

Plug and Play Stenography Keyboard

Team number: 2

Team Members:
Haoqing Zhu ​(haoqing3@illinois.edu)

Soham Karanjikar ​(sohammk2@illinois.edu)
Rishi Krishnan ​(rishik3@illinois.edu)

TA: William Zhang

September 12, 2020

Course: ECE 445

1. Introduction
1.1. Objective

There is currently no way for verbally disabled individuals to communicate with others in real
time. Sign languages do provide a way out, but it is very impractical to expect everyone else
to learn it in order to communicate. On the other hand, typing on traditional keyboards is too
slow, they do not offer any solution to this problem.

Our solution is to build a plug and play stenography keyboard that has all the necessary
hardware/software built within, so no extra installation is needed on the host side. This
keyboard will offer typing speeds close to what humans speak at (180 - 250WPM).

1.2. Background
Traditional steno keyboards are very expensive as they are usually used only in court. They
are also bundled with many court-reporting specific softwares which would be useless in
everyday communication. Our project on the other hand builds the keyboard for a fraction of
the cost while providing the same benefits.

Since our keyboard does not require much technical knowledge such as installing software
or coding, it is very marketable to various demographics and the only necessary knowledge
is learning how to use a stenography keyboard. Another benefit is the ability to change the
dictionary in our keyboard so that users can make their own strokes for new words or new
phrases, maybe even use a different language.

1.3. High-level Requirements List
i. The user is able to convert his/her personal dictionary (assumed in Plover JSON format)

into our custom format (for efficiency), and load it onboard.
ii. The device is able to translate strokes taken from keyboard to keystrokes according to

the corresponding dictionary entry.
iii. The user is able to dynamically add/delete/modify dictionary entries on the fly.

2. Design
2.1. Block Diagram

Figure 1: Hardware Block Diagram

The dictionary compiler would allow users to convert their personal dictionary into what we
would be using. The SDcard or the SPI flash would store the dictionary onboard and the
translation engine will translate the strokes from the keyboard into output according to the
stored dictionary. The user interface through OLED and the keyboard itself would allow the
user to modify the stored dictionary.

2.2. Functional Overview
2.2.1. Dictionary Compiler

The dictionary compiler is required to bootstrap the dictionary onboard. It will take a Plover
JSON dictionary and convert it into a binary format that’s easy for the MCU to read and
manipulate.

2.2.2. Dictionary Storage
The SDcard or SPI flash and the associated driver code will take care of storing the binary
dictionary. It will also provide fast random read/write access to the dictionary.

2.2.3. User Interface
The user interface code should communicate with the screen and display related information
for the user about the keyboard status. It should also guide the user when editing the
dictionary.

2.2.4. Translation Engine
The translation engine should read the dictionary stored onboard and control the output at a
high level when the strokes come in from the keyboard. It should be able to translate at least
4 strokes per second.

2.2.5. Matrix scanning & HID handling
Matrix scanning and handling HID reports are essential parts for a keyboard, and they will
be handled by the QMK firmware.

2.2.6. OLED Display
The OLED display should be large enough to show all the information related to the
keyboard status and dictionary editing.

2.2.7. Switch Matrix
The switch matrix should have enough keys to comfortably stroke steno chords and be in
ergonomic positions that the user can use without much effort

2.3. Risk Analysis
The biggest risk in this project is the dictionary editing support. A simple implementation
should be fairly easy to do, given that a lot of the requirements are inplace. But a more
complete implementation would require a more careful analysis of the Plover command set
and narrow down the requirements. It may also require a redesign of the binary dictionary
format to allow more efficient use of the available storage space.

3. Ethics and Safety
Many components such as the MCU and QSPI flash used in this project will be susceptible
to electrostatic discharge (ESD). Precautions must be taken to prevent damaging these
parts such as using anti-static gloves and ESD wristbands.

For ethics, we hold responsibility for our project, which is the first rule in the IEEE Code of
Ethics [1]. In some sense, our keyboard can be thought of as a giant macropad capable of
outputting text or keystrokes at high speeds. Using this keyboard as a tool to conduct abuse
such as spam is unethical, according to IEEE Code of Ethics #8 [1]. In addition, use of the
keyboards as button macros is a violation of IEEE Code of Ethics #4 [1].

4. Contingency Plans
When/If we need to move online, the challenge we would face would almost be the same as
what we have now, which is the difficulty to get hardware for testing. This is something we
can overcome as we can meet each other on campus even if not permitted to meet in the
ECEB lab. In addition, at least one of us has the lab equipment needed (soldering iron,
oscilloscope, etc.) So we are not too worried about transitioning to fully online as we are
having the same struggles even with the current situation where classes are in-person.

References
[1] “IEEE Code of Ethics,”​ ​IEEE​. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 17-Sep-2020]

