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Abstract 
For this project we were sponsored by a podcast recording company, RINGR, to help create an 
audio editing tool specifically for the podcasting community. The main goal of this project was 
to automate a handful of audio editing processes based on the audio’s transcription from speech 
to text. Transcription allows us to record all spoken words and the time they were spoken which 
allows us to give users power to edit words based on these timestamps. On top of this we can 
automate many tedious podcasting editing processes like censoring to further help the user save 
time. This form of audio editing is much more visually intuitive using words and word 
timestamps over the traditional method of visualization through waveforms and spectrograms. At 
the very least this project can be a supplementary editing software to help with repetitive editing 
processes to which the user then adds their own personal level of polish with traditional software. 
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1. Introduction  
Our sponsor, RINGR,  focuses on high-quality multi-agent podcast recording regardless of each 
person’s separate location and compiles it all into one audio file with every speaker correctly in 
sync with each other [1]. An issue about podcast recording is that the amount of time to edit 
recordings takes too long and requires extensive knowledge of some  audio editing software. 
This makes people who want to get into podcast recording have to be aware of the technicalities 
of editing audio which drives away a big audience. There are also many advanced editing 
processes, such as noise filtering, to further touch up their audio and achieve a desired level of 
polish. Since RINGR as a service helps with the initial step of recording the audio on individual 
channels, they have the potential to use audio processing with the raw audio to help bring down 
these technical barriers as well as saving time. Since podcasts are mostly speech reliant, we can 
relate most editing processes to transcripts containing words and when they were spoken. 
Modern day audio processing and speech recognition related products such as Amazon Alexa 
and Google Assistant proves that speech to text recognition is effective enough for use for this  
problem. 
 
We created a tool that transcribes the recordings into a transcript of words and the word start and 
end times. From this we allow the user to edit the word timestamps to effectively move any 
words to any position in time and reflect these edits in the rendered result. We also provide a 
handful of extra features to show how transcription based editing can automate certain podcast 
editing processes such as pause shortening. All of these features are composed into one user 
interface (UI) where the only inputs are the audio recordings of each speaker. We plan to work 
with RINGR to further integrate this project into their current cloud-based model to be used by 
their customers.  
 
1.1 Objective 
The biggest goal of the project was to prototype and polish the workflow of editing podcast 
recordings through transcripts. On top of this we want to bring more features that serve to save 
the user editing time by performing common editing processes that can be coded through 
transcript words and their timestamps. All of these user timestamp edits and further features must 
allow the user to more conveniently analyze and rearrange audio segments on top of performing 
useful tedious editing techniques. There should also be a desire to use our project for its specific 
editing purposes over manually reproducing the same edits in traditional waveform editing 
software. On top of this the rendered audio must also be at a quality that is still more useful for 
the user to further change than the inputted recording.  
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2. Design 
The main components of this project are the transcription system and the transcription user 
interface. The transcription system is simply the “under the hood” representation of the user’s 
audio data through waveforms, transcriptions, and other data structures to further minimize 
runtimes. This system is responsible for speech to text transcription of audio with word 
timestamps and all other editing services except the transcript editor which has its own system. 
The transcript user interface involves all the UI elements, the functionality of the transcript editor 
tab, and the rendering function that takes the results of all enabled features. This component is 
responsible for making the editing process as intuitive as possible for both visualization and the 
process of changing multiple word timestamps.  
 

 
Figure 1. Diagram of our main components. 

 
2.1 Transcription System 
This component has a ton of smaller sub-components that each serve their own purpose in a 
significant way. The first use of this system is for transcribing the inputted audio into an array of 
words and an array for both the start and time timestamps for each word. These two data 
structures will be the data that later features will reference upon and edit as well. Other data 
structures are involved within the system for further optimizations but they will be addressed in 
their own sub-component section.  
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Figure 2. Render settings tab in UI 
 
2.1.1 Transcription 
For this component, we tested multiple different  (STT) speech-to-text transcription APIs 
including Google’s and CMU Sphinx because this component was central to the rest of our 
design. We settled on using IBM Watson STT because it offered multiple clear benefits over the 
possible candidate solutions. Most importantly, it offered the highest granularity of word 
timestamps (10 ms accuracy), which allowed us to have the highest accuracy possible in our 
transcription reliant features. It additionally offered hesitation word recognition, profanity 
recognition, and confidence levels for each word or phrase that was transcribed [2]. We used this 
model through the WebSocket interface allowing us to stream large audio files into the Watson 
STT interface, which is essential if podcasts are to be transcribed. The WebSocket interface 
allowed us to use a fully duplex TCP connection which was much more time efficient than using 
the regular Watson pipeline and allowed the transmission of large files to IBM [4].There was a 
high level of customizability offered in this IBM Watson STT model which made it the optimal 
choice for this project.  
 
