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Abstract

This report summarizes the process that our project has been constructed throughout the semester. We proposed to

realize the idea about measure the real time power consuming in each room in our ECE building. We aimed to display

the information on a webserver for anyone with access to view it at any time and the data will not lost after power

down or internet disconnections. Our method involves using ESP32 [1] as local microprocessor for measuring and

data uploading; EmonLib [2] for signal processing and power calculation; we also used Amazon Web Services(AWS)

for data storage, and for plotting and data display, we used D3.js[3] for chart and AWS SDK for Javascript[4] for

data query. Compared to other previous methods, our method cost less but still maintained good accuracy both at

high load and low load situations.
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1 Introduction

1.1 Problem and Solution Overview

Although our ECE building has the measurement of the total power generated by the solar panels on the

roof and has its measure of total power consumption in the building, it still lacks the ability to track the

power consumed by each classroom, lab, and office. So our problem to solve in this project is to design a

system that is able to measure the power used in individual rooms in ECEB. Therefore, aiming at the need

to solve the issue for detection and display of the power consumed in the room, our project includes several

local sensing systems that are placed in different rooms as well as a web-server that communicates with all

the devices through Wi-Fi and have it displayed on the desired place. From the aspects of customer benefits,

our project could help our administrators gain a better understanding about the distribution of the power

consumption in this building and thus benefit any of their further decisions for the building. Currently, there

are devices that can measure the AC power consumption using Arduino which is a little bit more expensive

than our choices: we build our communication systems based on ESP32s and we are using AWS as our cloud

server, thus the cost of the whole project will be limited to a satisfactory state. Besides, if an Arduino is

involved in the design, we would also acquire an external data transmission module which will make the

project bigger and cost even more to build [5]. In addition, due to our projects’ capability to measure both

3-phase and single phase electric circuits, it is thoroughly very marketable.

One thing needs to point out at the first stage is, due to the COVID-19 pandemic in United States at

present, our school shuts down all the in-person instructions and we are prohibited from entering the lab

to perform any test prior to our ordering of PCBs or any other real implementation that should have been

come afterwards. Eventually, our professor has approved that we will cut the requirements a bit hence we

can continue the essential logistics of our project. Right now, our mission is to measure a relatively milder

objective: to have a single AC voltage from a function generator, use RC circuit to add phase in representing

the current passing a shunt resistor and still have the power consumption displayed through the web server.

1.2 High-level Requirements

• Functions to create a phase difference in representing the actual situation where current and voltage

may have a difference in phase.

• Ability to offload data (both real power and apparent power in Watts) for displaying and the data to

web server at least 4 times per hour.

• Have enough local storage (up to 24 hours) of power measurement data
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2 Design

On a larger picture of our design, we will have multiple local devices that can measure the voltage and

current generated by the function generator and use the ESP32 as the local microprocessor to calculate the

power consumption. After the data is calculated, we will utilize WIFI to communicate with AWS web-server

and eventually the data is offloaded to a screen that can access the server and have the data displayed as we

desired. The following paragraphs will explain in detail about our design by subsystems.

Figure 1: Block Diagram

2.1 Analog Front-end Design

Originally, our Analog front-end design was to step down the high voltage and current from room mains

in ECE Building into a measurable rang (0.15 volts ∼ 3.1 volts) for our microprocessor, ESP32, to read.

However, due to the COVID-19 pandemic and some safety issues, the analog front-end design changed from

dealing with the high voltage and high current situations to measuring the voltage and current within a

smaller range since we cannot derive the AC voltage and current from wall plugs in ECE building. Instead,

a single-channel function generator was used to generate an AC voltage source to represent the amount of

voltage that the microprocessor measured, and a Resistor-Capacitor circuit was used to generate a waveform

with a phase shift and magnitude changes with respect to the waveform directly from the function generator

to represent the amount of current that the microprocessor measured. On the microprocessor, the analog

voltage signals for both the stepped down and then up-shifted voltage and the up-shifted voltage across the

shunt resistor in representing the AC current is passed to the analog input pins. Using EmonLib, a method

that will be discussed in detail below, five variables are calculated: real power, apparent power, root mean

square voltage, root mean square current, and power factor.
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2.1.1 Voltage Measurement Circuit

Originally, a voltage transformer with ratio 10:1 was used to step down the voltage (∼ 120 volts) from

room mains into a lower range (∼ 12 volts). Currently, we swap the voltage transformer with a function

generator and then feed the voltage from function generator directly into our circuit. A single-channel

function generator was used to generate an AC voltage source to represent the amount of voltage that

the microprocessor measured so our current voltage measurement circuit was to convert the voltage from

function generator into the measurable range (0.15v ∼ 3.1v) for ESP32 to read. The voltage from the

function generator corresponds to the voltage at the secondary side of the voltage transformer in our original

design. The voltage divider circuit was used to lower the voltage further into ∼ 1.65V. The ADC of the

microprocessor, ESP32, starts the linear behavior at 0.15 volts and ends at 3.1 volts. Therefore, a level shift

circuit, consisting of one capacitor and two resistors with one 3.3 DC bias, is needed to shift up the whole

waveform into this range (0.15v ∼ 3.1v) for ESP32 to read.

