

Plug and Play Stenography Keyboard

Team number: 2

Team Members:
Haoqing Zhu (haoqing3@illinois.edu)

Soham Karanjikar (sohammk2@illinois.edu)
Rishi Krishnan (rishik3@illinois.edu)

TA: William Zhang

September 12, 2020

Course: ECE 445

1. Introduction
1.1. Objective

There is currently no way for verbally disabled individuals to communicate with others in
real time. Sign languages do provide a way out, but it is very impractical to expect everyone
else to learn it in order to communicate. On the other hand, typing on traditional keyboards
is too slow, they do not offer any solution to this problem.

Our solution is to build a plug and play stenography keyboard that has all the necessary
hardware/software built within, so no extra installation is needed on the host side. This
keyboard will offer typing speeds close to what humans speak at (180 - 250WPM).

1.2. Background
Traditional steno keyboards are very expensive [1] as they are generally used only in

court. Additionally, they are also bundled with many court-reporting specific softwares which
would be useless in everyday communication [2]. Our project on the other hand builds the
keyboard for a fraction of the cost while providing the same benefits.

Since our keyboard does not require much technical knowledge, such as installing
software or coding, it is very marketable to various demographics. The only necessary
knowledge is learning how to use a stenography keyboard. Another benefit is the ability to
change the dictionary in our keyboard, so that users can make their own strokes for new
words or new phrases, and maybe even use a different language.

1.3. Visual Aid

Figure 1: Physical Prototype

1.4. High-level Requirements List
i. The user is able to convert their personal dictionary (assumed in Plover JSON format)

using a utility tool into our custom format (for efficiency) within 2 minutes, and load it
onboard within 1 minute.

ii. The device is able to translate strokes taken from keyboard to keystrokes according to
the corresponding dictionary entry with a max delay of 100ms.

iii. The user is able to dynamically add/delete/modify dictionary entries on the fly within
500ms.

2. Design
2.1. Block Diagram

Figure 2: Hardware Block Diagram

The dictionary compiler would allow users to convert their personal dictionary into the

version that we would be using. The SPI flash would store the dictionary onboard and the
translation engine will translate the strokes from the keyboard into output according to the
stored dictionary. The user interface through OLED and the keyboard itself would allow the
user to modify the stored dictionary.

2.2. Physical Design

Figure 3: 3D board rendering

2.3. Power Module
The keyboard is powered through USB. The MCU and TFT screen are powered directly

by the 5V, while the flash is powered by 3.3V through a voltage regulator.

Requirement Verification

1. VBUS from USB is able to provide 5V ±
5%

2. Output from voltage regulator is able to

provide 3.3V ± 5%

1. Measure the VBUS line from USB using
an oscilloscope, and see if the
maximum and minimum stays within the
5% range

2.
a. Connect the regulator with the

decoupling caps
b. Connect the input of the regulator to

VBUS of USB line
c. Measure the output of the regulator,

and see if it stays within the 5%
range

2.4. Dictionary Compiler
The dictionary compiler is required to bootstrap the dictionary onboard. It will take a

Plover JSON dictionary and convert it into a binary format that’s easy for the MCU to read
and manipulate.

Requirement Verification

1. Able to compile a Plover JSON
dictionary to the required format

1.
a. Fetch the latest dictionary from

Plover’s repo
b. compile it using the dictionary

compiler
c. load it onto the flash
d. randomly input sequences of

strokes and check that the output is
the same as the defined entries

2.5. Dictionary Storage
The SPI flash and the associated driver code will take care of storing the binary

dictionary. It will also provide fast random read/write access to the dictionary so that the
MCU can have enough speed to process the translation.

Requirement Verification

1. Able to read correctly from the
dictionary at least 500kB/s

2. Able to write to the storage at least

200kB/s

1. Program the MCU to:
a. Generate and write a 1MB

sequence to the flash
b. Start a hardware timer
c. Read continuously from the flash

and verify the data
d. Stop the hardware timer
e. Use the time difference to measure

the read speed, and ensure it’s
higher than 500kB/s

2. Program the MCU to:
a. Start a hardware timer
b. Generate and write a predictable

1MB sequence to the flash
c. Stop the timer
d. Use the time difference to measure

the write speed, and ensure it’s
higher than 200kB/s

e. Compute the CRC64 using the flash

f. Compute the expected CRC64
using the same sequence and
ensure the 2 CRCs are the same

2.6. User Interface and Display
The user interface code should communicate with the screen and display related

information for the user about the keyboard status. It should also guide the user when
editing the dictionary. Additionally, the screen should be large enough to show all the
information related to the keyboard status and to facilitate dictionary editing.

Requirement Verification

1. Able to add entries using the user
interface

2. Able to modify entries using the user

interface

3. Able to remove entries using the user

interface

1.
a. Load the with a dictionary
b. Use the UI to add an entry
c. Stroke the added entry and see if

the output is expected
d. Repeat from step b. for several

times
2.

a. Load the with a dictionary
b. Use the UI to modify an entry
c. Stroke the modified entry and see if

the output has changed
d. Repeat from step b. for several

times
3.

a. Load the with a dictionary
b. Use the UI to remove an entry
c. Stroke the removed entry and see if

the output has changed
d. Repeat from step b. for several

times

2.7. Translation Engine
The translation engine should read the dictionary stored onboard and control the output

at a high level when the strokes come in from the keyboard.

