

AUTONOMOUS	GOLF	PULL	CART

By

Dillon McNulty

Kyle Gibbs

Oumar Soumare

Final Report for ECE 445, Senior Design, Spring 2020

TA: Jonathan Hoff

08 May 2020

Project No. 62

Abstract	
Golfers have several opQons when it comes to how they will carry their golf equipment. Some of these
opQons such as a golf cart or caddy service are expensive, while other opQons such as using a pull cart or
manually carrying bags require great physical exerQon. The goal of this project is to create an
autonomous golf pull cart that would provide a balance between price and physical acQvity to golfers. In
the original soluQon, this was completed by having the user wear a wearable device that would
communicate with the cart. In our improved soluQon, we suggest using GPS and Bluetooth
communicaQon with the user’s phone, which adds less hardware, provides the user more informaQon on
the cart, and allows the cart to avoid pre-defined restricted zones. AddiQonally, we plan to create a
balancing system on the cart that will allow for smoother navigaQon on a golf course.

 ii

Contents	

1. Second Project MoQvaQon i ..

1.1 Updated Problem Statement i ...

1.2 Updated SoluQon i ...

1.3 Updated High-Level Requirements ii ...

1.4 Updated Visual Aid ii ...

1.4 Updated Block Diagram v ..

2. Second Project ImplementaQon vi ..

2.1 A* Algorithm vi ..

2.2 Balancing System Pseudocode viii ...

2.3 PCB KiCAD SchemaQcs x ..

2.4 Center of Mass and CriQcal Angle CalculaQons and EsQmates xi ..

3. Second Project Conclusions xiii ...

3.1 ImplementaQon Summary xiii ...

3.2 Unknowns and UncertainQes xiii ...

3.3 Ethics and Safety xiv ..

3.4 Project Improvements xiv ..

4. First Project Progress xvi ..

5. References xvii...

 iii

1.	Second	Project	Motivation	

1.1	Updated	Problem	Statement	
When golfing, players usually decide between a golf cart, a pull cart, a caddy, or carrying their clubs
around the golf course. All of these methods have downsides acributed to the cost or physical exerQon
required. A golf cart requires the player to drive instead of walk and it would be expensive to buy one.
Then the added fee for renQng a cart from the golf club every Qme would also be a large expense. The
standard pull cart requires players to pull their bag around which may be difficult for some players to
maintain around an 18 hole golf course. Hiring a caddy is the most expensive opQon listed since they’re
mainly available only on nice, expensive courses such as country clubs, and players are expected to Qp
the caddy. The last opQon of carrying one’s own clubs is the lowest of opQons for many people. These
people either physically can’t or don’t want to carry their golf bag that can weigh upwards of 30 pounds
around an enQre golf course.

Golf is also one of the most popular leisure sports in the world with an esQmated 23.8 million players in
just the United States as of 2017 [1]. Outside of the US, golf is most popular throughout Europe, Canada,
South Africa, and Australia [2]. Due to these numbers, there is a large market opportunity for a product
such as the Autonomous Golf Pull Cart that solves the problem for people who sQll want the walking as
exercise but can’t or don’t want to carry their own clubs in a more cost effecQve manner than hiring a
caddy.

1.2	Updated	Solution	
Our project looks to address these problems. By uQlizing GPS, Bluetooth, ultrasonic sensors, preloaded
course maps, and a gyroscope/accelerometer, our Autonomous Golf Pull Cart will follow the user around
a golf course within a reasonable distance. Our project will allow the player to sQll walk the course and
exercise but without the unnecessary added weight of a bag. The user will also be able to focus on their
golf game and not have the added exhausQon of carrying their bag. The cart will connect to an app on
the user’s phone to create an easy user experience. A manual mode will be available that allows the user
to control the cart with their phone to avoid any difficult obstacles. In some difficult and unforeseen
cases, the user may sQll need to physically pull the cart out of or around an obstacle. The cart will have
automated horizontal actuators to shii weights along the axles for the cart to stay upright during
elevaQon changes.

