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Abstract 

This report provides a detailed look into the following objective: create a better solution to the 

problem that is waking up in the morning. The previous team's solution was to create a quiz alarm that 

wakes the user by asking a set of pre-inserted questions in the morning, aiming to spark brain activity. 

Our solution is still an alarm, but with a completely different design, consisting of a wrist wearable and 

camera system. The wearable includes sensors to track user's sleep patterns to determine the optimal 

time to wake them, which is in their lightest sleep. This helps the user wake up feeling more awake 

and less groggy. The paired camera system analyzes the user's posture to determine if the user has 

successfully moved out of their bed, at which point the alarm is finally disabled. 
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1. Second Project Motivation 

1.1 Updated Problem Statement 
According to a study done in the United States, 58% of people reported they spend more than five 

minutes in bed after turning off their alarm in the morning. Additionally, 57% say they still feel tired 

after waking up and only 33% describe their experience waking up as good [1]. Clearly, waking up is 

difficult for many people, and many wake up feeling tired or groggy. Turning off the alarm on a phone 

or hitting snooze is so easy. This does not force a person to get up and out of bed, it merely wakes them 

up for a small amount of time. 

Oftentimes, people wake up feeling tired due to being interrupted in the middle of deep sleep. Humans 

go through different sleep cycles which range from very light sleep to deep sleep. These cycles last 

around 90 minutes, as we drift from light sleep, into deep sleep, and back to light sleep. During lighter 

sleep people are relaxed but still restless, and as they fall deeper into sleep, the body moves very little 

and heart rate slows down [2]. Waking up during deep sleep is difficult and can be disorienting [3]. Our 

goal is to wake a person by finding an optimal time in their sleep trends, which is some period of time in 

light sleep. If our solution can successfully do this towards the end of a person’s sleep cycle, rather than 

at a set time, we believe this can help people wake up feeling more motivated to start their day. 

1.2 Updated Solution 
 Our solution is a new type of alarm system that can get the user out of bed as well as make them wake 

up feeling energized. The design is a wearable that goes on a person’s wrist, paired with a camera 

system. The wearable system includes sensors to track sleep patterns which are used to determine the 

best time to trigger an alarm. It has an LED screen with buttons used to set a preferred wake up time 

interval. This is paired with the computer vision camera system. Once the alarm goes off, the camera 

system waits until it can confirm the person is standing in an upright position before suppressing the 

alarm. This forces the user to get out of bed without turning off the alarm and falling back asleep. The 

various sensors on the wearable detects the user’s sleep cycles to determine whether they are in deep 

or light sleep. We use this information to wake them up while they are in their lightest sleep during the 

preset wake up time interval, which is anywhere from 15 minutes to 60 minutes, in 15-minute intervals. 

Let's say a person wants to wake up by 8 am and be at work by 9. If they set their alarm interval to 30 

minutes, the system will wake them up at sometime within 30 minutes prior to 8 am if it finds they are 

in very light sleep. Although they wake up earlier than the time selected, they will actually feel more 

refreshed by waking up at the end of a sleep cycle. This further motivates them to get up out of bed 

and stand up straight when the alarm starts ringing. 
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1.3 Updated High Level Requirements 
1. Able to detect a heart rate between 50 - 120 bpm (0.83 - 2 Hz) +/- 5 bpm with Pulse Oximeter 

sensor, +/- 3g of force in the x, y, and z dimensions through the accelerometer, as well as recognize 

sounds within the range of 50-65 dB with the microphone to study user's sleep trend. 

2. Able to take the user's set alarm time and wake up interval from the wearable device and find 

an optimal time to wake up the user based on sleep trends, with exact precision of hour and 

minute. 

3. Able to function for at least 8 hours after the battery is charged fully. 

1.4 Updated Visual Aid 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Visual Aid of a typical use case 
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1.5 Updated Physical Design 
Figure 2 shows the physical diagram of the sleep tracking alarm, consisting of the wrist-wearable and 

computer vision module. It shows an ideal setup of how the system is intended to be used. For example, 

the computer vision module is about 5 feet away from the bed, so the camera can study the user's body 

posture. The wearable device should be worn by the user while sleeping so the sensors can analyze 

movements and track the user's sleep. 

