
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

MacroME: The Programmable
GameCube Controller

Team #67

DEAN BISKUP

(dbiskup2@illinois.edu)
ADITHYA RAJAN

(adithya2@illinois.edu)

TA: Chi Zhang/Megan Roller

May 8, 2020

Abstract

MacroME is a project that aims to make certain complex input combinations in fighting
games, such as Super Smash Bros., easier for beginners. In these games, there are often
complex move combinations that give you a competitive edge over the opponent, with no
way to remap the button layout of the controller. The original solution to this problem was
an adapter that translated inputs from a standard GameCube controller into remapped
inputs. In contrast, MacroMe provides both programmable macro capability as well as
button remapping capabilities housed in the form factor of a GameCube controller.

ii

Contents
1 Project Motivation 1

1.1 Problem Statement . 1
1.2 Solution . 1

1.2.1 Solution Overview . 1
1.2.2 Inspiration and Differing Factors . 2

1.3 High Level Requirements . 2
1.4 Visual Aid . 3
1.5 Block Diagram . 4

2 Project Implementation 5
2.1 Component Subsystems . 5

2.1.1 Power Selection Unit . 5
2.1.2 Button Input Unit . 5
2.1.3 Microcontroller Unit . 5
2.1.4 Programming Unit . 6

2.2 Schematics . 6
2.2.1 Flash Memory . 6
2.2.2 Voltage Regulator . 7
2.2.3 Microcontroller and Inputs . 7
2.2.4 Connectors . 8

2.3 PCB Layout . 10
2.3.1 Front Layout . 10
2.3.2 Back Layout . 11

2.4 Software Design . 12
2.4.1 Choice of Programming Language . 12
2.4.2 Logic Flowchart . 13
2.4.3 Software Module Design . 14

2.5 Materials and Parts . 15

3 Conclusions 16
3.1 Implementation Summary . 16
3.2 Unknowns and Uncertainties . 16
3.3 Ethics and Safety . 17

3.3.1 Ethics . 17
3.3.2 Safety . 17

3.4 Future Work and Project Improvements . 18

References 19

Appendix A Example Combos 21

Appendix B Requirements and Verification Tables 22

Appendix C The GameCube Protocol 24

iii

Appendix D Latency Analysis 25

iv

1 Project Motivation

This section includes our motivations and inspirations behind creating MacroME. We dis-
cuss a general overview of the product and its expected functionalities. We also compare
existing solutions and the original project that proposed a solution to the problem, and
defend how MacroME differentiates itself from and improves upon the existing prod-
ucts.

1.1 Problem Statement

Super Smash Brothers is one of the most famous video game franchises, with titles such
as Super Smash Bros. Melee frequently ranked among the best fighting games of all time
[1][2]. While current iterations of the Super Smash Bros. series allow the game’s controls
to be changed in-game, older titles such as Melee did not allow for this feature, forcing all
players to play with default controls. In addition, Super Smash Bros., like other fighting
games, features combinations of moves (combos) that may be too difficult to execute for
beginners, yet required if they are to compete with more experienced players. This cre-
ates an issue where the learning curve is too steep, resulting in player burnout especially
among new players who are trying to learn the game. A few examples of these high level,
complex combos are described in Appendix A.

1.2 Solution

1.2.1 Solution Overview

Our solution is ”MacroME: The Programmable GameCube Controller,” a fully functional
Nintendo GameCube controller, but with extra features to enhance the player experience.
The first primary functionality of MacroME is to allow button remapping, where the user
can remap buttons on the controller to different actions. For example, the user could
choose that the X button instead presses the L or R buttons. The second primary func-
tionality of MacroME is to allow for programmable macroinstructions (macros). This will
allow the user to select a string of inputs, timed frame by frame, for the controller to auto-
matically execute upon the press of a button. By doing this, the user can perform complex
strings of inputs for certain combos or techniques in the game.

One of the key components of MacroME is that it looks and feels just like a standard
GameCube controller. For this reason, our custom PCB will be fit inside the standard
GameCube controller shell, with all the buttons in the same place as the original con-
troller. MacroME will connect to the game console through a GameCube connector cable,
while also be able to connect to a PC through USB for programming macros and button
layouts. Additionally, the saved layouts and macros will be stored on the controller itself,
so a PC is not necessary to use the player’s stored configurations.

We hope that MacroME will encourage beginner players to try the more complex char-
acters in the Super Smash Bros. games, and make access to competitive mechanics less
intimidating. Additionally, MacroME can help players used to other button layouts learn

1

the game more easily through the button remapping feature. As an added bonus, due to
the popularity of the GameCube controller, there are many adapters on the market that
would allow this controller to also be used for PC, PlayStation, or Xbox games, expanding
our user base beyond just GameCube players.

1.2.2 Inspiration and Differing Factors

MacroME is based off of Project 14 from Spring 2020 of ECE 445: ”Button Remapping
for GameCube Games such as Super Smash Bros Melee” [3]. This project achieved sim-
ilar goals by creating an adapter that remaps GameCube controller signals. The adapter
sits between a standard GameCube controller and the console, and is programmed by
connecting to a smartphone app via Bluetooth.