There are other products on the market that acempt to tackle this problem. The Alphard eWheels Club
Booster Electric Push Cart Conversion Kit [3] and the CaddyTrek Mobile Autonomous RoboQc Golf Cart
Caddy [4] are two products similar to our Autonomous Golf Pull Cart. Even though these products may
be beneficial to some people, we noQced some key differences with our proposed project. The Alphard
eWheels Club Booster Electric Push Cart Conversion Kit [3] is not a full cart but a conversion kit that can
be added to a cart to create a remote-controlled push cart. This product does not introduce any
autonomy and allows users to remotely move their bag with them as they walk. This product keeps the
user from just focusing on their game which is why we wanted an autonomous cart.
The CaddyTrek Mobile Autonomous RoboQc Golf Cart Caddy [4] does have autonomy built into a
complete cart setup, not just a conversion kit. This product is very expensive and has to uQlize a separate

 i

piece of equipment the user must wear. Our on-person equipment will only be a cellphone. Both of
these other opQons are also much more expensive than what we think we can design.

Our project’s use of GPS will be a becer soluQon than using sensors in the other 2 products menQoned.
Preloaded maps of the course will have marked-off safe zones so the cart will not blindly follow the
phone on to the green or into sandtraps. This project would be a great soluQon for all ages as well. The
older golf demographic may struggle more with carrying and transporQng their golf bag while the
younger golf demographic may really enjoy the technology and automated features of this project.

1.3	Updated	High-Level	Requirements	
1. Autonomous pull cart follows the user using A* algorithm around the course while only moving at

minimum distance of 3 meters from the user

2. The mobile applicaQon can be used to control the cart manually by using a remote control or
picking a specific point on the course map to send the cart

3. Pull cart remains balanced and drives smoothly when placed on inclinaQons less than or equal to
15°

1.4	Updated	Visual	Aid	
As shown in Figure 1.1, the cart will be designed similar to a tradiQonal golf pull cart with two rear
wheels and one front wheel. It will include motors on the rear wheels to allow the cart to move
autonomously. There will also be two more motors with counter weights, one moving lei and right and
the other moving forward and backward, to maintain the balance of the cart.

 ii

 iii

Figure 1.1 Physical Design for Problem Solu8on

 iv

Figure 1.2 Mobile applica8on design concept. Allows the user to switch between
modes, and view themselves and their cart’s loca8on on the map.

1.4	Updated	Block	Diagram	

 v

Figure 1.3 Breadboard prototyping schema8c to test and assess different modules

Figure 1.4 Block diagram illustra8ng signal and power connec8ons for all subsystems of our project

2.	Second	Project	Implementation	

2.1	A*	Algorithm	
Given a graph, the user’s locaQon, and the cart’s locaQon, an A* search algorithm can be used to find
the shortest path from the cart’s locaQon to the user’s locaQon while avoiding restricted areas. In this
implementaQon, we were able to create the algorithm and simulate the navigaQon process on a subset
of scenarios that may occur on a golf course. For any A* algorithm, a heurisQc is needed to esQmate the
cost to move from point A to point B. The heurisQc used in our implementaQon of the A* algorithm is
based on the Euclidean distance formula presented in equaQon (2.1), where a is the user’s x coordinate,
b is the cart’s x coordinate, c is the user’s y coordinate, and d is the cart’s y coordinate.

The A* Algorithm was conducted on four different scenarios. In Figure 2.1, we present the results of the
scenario where there are no obstacles. Since our algorithm is based on Euclidean distance, when there
are no restricQons, the cart should always traverse at a diagonal resulQng in the shortest path. In Figure
2.2, we have now added a sand trap, which is commonly found on golf courses. Ideally, the quickest path
to the user would be to follow the same path in Figure 2.1. However, the algorithm recognizes that there
is a sand trap in the middle and plans an opQmal path around the sand trap. In Figure 2.3 and 2.4, we
present two more scenarios: a water hazard for Figure 2.3 and other terrain restricQons, such as trees, or
bushes for Figure 2.4. In both of these scenarios, we see that the algorithm successfully plans around
the obstacles to reach the goal. It is also worth noQng that in each of the scenarios the cart follows a
path along the edge of the obstacle, which could be dangerous in the event of GPS inaccuracy.
Therefore, to avoid this issue, we plan to add a buffer around the obstacles when construcQng the graph
to account for possible inaccuracy and allow the cart to avoid the obstacles at a safe distance.