 

Figure 2: Physical Diagram of the wrist-wearable and camera system set up. 
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1.6 Updated Block Diagram 
Figure 3 shows the block diagram of the entire project. There are two main parts to the design of our 

system. The most important being the wrist-wearable aspect, consisting of various sensors such as 

accelerometer, pulse oximeter and heart rate sensor, and microphone, an LCD screen, push buttons, 

and the microcontroller. Secondly, the computer vision module studies the user's posture to confirm if 

the user is out of bed and disable the alarm. 

 

Figure 3: Block Diagram of Sleep Tracking Alarm. 
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2 Second Project Implementation 

2.1 Implementation Details and Analysis 
Although we are unable to implement our full project, we have focused on implementing or analyzing 

multiple parts of our design to have a taste of what our final product would look like. We’ve tested the 

computer vision software, made detailed circuit schematics, and analyzed what input values are needed 

for successful sleep monitoring data. 

A large part of our design depends on the functionality of our computer vision module. The computer 

vision module is used to verify the user is awake and out of bed. As a partial implementation of our 

project, we looked to test the functionality of the computer vision software we would use to determine 

if the user is still in bed or out of the bed. We are using OpenPose, a real-time multi-person keypoint 

detection library for body, face, hands, and foot estimation developed by students at Carnegie Mellon’s 

Robotics Institute [4]. The software allows input from live video from a webcam as well as from images 

and video files. Our camera would be pointed at the bed and be able to determine the user’s posture in 

real time from captured video clips or images. OpenPose captures information about body part locations 

and detection confidence and stores this information in an array called pose_keypoints_2d, formatted 

as x1,y1,c1,x2,y2,c2,.... We would then use this information to determine whether the user is lying down 

or standing up straight, facing the camera. This information is relayed to the alarm that is going off, 

which then determines whether to disable it. When we were first deciding the orientation of the camera 

system, we considered pointing the camera at the wall by the bed and having the user step in front of 

the system, which is capable of identifying a person in the frame. In the end we went with the camera 

facing the bed setup, as we can differentiate between when the user is lying in bed and standing up, 

which provides more accuracy than simply checking if the user is in the frame. As our intended setup 

discussed in the physical diagram, the laptop camera was facing the user and bed from about 5 feet for 

this implementation. 

2.2 Implementation of Software 
For purposes of testing the software, due to the fact we do not have the necessary parts, we have run 

pose estimation algorithm on a laptop with the webcam pointed towards the bed. We are able to see 

the software identify a person both laying down and standing up. The location of the different key 

points can be used to determine the person’s posture, which for our usage, is standing up straight 

versus laying down. The JSON output further below displays the contents of each pose keypoint array, as 

well as the corresponding part candidates, that break down the array into the specific body parts, which 

we can use to identify the location of each body part in relation to each other. This is how we would 

determine if a person is lying down or standing up. If we find that the location of the user’s legs or feet 

are at a similar y-location to their head or chest, we know they are lying down. If their legs and chest 

have similar x-locations, but the y-location of their head is less (closer to the top) than their legs y-

location, then we know that they are standing straight. We can see in figure 8, the standing position, 

that the location of the user’s nose (part candidate 0) is at y-coordinate 57.3, which is close to the top of 

the screen, which has index (0,0) in the top left corner. We can also see that the user’s ankles, part 

candidates 11 and 14, are at y-coordinate 715.6. The height of the window is 720 pixels, so we know the 
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ankles are near the floor. It becomes clear the person is standing. This is just a basic example of how we 

can use the location of each body part to determine whether the user is standing or laying down. 

Figure 4: OpenPose pose detection: laying down, getting up 

 

Figure 5: OpenPose pose detection: standing 
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Figure 6: JSON keypoint data output for laying position 

 

Figure 7: JSON keypoint data output for getting up position 
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Figure 8: JSON keypoint data output for standing position 

When testing the software, we rarely ran into edge cases that would create problems for our pose 

estimation. There were a few cases in which the algorithm incorrectly identified certain body parts or 

was not able to recognize parts of the body when the user was moving quickly and a clear picture was 

unable to be taken, or the person was in a confusing position. This could cause problems if the algorithm 

incorrectly identifies a body part, making it seem that you are in a different position than you really are. 

Luckily, along with the x-coordinate and y-coordinate data, OpenPose tracks its confidence of its 

estimation in the third variable, c, which contains a value from 0 (no confidence) to 1 (100% confident). 