2.1.2 Crossfading 
This feature, when enabled through the UI, performs a 75ms linear crossfade at the edges of 
audio segments that were edited. This is useful to reduce clicking and popping that results from 
poorly sliced audio segments that lack transients into their section. This feature tests if the words 
are connected immediately after each other so that only the edges of edited word segments are 
crossfaded instead of every word in the edited segments. Pseudocode for this function is 
presented below. 
 

For ​each word in Transcript ​do 
    ​if​ shifted[word] != 0 

if ​word.startTimestamp != previousWord.endTimestamp 
     Crossfade left side of word 
if ​word.endTimestamp != nextWord.startTimestamp 

      Crossfade right side of word 
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2.1.3 Background Noise Fill 
This feature changes how rendering is done where any instances of absolute silence left from 
slicing out audio segments or extending the length of the audio length, is filled in with sampled 
background noise. We sample the background noise by looking at the inverse of the word 
transcript times. Any time range that doesn’t overlap with times words were spoken are sampled 
as background noise. To fill in empty space with the background noise we short segments of the 
sample starting at random positions and smoothly crossfading between each short segment of 
noise. 
 
2.1.4 Pause Shortening 
Through this feature, the user is able to specify a maximum pause length they desire in their final 
output audio file. All pauses that are detected in the audio are cut down to this length if they are 
longer than the specified length and if they are shorter, they remain the same length. This is 
particularly useful for stitching together audio tracks that have disjoint sections or in other cases 
it can be used to trim the audio length to make it more compact. The pauses are detected by 
taking the inverse of the word timestamps, in other words, whatever audio is not transcribed is 
treated as a pause. These pauses are detected over the multiple different audio tracks/channels 
and the overlapping pause regions are used as the pause regions for the total audio file. Detecting 
the overlapping pause region is the first part of this feature’s algorithm  and it is also the most 
complex. As the number of channels/speakers increases, the runtime complexity of this part 
increases as well. This overlapping pause regions is what is cut down to the user-specified 
length. A visual depiction of how the overlapping pause region is calculated is shown below. The 
second part of the algorithm is where the list of overlapping pauses is used to cut the audio’s 
pauses down to the specified length. This part is unaffected by the number of speakers and its 
runtime remains the same regardless of the number of speaker channels.  

 
Figure 3. Pause Overlap Region Calculation Method 
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2.1.5 Profanity Filter 
In addition to the features mentioned earlier, the user is also able to toggle a profanity filter on 
their input audio file(s). If switched on, the program will record the timestamps of the profane  
words detected by our IBM Watson STT model and apply a censor bleep equivalent to the length 
of the word in the appropriate areas. The program will traverse the audio file stitching together 
the non profane areas and when a profane word timestamp is reached, it will add a censor bleep 
of sufficient duration to the audio in place of the profane word.  
 
 
2.2 Transcription Editor 
This system combines all the other systems mentioned before into a UI system and includes the 
ability to manually edit word timestamps and render the overall result in an audio file. Our UI 
was built using pyQT5 which does lack a lot of visual appeal but allows us ease to prototype our 
features into one UI window. This user interface includes a couple tabs to help the user visualize 
their input, transcript and resulting outputs once rendering is done. One of the main tabs the user 
is going to spend a majority of their time on is the transcription editor tab. This tab allows the 
user to change timestamps of each word spoken to effectively rearrange every word spoken into 
any position the user wants. All transcription editing with the transcription editor and render 
features are taken into account and the resulting audio is created in the render sub-system. 

Figure 4. Transcription editor in UI 
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2.2.1 Rendering 
This sub-system is only activated through a user input by clicking on the “Render” button. Once 
activated, we begin rendering by reading all the changes done to the transcript and then feeding 
that information down to each render feature. Once the changes are done in a specific order we 
can begin piecing the resulting audio by looking at the changes in timestamps. The resulting 
audio is the same as the original but words with new timestamps should not be present in their 
old location and are instead present in their new, edited location. Pseudocode for this function is 
presented below. 
 