Figure 2.1 Basic test path for A*

At the end of each simulaQon, a list of coordinates represenQng the path is generated as shown in Figure
2.5. The results shown in Figure 2.5 represent the path taken to avoid the sand trap in Figure 2.2. For this
project, this path will be converted to a list of compass direcQons that would be sent to the
microcontroller for motor control. For instance, the path generated in Figure 2.5 will be translated to the

 vi

(2.1)Heur i s t ic = (a − b)2 + (c − d)2

direcQons (NE, NE, N, N, N, N, NE, NE, NE, E, E, E, E), which will allow the cart to move one meter for
each of the given direcQons.

The A* algorithm is a key component of our project as it is the basis for having the cart navigate to the
user autonomously. By successfully compleQng the A* Algorithm, we are able to fulfill our first high level
requirement.

Figure 2.2 Basic path with a sand trap solu8on using A*

Figure 2.3. Demonstra8ng that the A* search will also avoid water

Figure 2.4 Demonstra8ng the avoidance of other hazardous objects

 vii

Figure 2.5 Raw output of solu8on path to be converted to cardinal coordinates

2.2	Balancing	System	Pseudocode	
As will be further discussed in the unknowns and uncertainQes method, I was unable to write a full
Arduino project because of the complexity of the design involving several modules as well as the lack of
ability to simulate anything without real data to get from the modules. Therefore, I wrote the algorithm
in pseudocode to give a good idea of how it would work, as it was more important to idenQfy the
decision-making process of the microcontroller rather than the explicit details of how a gyroscope
converts it’s raw signal to an angle value.

0 //Global variables
1 pitch = 0
2 roll = 0
3
4 x_weight_pos = 0
5 y_weight_pos = 0 //range of each is 0 to 10
6 //Each of these arrays will contain the number of rotations the motor must turn 7 from
the center (either positive or negative)
8 //to be in that position for a given incline.
9 Horizontal_dict = [pos0, pos1, pos2, pos3, pos4, pos5, pos6, pos7, pos8, pos9, pos10]
10 Vertical_dict = [pos0, pos1, pos2, pos3, pos4, pos5, pos6, pos7, pos8, pos9, pos10]
12
13
14 main():
15 Initialize();
16 update_angles();
17
18 Initialize():
19 //code to set up each module as an input/output, etc
20
21 Angle_read():
22 return (roll_angle, pitch_angle)
23
24 update_angles():
25 incline_tuple = Angle_read();
26 x_incline = angle_read[0]
27 y_incline = angle_read[1]
28 if abs(roll - x_incline) > 3:
29 roll = x_incline
30 adjust_x(roll)
31 if abs(pitch - y_incline) > 3:
32 pitch = y_incline
33 adjust_y(pitch)
34 update_angles()
35
36 adjust_x(angle):
37 if angle > 15:
38 angle = 15
39 else if angle < -15:
40 angle = -15
41 angle += 15 // now in range 0-30
42 weight_position = angle / 3 // weight_position is in [0, 10]
43 move_x(weight_position)
44
45 adjust_y(angle):
46 if angle > 15:
47 angle = 15
48 else if angle < -15:
49 angle = -15
50 angle += 15 // now in range 0-30

 viii

51 weight_position = angle / 3
52 move_y(weight_position)
53
54 move_x(position):
55 diff = 0
56 curr_rotations = Horizontal_dict[x_weight_pos]
57 updated_rotations = Horizontal_dict[position]
58 if curr_rotations != updated_rotations:
59 diff = math.abs(curr_rotations - updated_rotations)
60 if diff < 0:
61 drive_motor_left(diff)
62 else if diff > 0:
63 drive_motor_right(diff)
64
65 move_y(position):
66 diff = 0
67 curr_rotations = vertical_dict[y_weight_pos]
68 updated_rotations = vertical_dict[position]
69 if curr_rotations != updated_rotations:
70 diff = math.abs(curr_rotations - updated_rotations)
71 if diff < 0:
72 drive_motor_backwards(diff)
73 else if diff > 0:
74 drive_motor_forwards(diff)
75
76 drive_motor_left(diff):
77 //code built using motor library to turn certain amount of rotations
78 drive_motor_right(diff):
79 //code built using motor library to turn certain amount of rotations
80 drive_motor_forwards(diff):
81 //code built using motor library to turn certain amount of rotations
82 drive_motor_backwards(diff):
83 //code built using motor library to turn certain amount of rotations