To work around the edge cases, we can use the information recorded by the confidence variable to 

make sure you’re where you seem to be.  
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2.3 Circuit Analysis and Schematic 

 

Figure 9: Circuit Diagram of the wearable 

 

Figure 10: Microcontroller Espressif ESP32 schematic 

 

Figure 11: Detailed Raspberry Pi 3 B and Raspberry Pi Camera Module NoIR V2 schematic 
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2.4 Mathematical Analysis 
The portion of our project that poses the biggest risk to completion would be our Wearable Device 

module. This is the most important piece of the project because this is where all the sensory inputs are 

at, and it will be the one to determine when to wake the user up from their sleep. It also is the most 

complex, since we will need to take in data from these various inputs and be able to recognize what 

stage of sleep the user is in. This will provide a higher level of accuracy than normal sleeping tracking 

devices, since we have additional inputs than the existing devices. There will be several requirements 

from this module that must be addressed for it to function properly in the way we need it to: 1) The 

Pulse Oximeter and Heart Rate Monitor must be able to detect a heart rate between 50 - 120 bpm (0.83 

- 2 Hz) +/- 5 bpm, 2) the Accelerometer needs to be able to measure +/- 3g of force in the x, y, and z 

dimensions, 3) the Microphone needs to pick up sounds within a range of 50-65 dB, 4) the battery must 

be able supply power to all components for at least 8 hours. 

Our first requirement will be taken care of by two chips that are integrated with the Pulse Oximeter: 

the MAX30101 and MAX32664 chips. The former does all the sensing by using its internal LEDs to 

bounce light off the skin’s arteries and measuring how much light is absorbed from the use of 

photodetectors. This process is called photoplethysmography, which will be 

 

 

 

 

 

 

 

 

 

Figure 12. Example photoplethysmograph 

explained more down below. The latter of the two chips receives data from the other and 

applies algorithms to determine both the heart rate and blood oxygen saturation. 

As mentioned before, the way in which this particular sensing will work is known as 

photoplethysmography. It creates a photoplethysmograph (PPG) that helps to detect blood 

volume changes inthe microvascular bed of tissue [6]. The figure above shows what a simple PPG 

signal would look like and consists of both an AC and DC component. The AC signal is 

superimposed on top of the DC, and this specifically shows the changes in arterial blood volume, 

which can then be utilized to determine heart rate [6]. As shown in Figure 8, we want to 

measure the peak-to-peak interval between two Systolic peaks. Once this value is obtained, we 

can calculate two different forms of a heart rate: the instantaneous heart rate (HRinst) and the 

mean heart rate (HRmed). For the first equation, t1 represents that peak-to-peak interval time 
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from before. For our second equation, Qnn corresponds to the number of normal intervals (NN) 

in the time frame of [Ti, Tf] [7]. Here, we would most likely choose to go with determining a 

mean heart rate, since this can provide us with a more accurate reading and give us a tolerance 

of +/- 5 bpm. 

 

 

 

 

 

Figure 13: Heart Rate Value (HRV) Equations 

Our second requirement is that the accelerometer needs to measure +/- 3g of force in x, y, and z 

dimensions. This is important for when we want to recognize any small vibrations or movements when a 

person is sleeping. For this reason, we have decided to go with the ADXL337 accelerometer, which is 

excellent for detecting small movements. It is ideally 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Accelerometer layouts 

powered with a voltage supply of 3 V, or it can be powered with a minimum of 1.8 V or a maximum of 

3.6 V. There are outputs for each of the axes, and these are measured with an analog-to-digital 

converter, which correlates to the acceleration in that given axis. After reviewing its specifications, it 

has been noted that the output is also ratiometric, meaning that its sensitivity varies directly to the 

supply voltage itself. At a VS= 3 V, the output sensitivity is approximately 305 mV/g. 

In addition to this, capacitors must be placed at the output supply pins in order to implement low-

pass filtering for antialiasing and noise reduction. This will help with the accuracy of measuring those 

small movements. Down below are the potential capacitor choices and the corresponding 

bandwidth. The selected bandwidth will decide the measurable 



 
 

12 

 

 

 

 

Figure 15. Capacitor selections for corresponding bandwidth 

resolutions, or the smallest detectable acceleration, but the output usually has a typical bandwidth 

of greater than 500 Hz. For this project, a 0.1 μF capacitor should suffice. 