Figure 2: Voltage Measurement Circuit

2.1.2 Current Measurement Circuit

Originally, a current transformer with ratio 1:20 was used to step down the current into a lower range (∼
5A). Currently, a waveform with a phase shift and magnitude response with respect to the voltage waveform

directly from the function generator was generated by a Resistor-Capacitor (RC) circuit to represent the

current that the microprocessor measured, since we cannot derive the AC current from room mains. The

ADC of the microprocessor, ESP32, starts the linear behavior at 0.15 volts and ends at 3.1 volts. Therefore,

a level shift circuit, consisting of one capacitor and two resistors with one 3.3 DC bias, is needed to shift up

the whole waveform into this range (0.15v ∼ 3.1v) for ESP32 to read.

• RC(Resistor-Capacitor) Circuit

A RC circuit was used to generate an waveform that has different phase and magnitude

compared to the waveform directly from the function generator. The voltage at point Vi in

Figure 3 corresponded to the voltage across the shunt resistor in our original design and it

represented the amount of current that the microprocessor would measure.
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Figure 3: Current Measurement Circuit

The value of the phase shift that the RC circuit generated is determined by the resistance of

R5, R6 and R7 in Figure 3 and the capacitance of C2 and C3 in Figure 3. Based on the AC

analysis of the circuit in Figure 3, the transfer function is

V outc

V in
= −C2 ∗ C3 ∗R5 ∗R6 ∗R7 ∗ w2

d
(1)

which d is

d = d1 + d2

d1 = R6 +R7− C2 ∗ C3 ∗R5 ∗R6 ∗R7 ∗ w2 + C2 ∗R5 ∗R6 ∗ w ∗ i

d2 = C2 ∗R5 ∗R7 ∗w ∗ i+ C3 ∗R5 ∗R6 ∗w ∗ i+ C3 ∗R5 ∗R7 ∗w ∗ i+ C3 ∗R6 ∗R7 ∗w ∗ i

As long as the resistance of resistors and the capacitance of capacitors in Figure 5 do not

change, the value of the phase shift is a fixed number no matter how the Vpeak in function

generator is swept.

2.1.3 Emonlib

Based on our research online, we found a public library running in the Arduino environment that is used to

monitor the AC power consumption of people’s houses. [6] We looked into the code and tried to modify it

to work on the ESP32 for our task. Ideally, we can use this library to read in analog inputs representing

our voltage and current respectively and have the power calculated directly as output. Based on learnt

knowledge, the formula for apparent power is

Pa = Irms ∗ V rms (2)

where Pa represents the apparent power and Irms is the root-mean-square of the measured current in the

loop and Vrms is the root-mean-square of the total supply voltage in the circuit. Hence, the real power we

care about is calculated as
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Irms =
Ipeak√

2
(3)

V rms =
V peak√

2
(4)

PowerFactor = cos (θv − θi) (5)

RealPower = Irms ∗ V rms ∗ powerfactor (6)

The current and voltage are sampled at a rate of 5588 samples per second [7] which is sufficient to deal with

a 60Hz original measure target as we have been told. ESP32 initializes the serial connection at 300 bits per

second in order to get rid of the redundant outputs with the same meaning for us to record since our desired

output is simply 2 representative samples per minute as required.

In the example using the EmonLib, in the line of calling the functions in EmonLib, the lines of codes are as

simple as:

emon1.voltage(2, 234.26, 1.7); (7)

emon1.current(1, 111.1); (8)

where ‘emon1’ is the name for the library when imported; 1 and 2 refer to the analog read pin numbers;

234.26 and 111.1 are the calibration constant for voltage and current respectively; and 1.7 is the phase

calibration constant. Due to the magnitude transforms that we apply to the voltages such as stepping down

circuit in our original plan as well as the up-shift, ESP32 has to know the actual real numbers to give accurate

measurement. Furthermore, since different computers have different processing delays, the phase of the read

in values may also varies a bit. Thus, to recover the actual data in the field, these constants are necessary

and they may vary under different working environment.