Figure 2.6. Pseudocode designed to be high-level version of balancing algorithm

Overall, the control logic for the balancing system is quite trivial. It starts by declaring all of the global
variables that we will need to keep track of and reference during operaQon: pitch, roll, the posiQon of
each counterweight, and in lines 9 and 11 declares two arrays to hold the informaQon on how many
rotaQons it took the motor to arrive at that posiQon. In order to maintain a ‘perfect center,’ we decided
to use 11 posiQons on each extrusion with a given degree range, calculated by:

in order to map the values [-15, 15] to [0,10]. Once this posiQon is calculated, the move_x/y funcQons
are called to ensure that we actually need to move the weights to a different locaQon. If we do, then the
drive_motor funcQons (which would be a set of funcQons from the motor’s library) are called to turn the
motor a certain amount of Qmes and drive the linear actuator to the correct posiQon.

 ix

(2.2)a ngle + 15
3

2.3	PCB	KiCAD	Schematics	
Figures 2.7 and 2.8 below show the KiCad schemaQcs for the PCB. We decided that two Arduino Unos
would be necessary to support all the different sensors and motors. The overall schemaQc was divided
into two boards that only share power inputs and outputs. The balancing system in Figure 2.8 only
requires an Arduino[5], MPU-6050 gyroscope/accelerometer[6], and output mount holes that will be
soldered to wires from the balancing motors. Then the enQre navigaQon, regulaQon, and mobility
systems are placed on another board that includes the NEO 6M GPS module[7], BlueSMiRF Silver
Bluetooth module[8], MaxboQx LV-MaxSonar ultrasonic sensor[9], 12V DC motors[10], L298N motor
driver[11], LM2575 voltage regulator[12], Arduino UNO[5], and bacery pack[13] input. The 1x18 and
1x16 Male connectors on each schemaQc will be used to physically set the Arduino UNO on top of the
PCB in order to connect it to the board.

Figure 2.7 KiCAD schema8c for regula8on, naviga8on, and communica8on systems

 x

Figure 2.8 KiCAD Schema8c for Balancing System

2.4	Center	of	Mass	and	Critical	Angle	Calculations	and	Estimates	
Without a chosen pull cart, we esQmated parameters such as weight and lengths aier researching
mulQple pull carts. Then we assigned a 3-D coordinate system to use in our calculaQons.We placed the
(0,0,0) origin directly in between the centers of the two side wheels. Then the z-axis would point directly
up and perpendicular to the ground plane, the x-axis toward the back wheel, and the y-axis following the
right-hand rule toward the right side wheel when looking from the +x direcQon. The total x dimension
used for our esQmate was 100cm, y dimension was 80cm, and then the z dimension was 117cm. These

were determined based on other common pull cart dimensions. EquaQon (2.3) shows the center of mass
calculaQon for 2 objects in 1 dimension.
For 3-D systems, this calculaQon becomes more complicated where each of the 3 coordinates x, y, and z
will have a separate center of mass that make up the whole center of mass.Using a standard length golf
bag and mass of 13kg, and pull cart dimensions stated previously, the center of mass for the cart and bag
system is esQmated to be about (0, 0, 43.6cm). The y center of mass is assumed to be zero based on

 xi

Centerof Ma ss =
Ma ss1 * L ocat ion1 + Ma ss2 * L ocat ion2

Ma ss1 + Ma ss2
(2.3)

symmetry of the bag and cart. Then the x center of mass is esQmated to be about zero which is centered
between the 2 side wheels. Lastly the z center of mass is of most importance to this problem based on
the chosen coordinate system. The value of 43.6cm came from more esQmaQons of both the bag and
cart’s centers of mass.

Then the next step in this process was to determine a criQcal Qlt angle for the cart’s Qpping point.
Assuming a Qlt angle θ, a criQcal angle equaQon can be determined using trigonometric funcQons and
triangles.