The third requirement is that the microphone needs to be able to pick up sound within a range of 50-65 

dB, which is typically what snoring falls under. The reason why this is important is that we differentiate 

our product through the use of a microphone and determine whether a person is snoring or not actually 

helps to determine their sleep stage. Nonetheless, the one we have chosen to implement is the 

SparkFun Electret Microphone Breakout. This operates within a frequency range of 100 - 10kHz and has 

a sensitivity of about -46 +/- 2 dB. This is pretty good for an average speaker, and since it is integrated 

into the Wearable Module, it should have no issue picking up normal sounds in our desired range. 

Lastly, the battery must be able to supply enough power to all the components in the wearable for at 

least 8 hours after a full charge. This is a big challenge because the battery must fit compactly inside 

the wearable, which means it needs to be smaller and will result in less capacity. For our design, we 

were able to go with a 1000 mAh rechargeable battery to power the whole wearable. The component 

that arguably draws the most power would be the ESP32. When the total functionality of the 

microcontroller is active, including WiFi, Bluetooth, and radio, it can draw current anywhere from 200-

750 mA depending on how much processing it is doing. If we kept it running like this, there would be 

no way that it can last 8 hours. However, in order to save battery life, we will put the ESP32 into 

“Modem Sleep” overnight, which will turn off the extra functionality like WiFi and Bluetooth and turn 

these back on in the morning in order to transmit a signal to the Computer Vision module. This would 

result in the ESP32 only drawing a current of 3-20 mA. Taking this into account, along with all the other 

components in the wearable, we can now calculate the expected battery life: 

Battery Life = Battery Capacity (mAh) / Load Current (mA) 

Battery Capacity = 1000 mAh 

Load Current = 5 mA + 12 mA + 300 μA + 0.5 mA + 12 mA * 3 + 23 mA + 40 mA + 600 μA 

Battery Life = 1000 mAh / 117.4 mA ≈ 8.52 hours 

 

After this calculation, we can see that the battery is expected to last at least 8 hours, which satisfies our 

third high level requirement. 
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2.5 Mathematical Modeling (Ground truth values for Wearable Device) 
Heart rate values during sleep vary from person to person and can range from normally from 40-100 

bpm. Many other factors can affect a person’s sleeping habits as well. For the sake of this project, we 

will use normal and healthy baseline values to look for in determining sleep cycles. Based on an 

existing sleep tracking application, Oura [5], the most common nighttime heart rate is around 55 bpm. 

The lowest values during the night can be seen within the range of 35-84 bpm as well [5]. The table 

below describes the trends we are typically looking for in the different sleep stages. 

Sensors Vs Sleep Stage 1: Light Stage 2: Normal Stage 3: Deep Stage 4: REM 

stages Sleep sleep (similar to Sleep Sleep (Dream 

  light)  state) 
     

Accelerometer Between +/- 3g of Between +/- 2.5g Between +/- 0.5 g Between +/- 2 g of 

 force (some of force (some of force (little to force (mostly no 

 movement, movement, no movement) movement, can 

 maybe turning maybe turning  move due to 

 sides or sides or  dreams, however) 

 adjustment) adjustment)   
     

Pulse Oximeter 50-90 bpm 50-70 bpm (heart 40-70 bpm 50-100 bpm 

 (mostly in the rate begins to (mostly on lower (heart rate varies 

 middle, less than lower a bit) end) most here 

 a resting   because of 

 heartbeat)   dreaming) 
     

Microphone Little to no sound Little to no sound Potential sound Little to no sound 

   (snoring)  
     

 Table 1: Sensory readings vs sleep stages  

2.6 Bill of Materials 
Table 2 shows the estimated cost of components for the project. The project uses 11 
components, with a total cost of $141.64. 

Part Name Qty. Part Description Cost 
    

Raspberry Pi 3 Model B 1 Computer Vision processing $35.00 

  device  
    

Raspberry Pi Camera Module NoIR V2 1 Take picture of user’s posture $24.99 
    

Rechargeable Lithium-Ion Battery 1 Power supply for wearable $9.95 
    

Espressif ESP32 1 Microcontroller $4.50 
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Table 2: Parts Cost 

  