On the market, there are several custom GameCube controllers that allow for button
remapping. For example, the B0XX [4] and SmashBox [5] controllers are fighting game
styled controllers utilizing arcade buttons as their inputs and allow for custom button
mappings. Additionally, in modern additions to the Super Smash Bros’ franchise, there
actually are button remapping capabilities built into the game. However, this falls short
when trying to transfer those layouts to other games or consoles, since the layouts do not
follow the controller itself.

MacroME differentiates itself from existing market solutions and the solution proposed
in Project 14 in several key ways. First, MacroME contains all of the hardware within the
form factor of a physical GameCube controller. Second, MacroME adds the functional-
ity of programmable macros. Third, MacroME’s process of programming the controller
forgoes Bluetooth, opting instead for a wired connection. These differences allow our
controller to be more portable by not requiring any setup when connecting to a new con-
sole, as well as adds functionality that is more beneficial to beginning and veteran players
alike.

Lastly, MacroME’s target price is significantly cheaper than the B0XX and SmashBox con-
trollers, both of which are priced at around $200 [5]. Project 14 had a similar goal of
having a much lower price compared to current products on the market.

1.3 High Level Requirements

• MacroME must have persistent memory so that the controller does not need to be
reprogrammed each time it is disconnected from power.

• MacroME must have a maximum latency of 16.67 ms between button press and
signal output, which is equivalent to less than 1 frame of latency at 60 frames per
second [6].

• The GUI program and the MacroME controller must allow for macros with both
analog stick and button inputs per frame, up to a length of 60 frames (1 second).

2

Figure 1: Physical Design of the MacroME Controller

1.4 Visual Aid

Figure 1 shows the physical design of the MacroME controller. The controller is very sim-
ilar in appearance to a stock GameCube controller, but with two notable exceptions. First,
MacroME has four extra buttons near the center of the controller. These are the macro
buttons, and each can be programmed to perform a different macro string as defined by
the user. Second, there is a USB-C port at the top of the controller (not visible). This USB-C
port is used to communicate with the PC when the controller is being programmed.

3

1.5 Block Diagram

Figure 2: Block diagram of MacroME

Figure 2 shows the block diagram for ’MacroME’. The block diagram demonstrates typi-
cal operation of the controller. The user will program their remapped buttons and macros
through the Programming Unit (PU) on the PC. The Microcontroller Unit (MCU) then is
able to store these settings, and during gameplay translate the user’s button inputs into
the desired remaps or macros.

4

2 Project Implementation

The following section is a detailed explanation of the implementation of MacroME. There
are overviews of the individual subsystems, which discuss their purposes, how they re-
late to the accomplishing the high level requirements, and the components used to im-
plement them in the hardware. The hardware implementation is reflected by the circuit
schematics and PCB layout sections. The circuit schematics show the implementation of
the various subsystems in the circuit design itself. The PCB layout shows the placement
of the components on the physical board. There is also a discussion of the software im-
plementation, including the logic flowchart and module designs, as well as justifications
for decisions made in the software design

2.1 Component Subsystems

In this section, we cover the individual subsystem units in detail. See Appendix B for
each subsystem’s requirements and verification tables.

2.1.1 Power Selection Unit

The Power Selection Unit (PSU) involves a simple circuit that chooses where the power to
the microcontroller and peripherals comes from. The SAMD51 family of microcontrollers
has a nominal input voltage of around 3.3V. This is perfect when connected to the Game-
Cube console itself, since the GameCube outputs a 3.43V power line, but not ideal when
the controller is connected to the PC via USB, as USB outputs a 5V power signal. Thus, the
PSU is required to detect when USB is connected, and if so, use a linear voltage regulator
to drop the voltage down to 3.3V for the microcontroller to use.

2.1.2 Button Input Unit

The Button Input Unit (BIU) includes the physical controller, the buttons, and the analog
sticks on the controller. The BIU is the same size and shape as a standard GameCube
controller, as through the BIU is how the user physically interacts with the game console.
The raw inputs from the user will be sent to the Microcontroller Unit, which processes
the inputs and makes any remappings or macro actions as necessary.

2.1.3 Microcontroller Unit

The Microcontroller Unit (MCU) is the main processing unit of the MacroME controller.
It receives all inputs from the BIU, and outputs the remapped buttons or macros to the
game console over the GameCube protocol (see Appendix C) within a single frame. The
MCU has persistent memory, so that the stored button remapping and macros stay across
power cycles, since a controller of this type will not be consistently powered. While in
normal operation, the inputs to the MCU are the pressed buttons and analog sticks from
the BIU. In programming mode, the MCU takes inputs from the PC application through
USB.

5

Due to our familiarity with the platform and its relative power, we chose to use the
SAMD51 family of ARM Cortex-M4 microcontrollers for the MCU [7]. For persistent
memory, we use the GD25Q16C QSPI flash chip [8]. This chip is a 2MB flash storage chip
that communicates with the SAMD51 Microcontroller over Quad SPI (QSPI), enabling
MacroME to store user configurations even when the device is not powered.