Requirement Verification

1. Able to translate strokes at a rate of at
least 4 strokes per second

1.
a. Load the keyboard flash with a

dictionary
b. Modify the firmware to:

i. Start a hardware timer when
translation starts

ii. Stop the timer after output ends
iii. Log the time difference to

console
c. Input random strokes
d. Compute the average time

difference

2.8. Switch Matrix, Matrix scanning & HID handling
Matrix scanning and handling HID reports are essential parts for a keyboard, and they

will be handled by the QMK firmware.

Requirement Verification

1. The keyboard should have 23 keys for
proper steno usage

2. The keys should be arranged in a

ergonomic layout

1. Each of the 23 keys on a normal steno
keyboard can be reached easily

2. Try typing on the keyboard for extended
periods of time, and see how long it
takes for the hands to get tired.

2.9. Schematics

Figure 4: Schematics

2.10. Board Layout

Figure 5: Circuit board layout

2.11. Software Flowchart

Figure 6: Software flowchart

2.11. Tolerance Analysis
One tolerance we need to maintain is the accuracy of the crystal needs to be good

enough so that the USB can operate normally. The USB controller needs a clock source
that’s accurate within 0.25% in order to operate properly at full speed, according to the MCU
datasheet. The crystal we are using has a tolerance of 30ppm at 25 degrees and a
temperature tolerance of 50ppm per degree. At a extreme operating temperature of 50
degrees, the accuracy of the crystal would be

0 (60 25) 50 780ppm 0.178%3 + − * = 1 =
which is within the allowed accuracy range.

Another tolerance we need to match is the bandwidth usage for the flash and the TFT

screen. In our current design, the ATMega32u4 will be running at 16MHz, which means the
SPI hardware will be operating at a maximum of 8MHz, meaning the maximum byte rate
would be 1 megabyte per second. Since the MCU will be using the SPI bus to communicate
with both the screen and the flash, we need to make sure that we have enough bandwidth.

In our current design, to translate a stroke the MCU needs to search the stroke among at
most 8 nodes, then reading the content of the entry which is at most 100 bytes. When
searching inside a node, the MCU needs to read the 8 byte header of the node, at most 8
entries of a hashmap each of 8 bytes, and the 8 byte header of the target node. So in the
worst case, the number of bytes need to be read from the flash is:

 ((5 8) (5 8) 8 8) (8 100) 1108 bytes8 * + + + * + + + =

For the display, let’s assume that we want to show the input stroke and the output entry
on each stroke. Since we are using a 240x320 display, let’s assume that we are using 8x16
fonts, and that each stroke takes up 2 lines and the output takes up 4 lines. So in total the
number of bytes we need to write would be:

 lines 16 rows/line 240 pixels/row 23040 bytes6 * * =

Assuming a maximum of 10 strokes per second, translating strokes will take up 11080
bytes of bandwidth for the flash and 230400 bytes of bandwidth for the screen. Together
they will take up 24.1% of the CPU time, which should be enough for the rest of the tasks.

2.12. Contingency Plans
When/If we need to move online, the challenge we would face would almost be the

same as what we have now, which is the difficulty to get hardware for testing. This is
something we can overcome as we can meet each other on campus even if not permitted to
meet in the ECEB lab. In addition, at least one of us has the lab equipment needed
(soldering iron, oscilloscope, etc.) So we are not too worried about transitioning to fully
online as we are having the same struggles even with the current situation where classes
are in-person.

3. Cost and Schedule
3.1. Cost Analysis
3.1.1 Parts
Quanti
ty Value Footprint link Cost ($)

2 22pF C0603 link .2

5 1uF C0805 link .5

3 0.1uF (104) C0603 link .3

1 10uF (106) C0805 link .11

30 DIODE SOD-123 link 5.1

1 Polyfuse Fuse 1206 link 0.11

 1 USB micro B
AMPHENOL_10118192-0001L
F link 0.21

30 KEYSW Kailh PG1350 0.6

2 22R R0603 link .20

3 10k (103) R0805 link .30

1 B3U-1000P B3U-1000P link .92

1 ATmega32U4-AU TQFP-44_10x10mm_P0.8mm link 4

1
MT25QL128ABA1
ESE

SOP-8_5.28x5.23mm 50mil
pitch link 2.1

1 MCP1700-3302E SOT-23 link .37

1
2.2” 18-bit color
SPI TFT 100mil pitched headers link 25

1 16MHz SMD crystal 4pin 5.0x3.2mm link .57

1 74HC4050 SOIC 16 link .46

3.1.2 Labor

The total estimated time for the project is around 80 man hours, and assuming the
development cost is going to be $40/hour, the total labor cost for the project will be:
$40/hour * 80hours * 2.5 = $80,000.