SparkFun Triple Axis Accelerometer 1 Used to sense user’s slight body $9.95 

Breakout - ADXL337  movements  
    

SparkFun Electret Microphone Breakout 1 Used to sense user’s slight body $6.95 

  movements  
    

Mini Pushbutton Switches COM-00097 3 Push button used to set the time $0.35 

  and interval  
    

Newhaven Display NHD-0108HZ-FSW-GBW 1 8x1 LCD display on wearable to $8.50 

  display set time and interval  
    

SparkFun Pulse Oximeter and Heart Rate 1 Pulse Oximeter and Heart Rate $39.95 

Sensor - MAX30101 & MAX32664  sensor used to determine depth  
  of user’s sleep  
    

Sparkfun Thin Speaker 1 To wake user from sleep $0.95 
    

Digikey 3.3 V 800 mA Regulator - 1 Brings voltage from 5V power $0.55 

LD1117-3.3  source down to 3.3V for ESP32  
    

Total:   $141.64 
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3. Second Project Conclusions 

3.1 Implementation Summary 
As mentioned in Chapter 2, we were able to test some functionality of our Computer Vision module. Given 

the current circumstances and no access to the lab and required components, we felt that partial 

implementation on the software end would still be crucial to this project. This brings heavy significance 

because the functionality of the project depends on this module to work correctly, represented by the 

separate Raspberry Pi and a NoIR V2 Camera. This portion determines whether a user has successfully risen 

and left their bed, which then signals to the alarm that it should be disabled. 

Elliot and Rutu both focused on the implementation of the OpenPose library. They came to the decision 

that with limited time it was best to get this functionality to work on their own devices before trying to 

test it with a Raspberry Pi. Kishan was able to perform a tolerance analysis of the several input sensors 

needed in the wearable component. He analyzed the different range of values that needed to be 

measured by input sensors in order to have accurate sleep monitoring data. 

3.2 Unknowns, uncertainties, testing needed  
The main parts of the project were not able to be completed due to the lack of access to the design lab 

and the components required to build the entire project. This includes the hardware for the wearable 

device such as the pulse oximeter and heart rate sensor, accelerometer, microphone, LCD screen, push 

buttons, as well as the components from the computer vision module such as Raspberry Pi 3 and 

camera module. Unfortunately, none of the group members had access to these parts at home, nor the 

proper equipment, and could not put them together without the tools from the lab. Our plan was to 

first put all the components together as described in the schematic on the breadboard and test out. 

Later, was to obtain the PCB and begin to solder the several different sensors and inputs onto the 

circuit board. This would have made up most of the hardware in that single wearable module. In 

addition, we really missed out on the machine shop, where they would have been able to help us create 

a proper casing for the wearable that could house the hardware. The part we worked on during these 

uncertain times was the computer vision algorithm to work with the Raspberry Pi, in detecting human 

pose. We used our laptop camera to record and take pictures and ran the OpenPose algorithm for 

human pose estimation for results. Although we were able to partially implement the Computer Vision 

portion of the project, it is a different process when it comes to adding this to a physical Raspberry Pi 

board and the camera. This was going to be the extra feature of the project that really makes "Sleep 

Tracking Alarm" stand out from other existing products out there. 

3.3 Ethics and Safety 
Since we are not able to build and create this design, we have listed the ethical and safety 

measures as a hypothetical situation where the design is being produced. 

One ethical concern during the potential development of this project will be to make the wearable both 

compact and comfortable for the user. To address this, we will need to find the smallest hardware 

components that we can and try to arrange them in a manner that will keep it from being bulky. There is 

also a safety concern that comes with a wearable, such as any shocks or electrocutions. To prevent this, we 

cannot have any possible openings in the hardware that could harm a person while wearing our device. In 
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addition, there may be a possibility of the wearable heating up while it is touching the skin. For this 

concern, we will have to make sure that we are supplying the proper power to all components, and 

that certain components will be limited in power when they are not in high use. These safety 

measures all fall under the IEEE Code of Ethics #1. 

Another potential concern that could arise is maintaining a user’s privacy. We record a user’s sleep 

cycle and have a computer vision component that looks to see if the user has moved out of their bed. 

Both of these will accumulate data in some manner, but we do not retain any information on our end. 

We will not keep the user’s sleeping data over time, as it is only used on a nightly basis and will be 

overwritten with new data each night. The camera from our Computer Vision module will not be active 

overnight or during the daytime, and it will include a shutter if the user would like to cover the camera 

at any point they like. It will only begin detection once it receives a signal from the wearable device 

that the alarm has been triggered. The user will be informed of these privacy measures, and any 

images/videos that are taken to detect a person’s posture will not be retained either. Both of these 

cases align with the IEEE Code of Ethics #1 and #9 about protecting the safety and health of users, as 

well as avoiding malicious practices. 