2.1.4 Programming Unit

The Programming Unit (PU) allows the user to program the controller with different but-
ton mappings and macros. The user interacts with the Programming Unit through a GUI
program on their PC that communicates with the MacroME controller through a USB
connection. The macros that the user can program using the PU allow for any number of
button presses at a time, with a resolution of 1 frame, for up to 60 frames.

2.2 Schematics

This section includes the circuit schematics for MacroME. The schematics are split up into
various components. Each individual schematic block is connected to the others through
global labels.

2.2.1 Flash Memory

Figure 3: Circuit Schematic for Flash Memory

Figure 3 shows how the memory is connected to the microcontroller. The memory inter-
faces with the micro controller via the various IO pins. These help the microcontroller
store and fetch the programmed button remaps and macros in the flash memory.

6

Figure 3 is also a representation of how the MCU fulfills its persistent memory require-
ment in the circuit design itself. With the addition of flash memory, the microcontroller
can store configuration settings even when not powered. Therefore, the controller will
not need to be reprogrammed between uses.

2.2.2 Voltage Regulator

Figure 4: Circuit Schematic for Voltage Regulator

Figure 4 shows the circuit schematic of the voltage regulator. When the voltage regulator
receives a +5V signal from the USB power, it outputs a +3.3V signal instead to the rest of
the components.

Figure 4 is also a representation of the PSU in the circuit design itself. The voltage regu-
lator is the central piece that drives the success of the PSU, and the circuit design reflects
how it receives power inputs from the USB port or the GameCube controller before power
selection. The capacitors connected to the various pins on the voltage regulator were
selected based on the suggested connection setups in the AP2112K-3.3TRG1 datasheet
[9]

2.2.3 Microcontroller and Inputs

Figure 5 shows the circuit schematic of the microcontroller and the button inputs. The mi-
crocontroller receives digital inputs from the buttons and analog inputs from the triggers
and joysticks. All components are powered with 3.3V received from the voltage regula-
tor. The microcontroller changes the inputs based the button remaps specified by the user,
which are stored in the flash memory. The digital buttons are represented with switches
and the analog joysticks are represented with analog inputs that map to the x and y values
of the joystick position.

Figure 5 is also a representation of the MCU and the BIU in the schematics, as it includes
the microcontroller with all the buttons and analog sticks. The microcontroller supply

7

Figure 5: Circuit Schematic for Microcontroller and Inputs

pins were connected according to the connections suggested in the ATSAMD51J19A-AU
datasheet [7].

2.2.4 Connectors

Figure 6 shows how the USB-C wire connects the controller to the PC. The program on
the PC specifies button remaps and combination macros, which are saved on the flash
memory. The microcontroller applies these changes to the user inputs. Data is transferred
to the microcontroller via the D-/D+ pins.

Figure 7 shows how the GameCube console interfaces with the controller. The console is
able to power the components on the board by supplying +3.3V when the controller is
not being powered via USB. GameCube commands are sent to the console via the DATA
line on the connector

8

Figure 6: Circuit Schematic for USB Connector

Figure 7: Circuit Schematic for GameCube Connector

Figures 6 and 7 are also representations in the circuit design itself of how the MCU con-
nects to external devices like a PC which is running the PU or the game console.

9

2.3 PCB Layout

This section includes visual representations of the PCB layout, both on the KiCAD PCB
editor, and on a 3D view for a more realistic representation of the final product [10]. For
the KiCAD views, red represents copper on the front side, and green represents copper on
the back side. For the 3D view, silver represents copper SMD pads, and some components
have 3D models placed above their footprints.

2.3.1 Front Layout

Figure 8: KiCad view of PCB front layout

Figure 8 shows a view of the component placement on the front of the PCB. Copper is
represented by the color red in the figure. The parts, including the buttons, joysticks, and
chips, are placed according to their position under the housing of a GameCube controller,
in accordance with the high level requirements. There is a copper pour connected to +3.3V
on the front of the board, allowing components to easily connect to power. This allows
for easier routing between components as it eliminates the need for additional tracks for
connecting to power, especially within the given space constraints.

Figure 9 shows a 3-Dimensional view of the PCB layout on the front of the PCB. The
copper SMD pads are represented in silver, and there also exist some 3D models for cer-
tain chips and components. This figure provides an additional visualization of the parts,
tracks, and copper pour on the front of the board.

10

Figure 9: 3D view of PCB front layout

Figure 10: KiCad view of PCB back layout

2.3.2 Back Layout

Figure 10 shows a view of the component placement on the front of the PCB. Copper is
represented by the color green in the figure. The analog and digital components of the

11

Figure 11: 3D view of PCB back layout

trigger buttons are also on the back. Some tracks are routed on the back due to space
constraints on the front, or blockages from other copper tracks. There is also a ground
pour on the back of the board, to allow parts to easily connect to ground. This also allows
for easier routing between components as it eliminates the need for additional tracks for
connecting to power, especially within the given space constraints.