2.1.4 Magnitude Calibration

The calibration constants can be categorized to two types, magnitude calibration constant and phase cali-

bration constant since we needs to count for both the magnitude transforms and phase drift as well.

• Voltage Calibration

For the voltage calibration constant [8] , it is derived with the following strategies: Since we

want to recover the initial alternating mains voltage, we want to derive a calibration constant

that satisfies

voltage constant = alternating mains voltage÷ alternating voltage at ADC input pin (9)
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Thus, in that example, the voltage calibration constant is derived by

voltage constant = 230× 11÷ (9× 1.20) = 234.26 (10)

where 230 is the RMS Voltage of the room mains to be measured, 11 is the ratio the fur-

ther step-down ratio of the circuit on the PCB after the transformer. The ratio for voltage

transformer used in the example is calculated as

230÷ (9× 1.20) (11)

as explained that “the voltage transformer output is nominally 9 V for 230 V input, but this

is at full load. When used as a voltage monitor for the EmonTx, it is effectively running

unloaded, and the voltage is approximately 20 percent higher (this is called the transformer

“regulation” and the value depends on the design of the transformer. 20 percent is typical

for this type and size).” [8]

Therefore, the voltage calibration constant for our design should be calculated in the idea of

Equation 9 by calculating specifically the real transformer ratio and the step-down ratio on

the PCB as well. As a result, we will find a constant that reveals the real voltage per voltage

read at the analog pin to recover any processes we perform previously to lower the voltage to

the measure-able range of ESP32.

In our project, the voltage is measured at a point after a voltage division on the PCB, so

we simply needs a constant to account for this process only. With the calibrated constant,

we will accurately have the Vrms value, that is the square root of the peak value from the

function generator, printed out as result.

• Current Calibration

For the current calibration constant, since current cannot be wired directly to the analog read

pins of the microprocessor, we need a “burden resistor” to change that into a voltage value.

Therefore, the current calibration constant is calculated as

current constant = (original current÷ current after CT )÷ shunt resistor (12)

Thus, 111.1 is calculated in the example as

current constant = (100÷ 0.050)÷ 18 = 111.1 (13)

where the current transformer used is 100A:50 mA and the shunt resistor value is 18 ohms.

In our project, since the shunt resistor we selected is 0.33 ohms, we modify the constant and

let the current value matched up with the theoretical computed one, that is, the current flow

through a measured voltage across a 0.33 ohm resistor.

To summarize this module, the magnitude calibrations are used mainly to recover the voltage and current

transformers ratio, but in our design right now, since no transformers are involved, we simply needs to
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calibrate once to make sure that the voltage is the RMS value of the function generator output and current

equals the point we measure the voltage across the shunt resistor divided by the shunt resistor value. Later

we will see in the verification section, that once the calibration is made, the accuracy is maintained while

the function generator gives output at various levels.

2.1.5 Phase Calibration

The need for the phase calibration constant is that firstly, the current and voltage transformers have internal

phase errors that may cause error even before the processing in software. The normal error for this situation

is: 3.5 degrees at 225V, 4.5 degrees at 240V ,etc. And for the current sensor with a 15 ohms burden resistor

is: 3.5 degrees at 3A, 2.5 degrees at 30A and 2 degrees at 60A [8]. Another issue needs to be concerned

in the context of phase calibration constant is that in the software, the voltage and current are sampled in

that order and conversion takes approximately 100 micro-seconds, thus the voltage is measured earlier than

current by about 2 degrees for a 50 Hz system. Thus, derivation of this phase calibration constant is also

necessary for the accuracy of our measurement. EmonLib have one line written as

phaseShiftedV = lastF ilteredV + PHASECAL× (filteredV − lastF ilteredV ) (14)

where it created a shifted set of sampled data in a sense according to the figure below

Figure 4: Phase Calibration [9]

The red dot is the shifted data by setting the phase calibration constant to 1.5. The first sample is read

from the analogue input, filtered, and becomes ’filteredV’. At the start of the second loop, that first sample

is copied to the program variable ’lastFilteredV’. The equation (14) puts the point phaseShiftedV above the

filteredV by 1.5 times the vertical distance between this point and the previous point. In a way that a new

waveform has been made that is shifted to the left we made it equivalent to a phase shift. Thus, in this

manner, 1 would gives no shift in the phase, 0 would move the waveform to the right by one sample period

and 2 would move the waveform to the left by one sample period. In reality, after calculating the voltage

and current calibration constants, we set the phase calibration in a known test environment to adjust for

the voltage and current transformers we selected for correcting the phase error generated by them as well as

our own computer for correcting the processing time.