This equaQon solves to give θ=42.5°. This value means that the cart should be able to stay
standing when placed on any horizontal angle less than 42.5°. We expected a value much closer to our
high-level requirement angle of 15°. We do not expect the value of 42.5° to hold up if we had the chance
to work with an actual golf bag and pull cart. This criQcal angle of 42.5° was also found using mulQple
esQmaQons which means physical experiments may be needed to develop the most accurate criQcal
angle for the system.

 xii

(2.4)43.6cos(90 − θ) = 40cos(θ)

Figure 2.9 Diagram and calcula8ons for determining the center of mass of the cart with a bag on it.

3.	Second	Project	Conclusions	

3.1	Implementation	Summary	
Aier our Design Review and TA meeQng, we felt it was best to move forward with 4 major
implementaQons: the A* algorithm, pseudocode for our balancing system, a KiCAD schemaQc for our
PCB, and a physics breakdown to assess the proper counterweight size. Each one of these contributes to
at least our high-level requirements and was an integral part of the overall design. Since certain aspects
of the design had already been ‘done’ for us (for example, gesng the raw angle of inclinaQon from the
gyroscope/accelerometer), it was more important to focus on the deeper algorithms and reasoning
behind the design choices that we made. It is easy to get the pull cart to drive in a straight line, but how
would it know to drive in a straight line? QuesQons like these are the ones we asked ourselves when
determining what would be most fisng to implement in the past two weeks. While it’s certainly only a
small fracQon of what we would have liked to completed, the figures in SecQon 2 show a clear proof of
concept that could be expanded upon with the right tools and materials.

3.2	Unknowns	and	Uncertainties	
Most of the hardware aspect of our design was hard to complete without both access to the lab and any
of the modules we needed for data processing. Without any possibility for hands-on tesQng, building an
enQre Arduino project uQlizing all of the libraries seemed fickle. As none of us have any personal
experience with an MPU-6050, NEO-6M, or the others, all of the code that would have been wricen for
tesQng would have been pulled straight from a library or online tutorial. As it felt redundant to copy-and-
paste enQre secQons of tutorial code, we decided it was best to ‘dumb down’ the soiware engineering
that was planned for our project. Instead of implemenQng an enQre Apple Maps API with access to
naQonwide golf courses and data, it was best to focus on the A* algorithm itself and how we could
simulate different situaQons for the cart to determine what it’s soluQon path would be.

In addiQon to the issues with implemenQng the soiware that we designed, we were obviously not able
to build any of the hardware components without access to the lab. Since soldering tools amidst others
needed for the assembly of the balancing system were not at our disposal, we were only able to design
the PCB in KiCAD as a hypotheQcal.

Had the laboratory been available, the PCB would have been ordered as soon as possible to minimize the
chance of an issue happening with the shipment from overseas. While waiQng on the PCB, the prototype
described by Figure 1.3 would have been built as soon as the modules came in. Once assembled, the
prototype would be used for tesQng and learning how the different modules work and can interact with
each other. CommunicaQon between them would have been built one at a Qme to ensure individual
funcQonality. Aier we had felt comfortable with each module and how to control it, we would have
moved forward with the actual logic specific to our pull cart. This would ulQmately result in a
combinaQon of the pseudocode above and the libraries of each module which would reliably balance
and control our cart autonomously.

 xiii

3.3	Ethics	and	Safety	
One of the biggest safety concerns that we see in creaQng this project is making sure that the cart is
always operaQng in a safe manner. Golf clubs and the things that people put in their bag can be very
expensive (phones, wallets, etc) and we would not want the autonomous cart to cause damage to the
user’s belongings in some way. More importantly we do not want to risk injuring the user or others. Any
occurrence of the above would be a violaQon of IEEE Code of Ethics, #9: “to avoid injuring others, and
their property” [5]. Therefore, we must ensure that the cart is operaQng at a safe speed and can
accurately detect objects with the ultrasonic sensor to avoid damage to the user, property or the cart
itself. We believe that maximizing the speed of the cart to 4 mph, the speed of a brisk walk, will ensure
overall safe operaQon.