Figure 11 shows a 3-Dimensional view of the PCB layout on the back of the PCB. The trig-
ger buttons lie on the back of the board. A slider switch provides the analog values, and
a normal button switch provides the digital value. The copper SMD pads are represented
in silver. This figure provides an additional visualization of the tracks and copper pour
on the back of the board.

2.4 Software Design

This section includes an in-depth discussion of decisions and designs for the software
architecture of MacroME.

2.4.1 Choice of Programming Language

For the code running on the microprocessor, we decided to use the CircuitPython pro-
gramming language [11]. CircuitPython is a lightweight implementation of Python for
microprocessors, with specific support for the SAMD51 family of microprocessors sport-
ing the ARM Cortex-M4. We chose CircuitPython for a few main reasons:

1. CircuitPython is well supported and documented on the Adafruit website and fo-

12

rums.

2. CircuitPython includes library support for utilizing the GD25Q16C flash memory
chip through QSPI.

3. CircuitPython is easy to prototype with - there is support for directly flashing code
through a USB connection to a PC allowing quick development and debugging.

Additionally, we had previously found that CircuitPython was fast enough to meet our
latency requirements. The equations and mathematics for this latency analysis can be
found in Appendix D.

Unfortunately, CircuitPython does have some drawbacks. The most important drawback
with regards to this project is the lack of interrupts [12]. This means that we instead
have to check on an incoming polling request from the console, as opposed to having an
incoming poll request interrupt our processor for immediate action.

2.4.2 Logic Flowchart

Figure 12: Software logic flowchart for the microcontroller

Figure 12 shows the logical flowchart of the software running on the SAMD51 microcon-
troller. Due to the lack of interrupts available in CircuitPython, the microcontroller will
instead check for an incoming poll request from the console every loop, and if there is

13

one, immediately respond to the console with the translated button state. Otherwise, the
micrcontroller will perform the normal routine of getting the button inputs, translating
the inputs into the configured remappings, and inserting the current macro inputs that
may be going on at that time.

2.4.3 Software Module Design

Figure 13: Software architecture for the microprocessor code

Figure 13 shows the software modules present on the microcontroller that handle the
tranlating and macro functions while MacroME is connected to the GameCube console.
In this figure, we can see how the logical flowchart in Figure 12 is implemented in the
software. The Remapper and Macro Handler together create the modified button input
data, and the Main Loop then sends that button data to the Serial Communicator. The
Serial Communicator is responsible for converting the data into GameCube Protocol for-
mat, and send that information directly to the console. Note the addition of the Real Time
Clock (RTC) as input to the MacroHandler. This is required so that the microcontroller
can keep track of when one frame (16.67 ms) has passed and it is time to proceed to the
next input of the macro sequence. The correct operation and use of the RTC is a key part
of ensuring that our high level requirement of successfully performing frame-by-frame
macros is met.

14

2.5 Materials and Parts

Table 1 shows the Bill of Materials for the prototyping of one MacroME unit.

Table 1: Bill of Materials

Part Manufacturer Part # Units Unit Cost

ARM Cortex-M4 Microchip ATSAMD51J19A-AU 1 $4.09

GameCube Controller Generic - 1 $12.99

USB-C Connector GCT USB4085-GF-A 1 $1.37

QSPI Flash Chip GigaDevice Semi GD25Q16CTIGR 1 $0.51

3.3V Regulator Diodes Inc. AP2112K-3.3TRG1 1 $0.47

Custom PCB PCBWay - 1 $9.60

Misc. resistors, diodes,
and capacitors

- - - $5.00

Total - - - $34.03

15

3 Conclusions

In this section, we provide an overview of how we took steps to implement our design
into a deliverable product. We discuss what were were able to accomplish, as well as fu-
ture work that can be done to complete the full implementation of the product. Since this
project was designed and implemented remotely due to the 2020 COVID-19 Pandemic,
some elements in the design are left as uncertainties due to the lack of lab access and
physical testing. We also discuss the ethical and safety considerations that were taken
when designing MacroME.

3.1 Implementation Summary

In terms of the hardware, the circuit design and PCB design are completed. The PCB de-
sign has been done with the high level requirements and BIU requirements in mind, as
the size of the board itself has been restricted to the under 140mm in width and 100mm
in height – small enough to fit within the GameCube controller housing [13]. The com-
pletion of the PCB layout implements two of our three high level requirements (HLRs) in
hardware. Our first HLR states that the controller must have persistent memory, included
through the use of the QSPI flash chip. Additionally, the shape of the PCB layout assists
in our third HLR. This HLR states that the GUI program and the controller must allow for
macros with all buttons and analog sticks as inputs. The PCB design contains all the but-
tons and sticks of a standard GameCube controller, and therefore, all GameCube buttons
and joysticks can be used for macros on MacroME provided that the software supports
it.