https://www.digikey.com/product-detail/en/avx-corporation/06035A220JAT2A/478-1167-2-ND/563277
https://www.digikey.com/product-detail/en/samsung-electro-mechanics/CL21B105KOFNNNG/1276-6471-1-ND/5958099
https://www.digikey.com/product-detail/en/samsung-electro-mechanics/CL10B104KA8NNNC/1276-1006-1-ND/3889092
https://www.digikey.com/product-detail/en/samsung-electro-mechanics/CL21A106KQCLRNC/1276-2405-1-ND/3890491
https://www.digikey.com/product-detail/en/diodes-incorporated/1N4148W-13-F/1N4148W-13FDICT-ND/2242774
https://www.digikey.com/product-detail/en/bel-fuse-inc/0ZCJ0050FF2G/507-1802-1-ND/4156236
https://www.digikey.com/product-detail/en/amphenol-icc-fci/10118192-0001LF/609-4613-2-ND/2785387
https://www.digikey.com/product-detail/en/te-connectivity-passive-product/CRGCQ0603J22R/A130081CT-ND/8577913
https://www.digikey.com/product-detail/en/stackpole-electronics-inc/RNCP0805FTD10K0/RNCP0805FTD10K0CT-ND/2240601
https://www.digikey.com/product-detail/en/omron-electronics-inc-emc-div/B3U-1000P/SW1020CT-ND/1534357
https://www.digikey.com/product-detail/en/microchip-technology/ATMEGA32U4-AU/ATMEGA32U4-AU-ND/1914602
https://www.digikey.com/product-detail/en/micron-technology-inc/MT25QL128ABA1ESE-0SIT-TR/557-1772-1-ND/6595653
https://www.digikey.com/product-detail/en/microchip-technology/MCP1700T-3302E-TT/MCP1700T3302ETTCT-ND/652677
https://www.adafruit.com/product/1480
https://www.digikey.com/product-detail/en/ecs-inc/ECS-160-12-30B-AGM-TR/XC2686DKR-ND/8023939
https://www.digikey.com/product-detail/en/texas-instruments/CD74HC4050M96/296-14529-1-ND/555596

3.2. Schedule
Week Steven Soham Rishi

9/28 Initial MSC research Familiarize with code

10/5 Assemble boards &
testing screens

Fix capitalization & general
dict editing UI design

Fix Unicode
implementation &
testing

10/12 dict editing UI design &
implementation

Redesign dict format Reimplement dict
reading

10/19 Add MSC interface Fix orthography generation Reimplement dict
writing

10/26 Finalize board design Implement retroactive
commands

Implement rest of Plover
commands

11/2 Implement ghostFAT Fix translation engine bugs Testing

11/9 Improve compiler
performance

Implement command
parsing

Implement runtime
orthography

11/16 Final testing for demo Prepare for presentation Begin final report

4. Ethics and Safety
Although injuries risk are almost minimal when using a keyboard, it may still be useful to

go over some of the possible physical dangers of using a keyboard [4]. One common issue
that people can run into over time is carpal tunnel syndrome, which is caused by pressure in
the median nerve of the wrist due to overuse or pressure. This can be easily prevented
however, by taking frequent breaks to stretch out the hands and sitting with good posture.

Additionally, you can have standard back and neck pain, which can also be prevented as

above, with good posture and frequent brakes. Another physical injury which is unrelated to
long term usage is the chance of cutting yourself on the edge of the PCB, as it can be rather
sharp. However, with proper care, attention, and handling, this should not be an issue.

As far as electrical errors, the max voltage is only 5V, so there should be minimal risk of

injury to the user. However, some components such as the MCU and QSPI flash used in this
project will be susceptible to electrostatic discharge (ESD). Precautions must be taken to
prevent damaging these parts such as using anti-static gloves and ESD wristbands.

For ethics, we hold responsibility for our project, which is the first rule in the IEEE Code

of Ethics [3]. In some sense, our keyboard can be thought of as a giant macropad capable of
outputting text or keystrokes at high speeds. Using this keyboard as a tool to conduct abuse
such as spam is unethical, according to IEEE Code of Ethics #8 [1]. In addition, because of
the same reason, this keyboard can be used in gaming as a form of button macros, which is
also a violation of IEEE Code of Ethics #4 [3]. If such use of the device occurs, we do not
take any responsibility, as this is the nature of this device, and using the device for
spamming or for normal writing is intelligible from firmware.

References
[1] “Writers | Stenograph L.L.C,” Stenograph L.L.C. [Online]. Available:

https://www.stenograph.com/stenograph-writers/. [Accessed: 30-Sep-2020]
[2] “DigitalCAT Software and Support,” Stenovations. [Online]. Available:

https://www.stenovations.com/product-category/digitalcat/. [Accessed: 30-Sep-2020]
[3] “IEEE Code of Ethics,” IEEE. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 17-Sep-2020]
[4] “3 Injuries Experienced by Court Reporters and how to Avoid Them,” O'Brien & Bails.

[Online]. Available:
http://www.obrienandbails.com/3-injuries-experienced-by-court-reporters-and-how-to-avoid-t
hem/. [Accessed: 1-Oct-2020]