A worst case scenario would be the cart not detecQng a lake, and driving into it with all of the user’s
possessions while they weren’t paying acenQon. Due to these consideraQons, we will need to make sure
that the GPS data being received and processed by the microcontroller is done very accurately, and draw
‘safe zones’ around these potenQal hazards to ensure that the cart never comes close to interacQng with
them.

In addiQon, we must make sure that we deliver on our promises. We would not want the user to
purchase this autonomous cart and have to pull it around as if it were a regular cart due to it not working
as intended. Therefore, we must ensure that the cart operates with the levels of accuracy menQoned in
the requirements. Providing inaccurate data to the user would be a violaQon of IEEE Code of Ethics, #3:
“to be honest and realisQc in staQng claims or esQmates based on available data” [5].

3.4	Project	Improvements	
The first thing that we would start improving if we had more Qme and lab access would be more in depth
and accurate center of mass and criQcal angle calculaQons. Many assumpQons and esQmates were
needed in secQon 2.1.4 that led to a probably inaccurate value. We would need Qme to experiment with
a physical pull cart and golf bag to determine the balancing capabiliQes of the standalone cart and bag
system with no added balancing. Then we could ulQmately determine first if the added balancing
subsystem is even necessary for expected golf course inclines and second what weights would increase
the criQcal angle to a region that fits with our project requirements.

One improvement that we’d really like to make is to add a ‘Ball-Finding’ subsystem. This would be the
third mode of the cart, in addiQon to the AutomaQc and Manual modes. When this mode is selected by
the user, they specify a circle of area on the map where they believe their ball is. The cart then traverses
the area, and begins scanning the grass directly underneath the cart with a fisheye lens to see a wider
porQon of the ground without being too high into the air. Using computer vision, this camera waits to
see a large cluster of white pixels on the ground, signifying a golf ball, since golf course’s are specifically
designed to avoid coloring things white (especially against the grass) so as to not confuse players. If the
cart thinks it found a ball, it sends a noQficaQon to the user and stops moving so that they can go check
for themselves. We believe this feature would be extremely useful as it can someQmes be difficult to find
a golf ball in certain situaQons.

In addiQon to the computer-vision focused ‘Ball-Finding’ subsystem, we don’t believe it would be
parQcularly difficult to add in a ‘fore-caddying’ mode to the cart as well. When instructed by the user,

 xiv

the cart will move off to the edge of the fairway of the next hole, and then turn to face the tee box of
that hole. One more camera would be mounted to the front of the cart and, once the ultrasonic sensor
ensures nothing is in front of the cart and it has a clear view of the tee box (could also be confirmed by
the user before hisng their tee shot), it waits for the user. Once the user hits, it processes the first few
frames of the shot to esQmate the velocity and launch angle of the ball. Once esQmated, it picks a ‘guess’
of where the ball landed, shows the user where that zone is, and begins to traverse to it. If its esQmate is
incorrect, the user can easily revert to automaQc mode to allow the cart to return its focus to the user
instead.

 xv

4.	First	Project	Progress	
For our first project, ‘Guitar Learning and Feedback Tool,’ we created the enQre skeleton for the FSM /
menu system that would be controlled with the two bucons and knob by the user in addiQon to the
KiCAD schemaQc for the PCB. The FSM was implemented using python where the back/enter bucons
were the ‘A’ / ‘D’ keys, respecQvely, and the scroll knob was simulated by the ‘W’ / ‘S’ keys. For each
state, the user is given a list of opQons (or a set of informaQon, if we’re in PLAYBACK or EVALUATE), and
the pressing of the ‘A’ / ‘D’ key determines their choice. A set of screenshots from the simulated FSM can
be found below, from the output of the python console.

Figure 4.3. Screenshots of the Python console during the opera8on of five different states, each labeled at the top of its
sec8on.

Figure 4.4. KiCAD Schema8c for Guitar Learning Tool

 xvi

5.	References	
[1] “Golf Industry - StaQsQcs & Facts,” StaQsta. [Online]. Available: hcps://www.staQsta.com/topics/
1672/golf/. [Accessed: 3-April-2020].