Additionally, the software architecture and flowcharts logically describe the flow the soft-
ware would have in order to fulfill our HLRs. We were able to decide on CircuitPython
as our programming language, and work with the language’s strengths and weaknesses
to come up with a feasible software design that would achieve MacroME’s requirements.
However, since we do not have any of the hardware physically, we were unable to actu-
ally implement and test any of the software intended for the microcontroller.

3.2 Unknowns and Uncertainties

Due to the realities of the 2020 COVID-19 Pandemic, there are many uncertainties that
persist in the implementation of MacroME due to the lack of resources, physical testing,
and lab equipment. Some of our subsystem requirements, listed in Appendix B, require
lab equipment such as multimeters that are not available remotely. Additionally, since
we do not have access to soldering irons, PCB ordering, or any physical parts, we are
unable to assemble a prototype of MacroME and test the different hardware and software
components.

In terms of the microprocessor software, we are unable to test any of the code due to
the lack of a physical unit. While we were able to create a detailed software design, we
are ultimately unable to foresee any of the potential pitfalls and additional difficulties
that could arise while programming the actual microprocessor. There are undoubtedly

16

nuances and details to implementing our software in CircuitPython that would require us
to further tweak our design that we could only discover through the process of physically
testing our software.

Lastly, we were unable to fully flesh out the design and implementation of the GUI pro-
gram due to time constraints. In our original design document, this GUI program was
specified as one of the lower priority items left for the later weeks of the project, and
therefore was unable to be completed during the few weeks we had for the implementa-
tion phase of this project.

While we are confident in our design, we unfortunately have no way of verifying its
success and feasibility without constructing and debugging a real-word prototype.

3.3 Ethics and Safety

3.3.1 Ethics

The main ethical question that comes up in the design of this project is whether the use
of our controller would constitute a breach of competitive integrity. Many players believe
that the use of controllers that are not standard GameCube controllers should be consid-
ered cheating. However, recent pushes towards more ergonomic and modern controllers
have been made, such as allowing controllers such as the SmashBox [5] [14]. However, it
is likely that the additional functionality of programmable macros would make this con-
troller illegal in a tournament setting. The target audience of MacroME is beginners who
are looking to begin learning higher-skilled techniques or play with friends in a casual
setting, so we believe this to not be an issue.

In terms of players fraudulently representing MacroME as tournament legal, we do not
believe it will be possible at any tournament that checks controllers. While MacroME
does try to look as similar to a traditional GameCube controller as possible, there are
extra buttons that will be on the controller for the macros, and final products will also
have MacroME branding. Thus, it would be impossible to misrepresent this controller
as an unmodified GameCube controller and sneak it into tournaments. To comply with
points 1 and 9 of the IEEE Code of Ethics [15], information clearly stating that MacroME
is not a tournament legal controller will be disclosed to the public.

Additionally, we plan to make both the software and hardware design of MacroME open-
source, such that the all members of the public may benefit from the design knowledge
gained throughout this project, supporting point 8 of the IEEE Code of Ethics. We would
also be able to accept criticism and suggestions relating to our technical work, in accor-
dance with points 5 and 7 of the IEEE Code of Ethics.

3.3.2 Safety

There are few safety considerations for this product. Because of its nature as a video game
controller, all the systems are at low voltage and current. Because of this, the risk of injury
due to the electrical systems is extremely low and at worst would cause only small shocks.

17

Still, information will be provided on the cable to inform users not to use the controller
while in wet environments. Additionally, the controller is of small size and weight, thus
the likelihood of serious injury from dropping it on a foot or other body part is very low.
Our main safety considerations are for the students and workers during the design and
prototyping process. The design, prototyping, and manufacturing processes utilize tools
that can be dangerous, so we will make sure that while soldering, taking apart GameCube
controllers, and taking part in other lab activities, all students will adhere to strict safety
standards as advised by the course staff and the ECE department.

3.4 Future Work and Project Improvements

Given a year to complete this project instead of a few weeks, there are several improve-
ments that can be made both on the design and implementation of this project.

1. The GUI Program would need to be implemented and improved with visual confir-
mation of which buttons were being remapped to which. This could be done by a
diagram of the MacroME controller in the application, with different colors on dif-
ferent buttons based on their remapped values. It would also be good to make the
GUI program cross platform so it could be run on Windows, Mac, and Linux.

2. With a year to complete this project, there would be more time to try different mi-
croprocessors in order to find one that is more adequately priced for the use case. In
this project, our choice of microprocessor is drastically overpowered as seen in our
latency analysis (Appendix D). If we could do further analysis on various cheaper
and less powerful processors, we could better price our product instead of spending
on a microprocessor whose features we are not taking full advantage of.

3. Since MacroME has a USB connection, additional functionality could be added to
allow MacroME to be used as a XInput controller over USB [16]. To choose whether
MacroME is in programming mode or controller mode when connected to USB,
a physical switch added to the top or center of the controller could be used. This
addition would allow MacroME to be natively compatible with some other consoles
such as XBox and PC.

With these improvements, MacroME could become a more sophisticated, fully-featured,
and price effective product.