 
 
 
 

//set output as input 
render = audio 
For ​each ​word ​in Transcript ​do 
    ​if​ shifted[word] != 0 ​do 

word.newStart = word.start + shifted[word] 
word.newEnd = word.end + shifted[word] 
if ​word.newEnd*sampleRate > audio.length ​do 
    // zero-pad extend and background noise fill on zero-pad if enabled 

 
// fill new timestamps with spoken word, remove from old spot 
render[word.newStart: word.newEnd] = audio[word.start: word.end] 
audio[word.start:word.end] -= audio[word.start:word.end] 

 
if ​sum(audio[word.start:word.end]) == 0 ​do 
    // background noise fill if user enabled 

return ​render 
 
2.2.2 Hashtag Generation 
This sub-system is only activated through a user input by clicking on the “Generate Hashtags” 
button located under the Hashtag Generator tab in the UI. Once activated, an information 
retrieval technique known as term frequency-inverse document frequency (TFIDF) begins on the 
latest version of the transcript, taking into account any edits already made by the user. The 
sub-system extracts the most high weighted terms, hereby referred to as keywords, in the 
transcript using TFIDF along with Python NLP library, nltk. . It then uses the spaCy NLP Python 
library in order to extract all keywords that are nouns. These nouns are used as suggested 
hashtags. In addition, the keywords are then used as search queries to find live hashtags used on 
social media platform, Twitter. The sub-system is then able to also provide to the user a list of 
Twitter-based hashtags related to the podcast topic. Therefore, when the “Generate Hashtags” 
button is pressed, the user is provided with 2 vast lists of suggested hashtags relating to the 
podcast topic.  
 

6 



3. Verification 
Verification of these features and systems is mostly going to be focused on runtime as we tried 
our best to test our features to make sure they always work correctly, but this is hard to guarantee 
with our limited time. We always tested our features the best we could but at some point we 
found ourselves wasting time by trying to deliberately break our code to make sure every bug has 
been noticed. Overall all our features do perform in most cases although there might be some 
small edge cases that will result with minor artifacts in rendering.  
 
 
3.1 Transcription System 
The runtime for this system is too general to analyze and it is instead preferred to examine the 
runtime of  the sub-systems features individually since the user chooses which features they want 
to include. It is important to note that the performance of all these features, except the 
transcription sub-system itself, rely on the word labeling accuracy and timestamp precision of the 
transcription service we use. All of these functions have been thoroughly tested although we 
haven’t gone too far to really make sure every small bug is ironed out. Therefore the functions 
perform reliably although there might be some significant outliers that can be fixed once noticed.  
 
3.1.1 Transcription 
Our transcription model is the IBM Watson STT model, so the performance of this component is 
mostly out of our hands. Thankfully, we can measure the accuracy/confidence of this model 
directly as IBM provides this metric to us, ranging from the entire transcription level confidence 
all the way to a word level confidence. However, since we are guaranteed studio level audio 
quality from RINGR, our transcription confidence is assured to be very high. In terms of 
runtime, after much experimentation we found that IBM’s model running through the 
WebSocket interface we set up takes approximately 0.5-0.75x the length of the input audio. For 
example, this translates to a runtime of about 2 minutes for an input audio file of 4 minute length 
just for the transcription alone.  
 
Our transcription interface creates a data structure for each input audio file and stores relevant 
information that is used in the features of our interface. In terms of space complexity, our 
interface stores each word and its according timestamps (start and end timestamps). It also stores 
a copy of the audio file which is used to apply the edits the user specifies in the interface. This 
transcription data structure is the main storage unit for the information that is used by all of the 
transcription reliant features. This data structure is of linear space complexity as it only depends 
on the size of the audio file/number of words in the audio file.  
 