In addition, the reason why we only need phase calibration constant in the scope of voltage is that the phase

difference between current and voltage are relative. There’s no such thing as absolute phase difference. As

a result, we only calibrate the phase so that the original phase difference is achieved so we only needs to

modify the phase of the voltage.
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2.1.6 Apparent Power Calculation

With the voltage and current measurement at hand, we could easily compute the apparent power of the

circuit, which is based on the formula

Papparent = V rms× Irms (15)

Thus, in calculation Emonlib has the sum of voltage and sum of current over the samples of a full cycle

(determined by check zero crossings), take the average of each, and multiply the two averages together to

be the apparent power of this cycle.

2.1.7 Real Power Calculation

For the real power calculation, Emonlib adopted the idea that ”over a fixed number of cycles, the average

of the instantaneous power of the sine wave is simply as” [10]

p = V × I × cos(θ) (16)

with V representing the RMS voltage, I representing the RMS current and cos(θ) is the cosine of phase

difference which gives the power factor of our measurement. Hence, using this idea, EmonLib has the

instantaneous power calculated with every voltage and current sampled inputs, take the average in the end

and this gives the real power of the measurement cycle.

Preal = sumP ÷ numberOfSamples (17)

With the apparent power and real power calculated, the power factor can also be easily retrieved as

power factor = real power ÷ apparent power (18)

Thus, we have all the five main components we need for data uploading.

2.1.8 PCB Design

The voltage measurement circuit and current measurement circuit except the RC circuit are on our PCB

Board.

(a) PCB Design (b) PCB Board

Figure 5: PCB Diagram
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2.2 ESP32 Data Collection and Upload

After the circuits have stepped down current and voltage to a desired level and Emonlib has processed the

readings from the the input Pins, the microprocessor ESP32 will then process the data generated by Emonlib

and store it in to the database. The display program will later query data from the database for real time

plotting on the web browser.

The detailed code is provided in the appendix and it will not be elaborated in this section.

Figure 6: flowchart of the code on ESP32

2.2.1 ESP32 Local WiFi Connection

ESP32 needs to be connected to WiFi in order to upload any data to the database. The ability of ESP32

to connect and reconnect to the designated WiFi is critical to the completion of this project. Without the

ability to connect to WiFi, ESP32 is unable to make the configuration that uploads the reading to the cloud.

And without the ability to reconnect to WiFi, temporary shutdown of the access points or routers will stop
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ESP32 from uploading in the future and must be reset manually to restore connection.

In order to avoid this, ESP32 will constantly check WiFi connection before uploading, and will automatically

reconnect when disconnected.

In the presumed environment, the ECEB, ESP32 will connect to IllinoisNet Guest. The reason for this

is that ESP32’s library for WPA2 connection is very limited. IllinoisNet requires a password confirmation

which never happened to be success in early experiment we conducted. While IllinoisNet Guest only check

the IP address of ESP32, it is the most desirable network we could have with minimum expense. Of course,

due to the shutdown of the ECEB during the pandemic, we change the network to our home router, but the

idea is useful for broader application.

ESP32 comes with built in library WiFi.h that checks WiFi Connection. We use this to determine if ESP32

is connected. The code that implement WiFi connection and re-connection is in main.ino.

2.2.2 ESP32 Local Data Collection

In the design we required at least two uploads per minute. Since ESP32 has more potential in its computa-

tional power. We could collect the reading from Emonlib during the one minute period, then refine the data

by average them, so that the two data we uploaded will be more representative of the minute.

We noticed that when ESP32 is plugged in with readings, the initial values is usually extremely large or

small and takes few seconds to stable and consolidate, we intentionally remove the greatest and least value

in the duration, then takes the average of the rest of the data. In this way, the mean will be less likely to be

influence by extreme value and is more accurate.

During testing, a collection of around 12 data could be collected during 30 seconds period, this functionality

is in function float glitch filtered sum in main.io.

2.2.3 ESP32 Local Data Storage

The primary concern of data uploading is the safety of the data, for instance, under circumstances that the

WiFi connection has been broken. The data must be able to be preserved locally and wait for the next

success re- connection. Aiming to maintain the synchronous order, we implement an first in first out data

structure to stores the data. In an other world, old data will be the first to be be uploaded when WiFi

reconnected.

After the data is refined and taken average, the mean data that will be uploaded will be pushed into this

structure immediately. And when the WiFi connection is confirmed, the oldest data will be popped and

published to the cloud.