18

References

[1] Game Informer Staff. (May 2019). ”The 30 Greatest Fighting Games of All Time”,
[Online]. Available: https : / / www. gameinformer. com / 2019 / 04 / 25 / the - 30 -
greatest-fighting-games-of-all-time (visited on 04/01/2020).

[2] B. Bernstein. (May 2019). ”20 Best Fighting Games of All-Time: The Ultimate List”,
[Online]. Available: https://heavy.com/games/2015/01/best-fighting-games/
(visited on 04/01/2020).

[3] M. Qian, S. Yaganti, and Y. Wu. (2020). ”Button Remapping for GameCube Games
such as Super Smash Bros. Melee”, [Online]. Available: https : / / courses . engr .
illinois.edu/ece445/getfile.asp?id=16677 (visited on 04/01/2020).

[4] 20XX. (2020). ”B0XX Controller”, [Online]. Available: https://b0xx.com/ (visited
on 04/01/2020).

[5] Hit Box Arcade. (2020). ”Smash Box”, [Online]. Available: https://www.hitboxarcade.
com/pages/smash-box (visited on 04/01/2020).

[6] Smash Wiki Community. (Mar. 2020). ”Frame”, [Online]. Available: https://www.
ssbwiki.com/Frame (visited on 04/02/2020).

[7] Microchip Technology. (2019). ”SAM D5x/E5x Family Datasheet”, [Online]. Avail-
able: http ://ww1.microchip .com/downloads/en/DeviceDoc/60001507E.pdf
(visited on 04/11/2020).

[8] GigaDevice Semiconductor. (May 2016). ”GD25Q16C Family NOR Flash”, [Online].
Available: https://www.gigadevice.com/flash-memory/gd25q16c/ (visited on
04/14/2020).

[9] Diodes Incorporated. (Jun. 2017). ”AP2112K-3.3TRG1”, [Online]. Available: https:
//www.diodes.com/assets/Datasheets/AP2112.pdf (visited on 05/05/2020).

[10] Kicad Developers Team. (2020). ”KiCad EDA”, [Online]. Available: https://kicad-
pcb.org (visited on 05/07/2020).

[11] Adafruit Industries. (2020). Circuitpython, [Online]. Available: https://circuitpython.
org/ (visited on 05/01/2020).

[12] L. Fried. (Dec. 2018). ”Comment on Issue #19 in Adafruit CircuitPython TSL2561”,
[Online]. Available: https://github.com/adafruit/Adafruit CircuitPython TSL2561/
issues/19#issuecomment-447613493 (visited on 05/07/2020).

[13] Dimensions.guide. (Apr. 2020). ”GameCube Controller”, [Online]. Available: https:
//www.dimensions.guide/element/gamecube-controller (visited on 05/06/2020).

[14] J. Cuellar. (Apr. 2018). ”Mr. Wizard on the Smash Box”, [Online]. Available: https:
//www.eventhubs.com/images/2018/apr/17/mr-wizard-smash-box/ (visited
on 04/01/2020).

[15] IEEE. (2016). ”IEEE Code of Ethics”, [Online]. Available: https://www.ieee.org/
about/corporate/governance/p7-8.html (visited on 02/08/2020).

[16] Microsoft Corporation. (May 2018). Getting started with xinput, [Online]. Available:
https://docs.microsoft.com/en- us/windows/win32/xinput/getting- started-
with-xinput (visited on 05/08/2020).

[17] Smash Wiki Community. (Nov. 2019). ”Wavedash”, [Online]. Available: https://
www.ssbwiki.com/Wavedash (visited on 04/01/2020).

19

https://www.gameinformer.com/2019/04/25/the-30-greatest-fighting-games-of-all-time
https://www.gameinformer.com/2019/04/25/the-30-greatest-fighting-games-of-all-time
https://heavy.com/games/2015/01/best-fighting-games/
https://courses.engr.illinois.edu/ece445/getfile.asp?id=16677
https://courses.engr.illinois.edu/ece445/getfile.asp?id=16677
https://b0xx.com/
https://www.hitboxarcade.com/pages/smash-box
https://www.hitboxarcade.com/pages/smash-box
https://www.ssbwiki.com/Frame
https://www.ssbwiki.com/Frame
http://ww1.microchip.com/downloads/en/DeviceDoc/60001507E.pdf
https://www.gigadevice.com/flash-memory/gd25q16c/
https://www.diodes.com/assets/Datasheets/AP2112.pdf
https://www.diodes.com/assets/Datasheets/AP2112.pdf
https://kicad-pcb.org
https://kicad-pcb.org
https://circuitpython.org/
https://circuitpython.org/
https://github.com/adafruit/Adafruit_CircuitPython_TSL2561/issues/19#issuecomment-447613493
https://github.com/adafruit/Adafruit_CircuitPython_TSL2561/issues/19#issuecomment-447613493
https://www.dimensions.guide/element/gamecube-controller
https://www.dimensions.guide/element/gamecube-controller
https://www.eventhubs.com/images/2018/apr/17/mr-wizard-smash-box/
https://www.eventhubs.com/images/2018/apr/17/mr-wizard-smash-box/
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://docs.microsoft.com/en-us/windows/win32/xinput/getting-started-with-xinput
https://docs.microsoft.com/en-us/windows/win32/xinput/getting-started-with-xinput
https://www.ssbwiki.com/Wavedash
https://www.ssbwiki.com/Wavedash

[18] ——, (Mar. 2020). ”Smash Directional Influence”, [Online]. Available: https : / /
www.ssbwiki.com/Smash directional influence (visited on 04/01/2020).