3.1.2 Crossfading 
The runtime of this feature adds a very minimal runtime of O(N), N = number of words,  at the 
worst case and O(1) at the best case. The worst case scenario is extremely improbable and occurs 
when every word is changed and manually isolated apart from the others. This function required 
no new data structures to be added to our transcript class.  
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3.1.3 Background Noise Fill 
The runtime for this feature is linear based on the length of silence left behind during rendering, 
O(S), S = length of silence. This length of silence left behind during each render depends on the 
type and amount of edits being done that allows these silences to occur. For example, if the user 
inputs a short sound file and edits one of their timestamps to be much longer than the input audio 
itself, then this function will run much longer than if the user outputs their audio length the same 
as the input. Performance and reliability of this function is not very good as there are multiple 
issues in the current implementation 
 
With background noises being the inverse of word timestamps, we came into an issue where 
laughter and sighs were registered as background noise. This doesn’t fit well with how the 
function is supposed to work and a solution is to instead lowpass filter the audio and spaces with 
relatively low energy can be categorized as background noise. This creates another problem of 
different users having varying levels of noise volume which is why that implementation doesn’t 
exist in the final version. 
 
3.1.4 Pause Shortening 
Runtime for the pause shortening feature is dependent on the number of audio channels 
(speakers) and the length of the audio file. If we let ‘M’ denote the number of audio speaker 
channels and let ‘N’ denote the average number of words/length of audio per channel, then we 
can classify the runtime of this feature to be O(MN). In most cases, there are only two speakers 
in a given audio file, an interviewer and interviewee, so the runtime of this feature is in most 
cases approximately O(2N) ≅ O(N). If the input audio file is a group conversation between 
multiple speakers, then the pause overlap detection algorithm becomes much more complex and 
will take a much longer time to run, therefore increasing the total runtime of this feature. Due to 
this feature only relying on pre-existing data structures (the transcription data structure), it adds 
no space complexity to the overall interface.  
 
3.1.5 Profanity Filter 
The overall runtime for the profanity filter toggle is O(N), N being the length of the audio file, 
as the algorithm traverses the audio file once applying a censor bleep at the timestamp ranges of 
the profane words detected by the IBM Watson STT model. It also requires no new data 
structures, as it retrieves the program-relevant data from the transcription data structure which is 
created when the interface is started up, therefore adding no space complexity.  
 
 
3.2 Transcription Editor 
Verification for this system is going to be focused on runtimes for the transcript editor and the 
rendering function. Since our UI was built using pyQT5, we can be confident that code related to 
this library is sturdy and quick as this is a widely used library. The transcription editor handles 
inserts very quickly and the runtime scales linearly with the amount of words that the user wants  
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to shift. The runtime is so quick that there is barely any noticeable delay for applying shifts until 
the user wants to shift over 50 words. The amount that the words are shifted have no effect on 
the runtime of editing timestamps, only the amount of words that are edited. 
 
3.2.1 Rendering 
Rendering is the longest running function in the entire project and it’s for good reason. This 
simply loops through every word and checks whether the timestamps changed from its original 
values. From this the runtime of rendering scales linearly with the amount of words with 
timestamps that differ from their original values, O(W), W = number of words edited. Other 
rendering features do affect this runtime as those features change word timestamps which are 
then handed down to the render function once they are finished. These other functions only 
change timestamp values so the behavior of the runtime is still linear, the difference is that more 
edited words need to be worked through. This function is very stable since it was the first 
function to be added which gave it a lot of time to be figured out completely. The only unseen 
bugs that could come up are more likely to be bugs related to other features that have been 
carried over.  
 
3.2.2 Hashtag Generation 
Unlike most other subsystems involved in the project, the hashtag generation feature is based 
mostly on NLP techniques and TFIDF. In order to generate hashtags based on transcription text, 
keywords were first extracted from the transcript using TFIDF. Prior to doing that however, the 
text must be cleaned and vetted properly [5]. All words are made lowercase, all numbers are 
removed from the text, stop words are removed and all words are lemmatized. Then TFIDF is 
run on the cleaned text, providing keywords of the text. However when testing, it was concluded 
that many of these words were not hashtag-worthy. As a result it was decided that only nouns 
would be extracted for the purposes of creating hashtags. At first as a solution, nltk’s 
part-of-speech (POS) tagging was used in order to extract the nouns. However, this library was 
not properly detecting the POS of words in the transcript since its training data was not relative 
to our podcast use case. As a result, Python’s spaCy NLP Library was used instead of nltk for 
POS tagging. More specifically, the 789 MB “en_core_web_lg” multi-task CNN model by 
spaCy was used and found to be the most effective POS tagging technique, providing hashtags 
with noun POS 100% of the time.  
 