This idea is altered from the original idea in the design documents where we wished to write to flash memory

and the read. The reason is the reduce the data reading into 8 bits reduced the significant figures. And after

intense write and erase, one of the ESP32 chip we have is significantly slower that the other one. Assumed

reason is that erasing data from flash memory is slow. So we abort this method and just store it in the heap

memory of the code, where erase is not needed. The data structure is located in the library file ”queue.h”.
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2.2.4 ESP32 Topics Publish

We implemented AWS MQTT[11] protocols in this project for data uploading. MQTT is frequently used in

the industry of IoT due to its lightweight and its publish and subscribe structure suits our needs. ESP32

will first configure the endpoint, the topics and the certificates. Then the publish function will handle the

rest by publishing the data we wrapped into Json format to the cloud, where the subscriber, which in our

case is the AWS Lambda, will subscribe and grab the data. The code of this functionality is found in main.io.

2.3 Cloud Data Handling and storage

2.3.1 AWS Lambda Topics Subscribe

AWS Lambda[12] is a platform that allow us to run codes on the cloud. We simply subscribe the same topic

that we published to in the ESP32. With correct configuration, Lambda will catch the Json package, parsing

it and store it into our database. We also add a timestamp during the parsing so that the database could

sort the order by the value of timstamp. The code of AWS Lambda could be found in app.js.

2.3.2 DynamoDb database

DynamoDB[13] is the database that we used for storing the readings. It is a non-SQL data base that the

attributes is set by the format of our input. We set this to be exactly the same as the output of the Emonlib.

So we have apparent power, real power, Vrms, Irms and power factor. We set the parturition of the database

by the attribute room, which is unique to each ESP32 to represent different classroom. And we sort the

order of the entry by their timestamp.

Figure 7: Screenshot of DynamoDB

Figure 7 is the a screen shot of DynamoDB, it shows how the item is stored by attributes and sorted in the

order of timestamp values.

2.4 Plotting and Data Display
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2.4.1 Web Page Display

The code of Display is located in the folder Final Web, the idea of how it works is that we first generate

seed data by grabbing the ten latest entries from the database. Then later upon new entry uploaded into

the database, we fetch the new entry and update it on the chart.

Figure 8: Screenshot of the display

The figure 8 above is the screenshot of the web page. We did not invested too much effort into the artistic

view of the page but it certainly served our purpose of demonstrating the feasibility of our ideas.
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3 Design Verification

3.1 Analog Front-end Design

We tested four sets of data by setting the function generator to 20Vpeak-peak, 16Vpeak-peak, 10Vpeak-

peak, and 1Vpeak-peak separately to sweep the voltage and current accordingly and read the root mean

square voltage and current, power factor, apparent power and real power from our microprocessor, ESP32.

The reason we chose these four sets of data is that these four sets of data almost cover the range of the

amount of current (0A ∼ 5A) we want to measure, which corresponds to 0A ∼ 100A in our original design.

3.1.1 Voltage Measurement Verification

Firstly, we will start from using simulation tools to visualize the wave for voltage that the function generator

provides under four occasions. Four labels indicating the peak value in voltage.

Figure 9: Voltage Waveform from Simulation

Based on the readings from above, we can calculate by hand the root mean square value of the data, and

these values on the right of the table are the ideal values we want to measure and print.

Table 1: Vrms based on Simulation graph (Figure 9)

Amplitude of

voltage

waveform(V)

Vrms(V)

10 7.071

8 5.6568

5 3.535

1 0.3535

For the verification results, below is the collection of the printouts under four occasions. We collected twenty

samples for each occasion for checking our accuracy.
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(a) Vrms at 20Vpp from Experiment (b) Vrms at 16Vpp from Experiment

(c) Vrms at 10Vpp from Experiment (d) Vrms at 1Vpp from Experiment

Figure 10: Vrms from Experiment

Apparently, based on the graphs presented, the accuracy of our result of our RMS voltage is pleasing and

even though there are mild fluctuations, the result seems working fine from low voltage levels to high voltage

levels.

3.1.2 Current Measurement Verification

Secondly, aside from the RMS voltage, RMS current is the other key component for us to calculate the

power. Therefore, we did a simulation first and check if the values of our print-out console could match up

with each other.
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Figure 11: Current waveform from Simulation

Similar to the voltage simulation graph, this picture reveals the current magnitude flowing over the 0.33 ohm

resistor under 4 different occasions provided by the function generator. With 4 blocks, the values at peak

are labeled clearly.

Table 2: Irms based on Simulation graph (Figure 11)

Amplitude of Current

Waveform (A)

Irms(A)

4.15 2.934

3.32 2.347

2.075 1.467

0.0275 0.14672

Similar to the voltage, we calculate the RMS current values by hand and these are the values used to check

current measurement accuracy in our design. The the graphs below, is our comparison of the 20 collected

samples with the calculated ideal values.