[19] C. Wang. (Dec. 2015). ”GameCube Controller Interface”, [Online]. Available: https:
//os.mbed.com/users/christopherjwang/code/gamecube controller/ (visited on
04/01/2020).

[20] J. Ward. (Mar. 2004). ”Nintendo GameCube Controller Protocol”, [Online]. Avail-
able: http ://www.int03 .co .uk/crema/hardware/gamecube/gc- control .html
(visited on 04/01/2020).

20

https://www.ssbwiki.com/Smash_directional_influence
https://www.ssbwiki.com/Smash_directional_influence
https://os.mbed.com/users/christopherjwang/code/gamecube_controller/
https://os.mbed.com/users/christopherjwang/code/gamecube_controller/
http://www.int03.co.uk/crema/hardware/gamecube/gc-control.html

Appendix A Example Combos

To clarify the types of difficult combos that programmable macros help make easy, two
examples of complex maneuvers are described in this appendix.

Wavedashing is a technique that can be performed in Super Smash Bros. Melee that involves
performing an air dodge diagonally into the ground, causing the character to slide a short
distance [17]. It has become considered an essential technique for Melee gameplay, but it
is difficult for beginners to consistently pull off the precise inputs.

Smash Directional Input (SDI) is a technique that can be performed in all Super Smash Bros.
games that involves the player repeatedly inputting a control stick direction while getting
hit by an attack, thus slightly altering their character’s position and allowing their charac-
ter to escape possible follow-up attacks [18]. Performing optimal SDI requires the player
to input a new control stick input each frame, which is both unrealistic for beginners and
causes unnecessary wear-and-tear on the controller.

21

Appendix B Requirements and Verification Tables

In this appendix are the requirements and verification tables for each subsystem.

Table 2: PSU Requirements and Verifications

Requirement Verification

1. The PSU must correctly switch be-
tween USB and GameCube power,
such that the output power to the
microcontroller is always around
3.3V (±0.2V), and never greater
than 3.6V.

A. Connect the PSU to a GameCube console
via a GameCube cable. Use a multimeter
to ensure that the output from the PSU is
less than 3.6V and around 3.3V (±0.2V).

B. Connect the PSU to a PC using a USB cable.
Use a multimeter to ensure that the output
from the PSU is less than 3.6V and around
3.3V (±0.2V).

C. Connect the PSU both to a GameCube con-
sole via a GameCube cable and to a PC via
USB. Use a multimeter to ensure that the
output from the PSU is less than 3.6V and
around 3.3V (±0.2V).

Table 3: BIU Requirements and Verifications

Requirement Verification

1. The buttons, printed circuit board,
joysticks, and housing for the BIU
must be no larger than the size of a
standard GameCube controller.

A. Place the PCB populated with all compo-
nents and hardware inside the shell of a
GameCube controller. Verify that the hous-
ing closes over the PCB.

22

Table 4: MCU Requirements and Verifications

Requirement Verification

1. The MCU must be able to read cur-
rently pressed buttons, translate to
remapped inputs, and output the
remapped inputs and/or macros
in under 16.67 ms (1 frame of la-
tency).

2. The MCU must have persistent
memory, so that it does not need to
be reprogrammed every time it is
powered up.

A. Use the microcontroller’s built in clock to
time the processing of button inputs, ver-
ifying that the reported time is less than
16.67 ms at least 19/20 times.

B. Program the controller, then restart it at
least 5 times. Verify after each restart that
the designated remappings and macros are
still correctly outputted.

Table 5: PU Requirements and Verifications

Requirement Verification

1. The PU must allow button remap-
ping through the GUI.

2. The PU must allow for up to
all buttons and analog sticks to
be pressed during each frame of
macro input.

3. The PU must allow for a maximum
macro length of 60 frames, equiva-
lent to 1 second of automated in-
put.

A. Connect the controller to the GUI and en-
ter several (>5) button remaps and macros.
Verify that the controller outputs a signal
with the remapped controls.

B. Program a macro that includes all buttons
being pressed during one frame. Verify
that the controller outputs a signal that in-
cludes all buttons being pressed for one
frame.

C. Program a 60 frame macro. Verify that the
controller outputs a signal that correctly
performs the macro at each frame.

23

Appendix C The GameCube Protocol

The GameCube protocol is a kind of serial communication using a 3.3V bidirectional data
line. Communication is initiated by the console sending a 24-bit string to the controller,
after which the controller responds with 8 bytes of analog input and button data. Each
string of bits is terminated by an extra, single (high) stop bit [19].

