis

Getting this module to properly communicate with the restaurant through the screen
heavily depends on the WiFi module. If the Wifi module does not have enough range, we will do
the following modifications. One option is to reduce the range with which the WiFi module will
have to communicate. The other option is that we will purchase or build a signal extender in
order to improve the range. Additionally, if the WiFi module is unable to send any signals then
the module will not be able to send any information. This would significantly impact our project
and, as a workaround, we could directly pass the data from the module but this would take a lot
of reworking of the components of our project.

There is also a risk that this RFID reader will be unable to communicate with the RFID

tag that we create. If the RFID is unable to communicate with the RFID tag then one of the main
functionalities of our project will not be able to work. In that case, we may have to simplify our
design and purchase an NFC tag. Additionally, if the RFID sensor is unable to properly pick up
signals then we may have to redesign the solution by implementing a High-Frequency Tag which
is usually more reliable but more complex.

F. Contingency Plan

In case the school shuts down, we will not have to alter the power module of our design
as that is fairly straightforward. In case the school shuts down, the client module will be
unaffected. However, the wifi module may be difficult to complete. In this case, we will use this
as a proof of concept, or we may try to purchase a WiFi module in order to have a completed
design. For the RFID Module, we will have to purchase an RFID and tag in order to have a
working design. If this is not possible, we will have to work with the parts that we have as a
proof of concept.

12

III. COST AND SCHEDULE

A. Cost Analysis

1) Labor: On average an ECE Major from UIUC made $88,000 as a starting salary. This
roughly translates to $42.31 per hour.

The main aspects of the project are as follows:
SQL Database Creation: 8 hours (Aman)
Flask API: 8 hours (Patrick)
Making the React Application: 25+ (approximately 40) hours (Aman & Patrick)
Designing the PCB: 10 hours (Junwoo & Aman)
Building the RFID: 5 hours (Junwoo)
Building the WiFi Module: 5 hours (Junwoo)
Wiring the Circuit: 4 hours (Junwoo & Patrick)
3D Design/Print Shell: 3 hours (Patrick)

The total amount of labor will be around 68 - 83 hours which (using the equation ($/hour)
x 2.5 x hours to complete = TOTAL) roughly equates to about $7,192.70 - $8,779.33 cost of
labor for creating this project.

2) Parts:

Description Manufacturer Part # Quantity Cost

LED Rohm SLR-56VR3F 3 $0.49

Button WURTH
ELEKTRONIK

430186070716 3 $0.50

RFID Module RNDMFG EM-18 1 $5.50

RFID Card HID 208 1 $2.49

Microcontroller
with WiFi

Espressif Systems ESP32-pico-d4 1 $4.95

Voltage Regulator
for 3.3V

Texas Instruments LM1086IT-3.3/NOPB 1 $4.86

Voltage Regulator
for 5V

Texas Instruments LM2940CT-5.0/NOPB 1 $1.53

13

3D Printer Filament
(for Printed Casing)

Snapmaker 34011 1 $8.00

9V Battery Duracell MN1604B1Z 2 $5.44

NOTE: The software will ultimately be hosted on GCS and Heroku which will incur a recurring
charge. As it is far too early to estimate the traffic and size of the software components, we have
neglected to include the hosting service as part of the initial creation costs.

B. Schedule

Week Junwoo Patrick Aman

9/27 Design Review
Order Parts

Design Review
Order Parts

Design Review
Order Parts

10/4 Design PCB, RFID, WiFi
Order PCB

Work on React App Design PCB
Order PCB

10/11 Design PCB, RFID, WiFi Work on Flask API
Work on React App

Work on database

10/18 Implement the RFID,
WiFi module

Work on React App
Work on RFID and Wifi

Work on database
Work on React App

10/25 Wire up the circuit Wire up the circuit
Work on React App

Connect API to database
Work on React app

11/1 Combine Software &
Hardware

Combine Software &
Hardware

Combine Software &
Hardware

11/8 Mock Demo Mock Demo Mock Demo

11/15 Final Demo Final Demo Final Demo

11/30 Final Paper/Presentation Final Paper/Presentation Final Paper/Presentation

14

IV. SAFETY & ETHICS

There are several safety hazards that we will need to handle when it comes to this project.
In accordance with the IEEE Code of Ethics[2] I.1: "to hold paramount the safety, health, and
welfare of the public, to strive to comply with ethical design and sustainable development
practices." The first safety hazard that we face is that all of the power needs to be properly
grounded. If there is an exposed wire there is a chance of electrical. Additionally, we will need to
make sure that our project has some level of waterproofing. If a customer accidentally spills
water on our system then it could cause some electrical issues not to mention that it will be
extremely unsafe for the consumer. Some safety considerations when designing this project are
as follows. We need to ensure that when we are constructing each module that we are cautious of
common electrical standards.

We will adhere to the IEEE Code of Ethics[2] I.1: "to hold paramount the safety, health,

and welfare of the public, to strive to comply with ethical design and sustainable development
practices." In order to ensure that our project is ethically sound we will need to ensure that all of
the user data that is inputted in our POS will be encrypted and not stored locally. Keeping
consumer safety is paramount to safety in this digital age when personal information can be
stolen and used for gain. We need to ensure that the technology is understandable and discloses
exactly what information it needs from the user. Ethically it is important that while we design
this system we ensure that how it works is easy to understand by both the customer and the
server. That entails having clear descriptions as to what information the POS system requires and
what information will be stored. This includes any payment information especially if the
customer uses their credit card to pay. This information must be kept secure and confidential in
order for our design to fully adhere to the IEEE code of ethics.

As we work with our design, we will adhere to the IEEE ethic code I.5[2], “to seek,
accept, and offer honest criticism of technical work, to acknowledge and correct errors, to be
honest.” We will ensure this by taking all feedback constructively and ensure that the work we
are achieving is up to the highest standards.

15

V. REFERENCES

[1] Croft, Jay. “Yikes! Yelp Says 60% of Restaurant Covid-19 Closures Are Permanent.” CNN,
Cable News Network, 25 July 2020, Available:
www.cnn.com/2020/07/25/business/restaurants-reopen-coronavirus-shutdown-trnd/index.html.

[2] “IEEE Code of Ethics.” IEEE, 1974, www.ieee.org/about/corporate/governance/p7-8.html.

[3] “LM1086 1.5-A Low Dropout Positive Voltage Regulators datasheet” Available:
https://www.ti.com/lit/ds/symlink/lm1086.pdf?ts=1601607738923&ref_url=https%253A%252F
%252Fwww.ti.com%252Fproduct%252FLM1086

[4] Karygiannis, Tom, et al. Guidelines for Securing Radio Frequency Identification (RFID)
Systems. Recommendations of the National Institute of Standards and Technology.

[5] “How to Select a Correct Tag – Frequency.” RFID4U, 2020, Available:
rfid4u.com/rfid-frequency/.

[6] “EM18 RFID Reader Datasheet.pdf.” components.com Available:
https://components101.com/sites/default/files/component_datasheet/EM18%20RFID%20Reader
%20Datasheet.pdf

[7] “esp32-pico-d4_datasheet_en.pdf.” espressif.com Available:
https://www.espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf

16