(a) Irms at 20Vpp from Experiment (b) Irms at 16Vpp from Experiment

(c) Irms at 10Vpp from Experiment (d) Irms at 1Vpp from Experiment

Figure 12: Irms from Experiment
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Apparently, based on the graphs presented, the accuracy of our result of RMS current is pleasing and even

though there are mild fluctuations, the result seems working fine from low voltage levels to high voltage

levels.

3.1.3 Power Factor Measurement Verification

After measuring voltage and current correctly, we could have the correct apparent power measurement.

However, since our high-level requirements asked us to measure the real power, which catches more interests,

we need to make sure that the real power we calculated satisfies the relation that the real power equals

the apparent power times the power factor which is the cosine of the relative phase difference between the

voltage and current. Therefore, to illustrate that we are having the real power calculated correctly, we have

to compare the actual power factor.

Below are the graphs from simulation results that the phase difference under different function generator

supply. Not to our surprise, the phase difference does not change from high voltage to low voltage and we

want to see the same result on our measurement as well.

(a) Power Factor at 20Vpp from Simulation (b) Power Factor at 16Vpp from Simulation

(c) Power Factor at 10Vpp from Simulation (d) Power Factor at 1Vpp from Simulation

Figure 13: Power Factor from Simulation

As introduced above, the phase difference does not vary too much, leading to a constant power factor in the

circuit. Therefore, our goal is to see a fixed power factor with correct value printing out as well.
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(a) Power Factor at 20Vpp from Experiment (b) Power Factor at 16Vpp from Experiment

(c) Power Factor at 10Vpp from Experiment (d) Power Factor at 1Vpp from Experiment

Figure 14: Power Factor from Experiment

Obviously, our measurement does not vary too much when voltage supply from the function generator rises

or drops. Therefore, the power factor is also considered to be measured correctly.

3.1.4 Apparent Power measurement Verification

After measuring RMS voltage and current correctly, we could have the correct apparent power measurement.

The apparent power is calculated based on the Equation(2). The simulated RMS voltage and current in

Table 3, is derived from the Table 1 and Table 2.

Table 3: Apparent Power calculated based on the Table 1 and Table 2

Vpeak-peak in

function generator

Vrms(V) Irms(A) Apparent

Power(W)

20Vpeak-peak 7.071 2.934 20.74

16Vpeak-peak 5.656 2.347 13.27

10Vpeak-peak 3.535 1.467 5.185

1Vpeak-peak 0.3535 0.14672 0.05186

The the graphs below, is our comparison of the 20 collected samples of apparent power with the calculated
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ideal values.

(a) Apparent Power at 20Vpp from Experiment (b) Apparent Power at 16Vpp from Experiment

(c) Apparent Power at 10Vpp from Experiment (d) Apparent Power at 1Vpp from Experiment

Figure 15: Apparent Power from Experiment

Apparently, based on the graphs presented, the accuracy of our result of apparent power is pleasing and

even though there are mild fluctuations, the result seems working fine from low voltage levels to high voltage

levels.

3.1.5 Real Power measurement Verification

After measuring RMS voltage, RMS current and power factor correctly, we could have the correct real power

measurement. The real power is calculated based on the Equation(6). The simulated RMS voltage, RMS

current and power factor in Table 4, is derived from the Table 1, Table 2 and Figure 13.

Table 4: Real Power calculated based on the data from Table 1, Table 2 and Figure 13

Vpeak-peak in

function

generator

Vrms(V) Irms(A) Power Factor Real Power(W)

20Vpeak-peak 7.071 2.934 0.175 3.63

Continued on next page
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Table 4 – continued from previous page

Vpeak-peak in

function

generator

Vrms(V) Irms(A) Power Factor Real Power(W)

16Vpeak-peak 5.656 2.347 0.175 2.32

10Vpeak-peak 3.535 1.467 0.175 0.635

1Vpeak-peak 0.3535 0.14672 0.175 0.00907

The the graphs below, is our comparison of the 20 collected samples of real power with the calculated ideal

values.

(a) Real Power at 20Vpp from Experiment (b) Real Power at 16Vpp from Experiment

(c) Real Power at 10Vpp from Experiment (d) Real Power at 1Vpp from Experiment

Figure 16: Real Power from Experiment

Apparently, based on the graphs presented, the accuracy of our result of real power is pleasing and even

though there are mild fluctuations, the result seems working fine from low voltage levels to high voltage

levels.
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3.2 ESP32 Data Collection and Upload

Figure 17: Screenshot of IoT Topics

The figure above is a screenshot from AWS IoT console. After manually subscribing to the topic that ESP32

is publishing to and acquired this Json package. This demonstrated that the ESP32 successfully connected

to WiFi and complete the IoT configuration as planned. And the the data structure that is responsible for

storing data did not lose the significant bits during the storage.