Table 6: GameCube Controller Response Protocol [19]

Byte 0 0 0 0 Start Y X B A

Byte 1 1 L R Z Up Down Right Left

Byte 2 Joystick X-Value

Byte 3 Joystick Y-Value

Byte 4 C-Stick X-Value

Byte 5 C-Stick Y-Value

Byte 6 Left Trigger Value

Byte 7 Right Trigger Value

The console polls the controller roughly every 6 ms, however, the actual polling rate is
set by the individual game [19][20]. When the controller polls, it sends a 24-bit string
0100 0000 0000 0011 0000 0000, followed by the single high stop bit. The con-
troller must then respond with an 8 byte string, followed by the single high stop bit. The
details of this response string are detailed in Table 6. The transfer speed is around 4 mi-
croseconds per bit, or a baud rate of 256000 bits per second.

24

Appendix D Latency Analysis

One of the components that is vital to the success of MacroME is that all of MacroME’s
processings adds up to less than one frame of input lag. This means that starting from
button input, MacroME must see that input, translate it into the desired remapping, and
output that button press along with any macros that are currently executing all within
16.67 ms. Understanding the amount of time and microcontroller clock cycles we have
is crucial to writing software that can perform all these tasks within the allotted time
frame.

The GameCube console polls for controller values roughly every 6 ms [20]. During each of
these polls, our SAMD51 microcontroller will have to respond to the GameCube console
with an 8 byte sequence according to the GameCube protocol indicating the current state
of the buttons. The GameCube console communicates at a baud rate of 256000, so each
bit takes around 3.9µs to send [19]. Only accounting for the communication with the
GameCube console, this takes up

3.9µs× (24 + 1 + 8× 8 + 1) bits = 351µs (1)

In equation 1, the 24 is the polling request from the console, while the 8 × 8 is the 8 byte
response from MacroME. We add 1 to each of these, since the GameCube protocol calls
for a high 1 at the end of a string sequence.

Subtracting this ”blocked” time from our total processing time, rounded up to three sets
of polling per frame, we get

16.67× 103µs− (351µs× 3) = 15.617× 103µs = 15.617ms (2)

From equation 2, we see that MacroME has 15.62 ms of time, per frame, to perform its
essential functions. The SAMD51 sports a 120 MHz ARM Cortex-M4 [7], so this amount
of time is equivalent to

15.62× 10−3s × 120× 106cycles
1s

= 1874400cycles (3)

From equation 3, we find that, in order to successfully meet our requirement of being
responsive within one frame of input lag, the software for the microcontroller must be
able to completely run within 1,874,400 clock cycles.

Within these 1,874,400 clock cycles, our code needs to execute the following general steps.

1. Read all the inputs from the buttons.

2. Translate those buttons based on the configured button remapping.

3. If there is a macro being executed, include those button inputs.

4. Prepare the data into GameCube protocol ready to be sent to the console.

We can further break down these actions into individual code operations that we can test
individually.

25

1. 18 GPIO reads (1 per button and analog input).

2. Up to 18 variable reads and writes.

3. Read and update current macro index (1 variable read/write), read macro string at
that index (1 array read), and up to 18 variable read/writes.

4. Translate 18 variables into GameCube protocol string.

Table 7 shows the speed of these various code blocks. The numbers in table 7 are found
using an Adafruit Metro-M4, which utilizes the same SAMD51 ARM processor as we do,
running the above code blocks using CircuitPython. Note that, due to the overhead of
running a Python interpreter on a Microprocessor, the compiled C versions of these code
blocks will likely be significantly faster.

Table 7: CircuitPython Cortex-M4 Empirical Code Speed

Action Execution Time (µs)

GPIO Read 9.21

Variable R/W 4.42

Read from list index 2.19

Translate to GameCube Protocol (18 variables) 138.23

Combining these together,

9.21× 18 + 4.42× 18 + 4.42 + 2.19 + 4.42× 18 + 138.23 = 469.74µs (4)

This resulting time of 469.74 µs is a mere 3% of the available time, allowing us plenty of
time to complete our computations during each frame.

26

	Project Motivation
	Problem Statement
	Solution
	Solution Overview
	Inspiration and Differing Factors

	High Level Requirements
	Visual Aid
	Block Diagram

	Project Implementation
	Component Subsystems
	Power Selection Unit
	Button Input Unit
	Microcontroller Unit
	Programming Unit

	Schematics
	Flash Memory
	Voltage Regulator
	Microcontroller and Inputs
	Connectors

	PCB Layout
	Front Layout
	Back Layout

	Software Design
	Choice of Programming Language
	Logic Flowchart
	Software Module Design

	Materials and Parts

	Conclusions
	Implementation Summary
	Unknowns and Uncertainties
	Ethics and Safety
	Ethics
	Safety

	Future Work and Project Improvements

	References
	Appendix Example Combos
	Appendix Requirements and Verification Tables
	Appendix The GameCube Protocol
	Appendix Latency Analysis