4. Costs 
As this project was completely software-based, with no need for hardware components of any 
sort, our cumulative costs were kept quite low. The final cost of the project consists of only a 
service cost and a labor cost as detailed in the following sections, 4.1 and 4.2.  
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4.1 Services 
In order to successfully retrieve transcriptions of inputted audio podcasts, IBM Watson’s 
Speech-To-Text API was used. We initially used the free trial service referred to as the IBM Lite 
model, but this only allows for 500 minutes of use. After exceeding this limit, we switch to the 
IBM Standard model which is a paid SaaS. The full pricing metrics for this service are listed 
below. 
 

 
Table 1. IBM Watson STT Standard model pricing [3] 

 
After using all 500 initial minutes provided in the Lite Version, we upgraded to the Standard 
version and spent a total of $27.30 during the entire course of developing and training our 
software. In the possibility this project is to be made commercially viable, service costs would 
increase as the software would need to run on more reliable and large servers in order to handle 
the capacity of users. This would effectively increase service cost, in turn increasing overall cost.  
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4.2 Labor 
The project was completed by three individuals, all members of Team 70. Complete labor costs, 
assuming every member of the group is given an equal amount, is given by: 

 
LABOR = ($50 / hour) *  2.5 *  (160 hours total) = $20,000 

 
Therefore, with 3 members the total Labor Cost would be given by: 
 

TOTAL LABOR  =  $20,000  *   3  =  $60,000 
 
The total Labor Cost estimate of the project is $60,000. Therefore, the total cost of this project 
over the course of the semester can be summed up as follows: 
 

TOTAL COST = $60,000 + $27.30 = $60,027.30 
 
 
 
5. Conclusion 
 
5.1 Executive Summary 
Over the course of this project a simple and intuitive alternative to waveform-based podcast 
editing was developed. Using our podcast editing tool available with essential features such as 
Pause Shortening, Crossfading, Profanity Filtering and more, RINGR users will be able to 
efficiently and easily edit their own podcast content in a matter of minutes. Users will also be 
able to speed up the process of posting their produced final podcasts to various social media 
platforms with the help of additional features such as Hashtag Generation.  
 
5.2 Going Forward 
With the preliminary features created, we will look to merge them completely with RINGR’s 
application in order to allow RINGR users to gain access to them. This project has also opened 
multiple new avenues for feature possibilities. In the near future we will be working with RINGR 
in order to finetune established features mentioned earlier in this paper, as well as create new 
ones for RIGNR users. Some of the suggested features we will be continuing with include: 

● Synopsis Generation to automatically create summaries for edited podcasts. 
● Maturity Ratings for podcasts depending on degree of profanity. 
● Options to insert sound effects into podcasts. 
● Filters for hesitation fill words 

○ i.e. ‘Um’ and ‘Ah’ 
● Increase capability to render multiple features simultaneously 
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7. Appendix A [Requirements and Verification Table] 
 

Requirement Verification Verification Status 

Must be able to return word 
timestamps within 100ms of 
accuracy 

A. Transcribe a portion of audio with 
known correct transcription. 

B. Select a few words at random from 
the transcription and obtain 
timestamps for the word from the 
API.  

C. Check a spectrogram of the audio at 
the obtained timestamps and check 
accuracy of when the final sounds of 
the words chosen end.  

Yes 

Must be accurate in recognizing 
podcast subjects at least 90% of the 
time. 

A. Compile podcast samples on known 
subjects. 

B. Run Algorithm on the audio files 
compiled and ensure at least 90% of 
returned podcast subjects match with 
initial list. 

Yes 

Must accurately detect 85% of 
instances of ‘word’ [ex: ‘um’ or 
‘uh’]  that the user wants removed 
from the transcript.  

A. Transcribe at least 30 minutes of 
RINGR audio.  

B. Save initial transcription [pre-edited] 
to a text file. 

C. Apply filter and specify sound to be 
removed.  

D. Check final [post-editing] transcript 
and compare the number of instances 
removed to number of instances 
initially in saved transcript. Accuracy 
should be above 80%. 

Yes 

Post-edit audio rendering should not 
sound fragmented or have words 
cut off.  

A. Transcribe 10 minutes of audio and 
create spectrogram of original audio 
file for later comparison. 

B. Move around sentences and words in 
the smart text editor and obtain new 
spectrograms. 

C. Compare moved portions in new 
spectrogram to original spectrogram 
and ensure no words were fragmented 
in the process. 

Yes 
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