[2] “Popularity of Golf Around the World,” Topend Sports. [Online]. Available: hcps://
www.topendsports.com/world/lists/popular-sport/sports/golf.htm. [Accessed: 3-April-2020].

[3] “Alphard eWheels Club Booster Electric Push Cart Conversion Kit,” Motogolf.com. [Online]. Available:
hcps://www.motogolf.com/products/. [Accessed: 3-April-2020].

[4] “CaddyTrek Mobile Autonomous RoboQc Golf Cart Caddy,” Robot Shop. [Online]. Available:hcps://
www.robotshop.com/en/caddytrek-mobile-autonomous-roboQc-golf-cart-caddy-black.html. [Accessed:
3-April-2020].

[5] “Arduino Uno R3” Amazon.com [Online] Available: hcps://www.amazon.com/Arduino-A000066-
ARDUINO-UNO-R3/dp/B008GRTSV6. [Accessed: 14-April-2020].

[6] “MPU6050 Sensors,” Mouser.com. [Online]. Available: hcps://www.mouser.com/Sensors/. [Accessed:
17-April-2020].

[7] “NEO-6M GPS Module — An IntroducQon,” Electro SchemaQcs. [Online]. Available: hcps://
www.electroschemaQcs.com/neo-6m-gps-module/. [Accessed: 17-April-2020].

[8] “SparkFun Bluetooth Modem - BlueSMiRF Silver,” SparkFun. [Online]. Available: hcps://
www.sparkfun.com/products/12577. [Accessed: 17-April-2020].

[9] “MB1010 LV-MaxSonar-EZ1,” MaxBoQx. [Online]. Available: hcps://www.maxboQx.com/
Ultrasonic_Sensors/. [Accessed: 17-April-2020].

[10] “GrearQsan DC 12V 1000RPM Gear Motor High Torque Electric Micro Speed ReducQon Geared
Motor Eccentric Output Shai 37mm Diameter Gearbox,” Amazon. [Online]. Available: hcps://
www.amazon.com/GrearQsan-Electric-ReducQon-Eccentric-Diameter/. [Accessed: 17-April-2020].

[11] “Kuman L298N Motor Drive Controller Board DC Dual H-Bridge Robot Stepper Motor Control &
Drives Module for Arduino Smart Car Power Mega2560 Robot K48,” Amazon. [Online]. Available: hcps://
www.amazon.com/Controller-H-Bridge-Stepper-Mega2560-Duemilanove/dp/B01BWLICV4?
ref_=fsclp_pl_dp_2. [Accessed: 17-April-2020].

[12] “LM2575-5.0WU-TR,” [Online]. Available: hcps://www.digikey.com/product-detail/en/microchip-
technology/. [Accessed: 17-April-2020].

[13] “TalentCell Rechargeable 12V DC Output Lithium ion Bacery Pack for LED Strip/Light/Panel/
Amplifier and CCTV Camera with Charger, MulQ-led Indicator Black (3000mAh),” Amazon.com. [Online].
Available: hcps://www.amazon.com/TalentCell-Rechargeable-Amplifier-MulQ-led-Indicator/. [Accessed:
21-April-2020].

 xvii

https://www.amazon.com/Arduino-A000066-ARDUINO-UNO-R3/dp/B008GRTSV6
https://www.amazon.com/Arduino-A000066-ARDUINO-UNO-R3/dp/B008GRTSV6

[14] “IEEE Code of Ethics,” IEEE. [Online]. Available: hcps://www.ieee.org/about/corporate/governance/
p7-8.html. [Accessed: 3-April-2020].

 xviii

	1. Second Project Motivation
	1.1 Updated Problem Statement
	1.2 Updated Solution
	1.3 Updated High-Level Requirements
	1.4 Updated Visual Aid
	1.4 Updated Block Diagram

	2. Second Project Implementation
	2.1 A* Algorithm
	2.2 Balancing System Pseudocode
	2.3 PCB KiCAD Schematics
	2.4 Center of Mass and Critical Angle Calculations and Estimates

	3. Second Project Conclusions
	3.1 Implementation Summary
	3.2 Unknowns and Uncertainties
	3.3 Ethics and Safety
	3.4 Project Improvements

	4. First Project Progress
	5. References