3.3 Cloud Data Handling and storage

Figure 18: Screenshot of Dynamodb

The figure 18 is a screenshot of DynamoDB. The selected entry exactly matched the package in Figure 17,

and the timestamp matched figure 17 as well. This demonstrate the success of storing ESP32 local data into

the database.
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4 Cost

4.1 Parts

Table 5: Parts Costs

Part Manufacturer Retail

Cost ($)

Bulk

Purchase

Cost ($)

Actual

Cost ($)

UCY2G100MPD Digi-Key 0.82 0.62 3.28

UMA1H010MCD2TP Digi-Key 0.24 0.16 0.48

MBA02040C4700FRP00 Digi-Key 0.24 0.2 0.72

BC4060CT-ND Digi-Key 0.29 0.24 1.16

BC3742CT-ND Digi-Key 0.4 0.3 1.6

RNF14FTD1K00CT-ND Digi-Key 0.1 0.07 0.3

PPC200ZCT-ND Digi-Key 0.29 0.24 0.87

2.54mm Pitch Female PCB Header Connector Amazon 6.15 6.15 6.15

PCB Board OSH.Park 33.33 33.33 33.33

AWS cloud cost Amazon Web Service 1.54 1.54

Total 43.4 43.4

Figure 19 below is the AWS Billing Cost graph, which shows the last month, moth-to-date, and month-end

forecasted costs. The cost is really negligible at the scale of only one device activated. A rise in scale could

leads to rise in cost, however, at this stage the cost of use cloud server is significantly lower than setting up

a physical server.
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Figure 19: AWS cloud cost during the semster

4.2 Labor

For each partner of the project, the labor cost can be calculated as:

30dollars/hr × 8hrs/week × 11weeks× 2.5 = 6600dollars

This should be our labor value building this project.
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5 Conclusion

5.1 Accomplishments

First of all, it is our honor to be a student here at UIUC and to have this course serves a the end-chapter

assignment of our undergraduate studies. We feel delighted and grateful for the support from our professor

and TA for assisting us throughout the semester, especially when the pandemic forces many groups to wrap

up on their implementation. The actual device has been constructed, even it is just a prototype and does

not have fancy encapsulation covers, it functions well. We looking forward to extend our project into our

original design, a product that can be placed in the walls of the ECEB and have wires that flows high voltage

and current around them. In summery, we achieved all our high-level requirements for the home-scope AC

power measurement device and the accuracy is less than 5 percent. We appreciate the time working with

group members as well as the course stuff and the workshops such as the Kidcad assignment and soldering

assignment definitely added significant part to our skill-lists and we believe it will be very helpful after our

graduation.

5.2 Uncertainties

The uncertainties for our project is minimal, as we tested through most of the situations (from high voltage

source to low voltage source) that mimic the real one. However, we do still have curiosity about how our

design would behave if we are using an inductor for the ”phase creation” process. Our simulation result looks

as fine but since the PCB ordering has been very limited this semester, we were not able to put inductors in

the place of capacitors to see if our design could work as well.

5.3 Ethical considerations

Based on the 10 ethics mentioned on the ieee code of ethics [14], we have a thorough consideration of our

project and believe that our project will not violate these items.

• 1. to hold paramount the safety, health, and welfare of the public, to strive to comply with ethical

design and sustainable development practices, and to disclose promptly factors that might endanger

the public or the environment;

- Our project will be enclosed in a plastic case in the wall and no smell nor harmful stuff will leak to

the public.

• 2. to avoid real or perceived conflicts of interest whenever possible, and to disclose them to affected

parties when they do exist;

- Our project will not cause any conflicts to any forms of interests: it’s simply a small device that helps

monitoring the power consumption at our own place.

• 3. to be honest and realistic in stating claims or estimates based on available data;

- Our project serves primarily to report the measurement from our local devices. Thus, even though

tiny measurement errors may occur, there would be no dishonesty involved.

• 4. to reject bribery in all its forms;
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- Our project is automated from front-end to back-end and so since no man-force is involved in this

measurement, no bribery is possible.

• 5. to improve the understanding by individuals and society of the capabilities and societal implications

of conventional and emerging technologies, including intelligent systems;

- Our project will eventually work as a public presentation in the building for any public curiosities of

any form.

• 6. to maintain and improve our technical competence and to undertake technological tasks for others

only if qualified by training or experience, or after full disclosure of pertinent limitations;

- Our project will be implemented in the lab first and then to carry out as real designs to measure the

power in walls, so it should be a fully-tested project.

• 7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and

to credit properly the contributions of others;

- We will do credit for any work we utilized and are welcome for any advice.

• 8. to treat fairly all persons and to not engage in acts of discrimination based on race, religion, gender,

disability, age, national origin, sexual orientation, gender identity, or gender expression;

- Our project has nothing to do with discrimination.

• 9. to avoid injuring others, their property, reputation, or employment by false or malicious action;

- Our project is automated from front-end to back-end. Therefore, there is no chance for people to get

injured on our project.

• 10. to assist colleagues and co-workers in their professional development and to support them in

following this code of ethics.

- Our project is built on our own thoughts and the previous works of many others and hopefully our

design could be useful for any followers in this field.

5.4 Future work

Certainly, for the future work of our project, we expect that there should not be too much other than the

two transformers to add in order to extend our design to our original plans. With the functionality to work

with inductive circuits tested as well as the transformers working along with room mains well, our device

should be able to measure the power consumption on each phase of the target room. By simply adding

those functions together and upload to the server, the initial pitch from the professor can be realized. In

addition, if we can expand our budget, we could also try to add an external ADC to our microprocessor or

even change to another microprocessor that has more bits for analog signal readings. This way, the accuracy

of our project could also be enhanced and thus be applied to even more occasions in real life.
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Appendix A Requirement and Verification Table
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Table 6: System Requirements and Verifications

Requirement Verification Verification
status (Y

or N)

1. Analog Front-end design
(a) The voltage that the analog in-

put pins read in ESP32 should
between 0.15 ∼ 3.1V

(b) The value of RMS voltage
and current, power factor, ap-
parent power and real power
which read from the micropro-
cessor (ESP32) should be mea-
sured correctly

1. Analog Front-end design
(a) 1.Set the func-

tion generator to
20vpeak-to-peak,
16vpeak-to-peak,
10vpeak-to-peak,
1vpeak-to-peak
separately.

2.Connect the func-
tion generator to the
analog front-end cir-
cuit.

3.Connect the probes
of the oscilloscope
with the test points
in the circuit and
check if the wave-
form on the oscillo-
scope perfectly shifts
up into the range
(0.15 3.1V).

(b) 1.Simulate the value
of RMS voltage and
current, power factor,
apparent power and
real power on Hspice

2.Set the func-
tion generator to
20vpeak-to-peak,
16vpeak-to-peak,
10vpeak-to-peak,
1vpeak-to-peak
separately.

3.Connect the func-
tion generator to the
analog front-end cir-
cuit

4.Check if the value
of RMS voltage and
current, power factor,
apparent power and
real power read from
the microprocessor
(ESP32) match the
calculated ideal value
from simulation.

Y

Continued on next page
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Table 6 – continued from previous page
Requirement Verification Verification

status (Y
or N)

2. Requirement
(a) ESP32 is able to offload data

to the server at least 4 times
per hour

(b) ESP32 has enough local stor-
age

(c) The data is accurate within 5%
error

2. Verification
(a) ESP32 is able to collect 24

readings per minute, and could
upload at least 2 readings per
minute.

(b) ESP32 has enough local stor-
age for 24 hours.

(c) The significant figures are all
preserved and the validity of
Emoblib is confirmed

Y

3. Display on high resolution screen
with Google Chrome browser

3. Worked on Chrome Browser per-
fectly with fixed aspect ration, but
not tested on any high resolution
screen comparable to the ones in
ECEB lobby.

Partially

Appendix B Repository for Project Codes

https://github.com/Xiaoyis2/SubmeterECEB-Final

28


	Introduction
	Problem and Solution Overview
	High-level Requirements

	Design
	Analog Front-end Design
	Voltage Measurement Circuit
	Current Measurement Circuit
	Emonlib
	Magnitude Calibration
	Phase Calibration
	Apparent Power Calculation
	Real Power Calculation
	PCB Design

	ESP32 Data Collection and Upload
	ESP32 Local WiFi Connection
	ESP32 Local Data Collection
	ESP32 Local Data Storage
	ESP32 Topics Publish

	Cloud Data Handling and storage
	AWS Lambda Topics Subscribe
	DynamoDb database

	Plotting and Data Display
	Web Page Display


	Design Verification
	Analog Front-end Design
	Voltage Measurement Verification
	Current Measurement Verification
	Power Factor Measurement Verification
	Apparent Power measurement Verification
	Real Power measurement Verification

	ESP32 Data Collection and Upload
	Cloud Data Handling and storage

	Cost
	Parts
	Labor

	Conclusion
	Accomplishments
	Uncertainties
	Ethical considerations
	Future work

	Reference
	Requirement and Verification Table
	Repository for Project Codes