In regard to any potential breaches, we will need to encrypt data stored in both the Wearable Device 

and Computer Vision modules. The security of our Computer Vision module will be very crucial since we 

are examining a person’s posture by utilizing a camera. We will not have to worry about breaches from 

the internet, as the Raspberry Pi will communicate to the wearable via bluetooth and its WiFi chip will 

not be powered. As mentioned before, any images that are taken with the camera will be protected and 

will not be retained in any other way except to detect if a person is up from their bed. We will dispose 

of this data each time the alarm has been suppressed, since it will no longer be needed. 

3.4 Project Improvements 
Considering the time constraints of ECE 445 as well as the scope of the project in this class, there is 

definitely room for improvement in our design and assembly. Sleep tracking is a gray area right now with 

fewer sensors to detect sleep trends. Once we experiment and test the consistency and accuracy of the 

sleep tracking device, there might be a case that we need to add additional sensors to improve accuracy 

or remove redundant ones to reduce the weight of the wearable device. Initially, we designed the 

wearable itself to be able to note the user's desired alarm time for the user's simplicity. However, there 

could be major design changes, such as having a mobile application to note the user's alarm time. 

Having a mobile application would require a wireless connection such as Bluetooth from the wearable to 

itself. The advantage of this new design change is that it would eliminate the use of some components 

from the wearable such as LCD screens and push buttons, making the wearable lighter in weight and 

more likable to wear. Except for the slightly larger microcontroller added to the wearable, all the 

sensors are chosen to be small and almost weightless for any wearable device. After trials and 

experiments wearing the wearable device, we might find it's heavier to practically sleep wearing it. A 

smaller wearable microcontroller can be chosen to solve that. By these modifications, the wearable 

would definitely be more comfortable to wear and reliable in terms of accuracy! 
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Appendix A Requirement and Verification Table 

   

Pulse Oximeter/HRM Requirement  Pulse Oximeter/HRM Verification 
   

Be able to detect heart rate between 50 - 120 1. Measure resting heart rate manually 

bpm (0.83 - 2 Hz) +/- 5 bpm  through pulse and keep this data. 

  2. Write code in Arduino to obtain output 

   data and print out heart rate and 

   confidence percentage values. 

  3. Hook up the chip to an Arduino board 

   and place finger on the sensor firmly (can 

   use a rubber band to hold in place) 

  4. Compare output values to the heart rate 

   measured manually and determine if it 

   successfully read within 50-120 bpm. 
   

   

Accelerometer Requirement  Accelerometer Verification 
   

Be able to detect changes in forces from +/- 3g in 1. Hook the chip up to a breadboard, supply 

the x, y and z-dimensions.  it with 3.3 V and connect each of the 

   output pins to a DMM one at a time. 

  2. Begin to move the chip around the air so 

   it can detect a change in gravity. 

  3. Check the DMM to ensure that it has 

   output values of [1.6 V, 3.3 V] or [-3.3V, 

   -1.6V] 
   

   

Microphone Requirements  Microphone Verifications 
   

Be able to detect sounds at a range of at least 1. Connect microphone to an Arduino board 

50-65 dB when supplied with specified voltage of  with a supplied 3.3V, and its output to an 

2.7V-5.5V.   LED. 

  2. Produce normal sounds within a 50-65 dB 

   range (such as clapping, knocking, 

   snoring, or normal talking level) and 

   observe if the LED lights up 
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Microcontroller Requirements  Microcontroller Verifications 
   

Microcontroller must be able to take sensory 1. Connect the microcontroller to all the 

inputs and trigger alarm at an optimal time with  sensors; accelerometer, pulse oximeter, 

time precision of hour and minute.  and microphone. 

 2. Program the microcontroller to take an 

  average of readings from the ground 

  truth shown in Table 1 for Sensory inputs 

  vs Sleep stage. 
 3. Program the microcontroller to find the 

  next sleep cycle of 90-minute close to 

  wake up time and in wake up interval 

 4. Ensure manually if the microcontroller 

  logic found the correct optimal time as 

  desired. 
   

Microcontroller must be able to communicate 1. Send any dummy data to the Pi, from 

with the Computer Vision Module (precisely  microcontroller via Bluetooth 

Raspberry Pi) using wireless Bluetooth 2. Check the data received on the Pi to see if 

communication protocol in less than 20 seconds.  the data matched with sent information. 

 3. Ensure that the dummy data is verified as 

  expected in the time range. 
   

 

Push Button Requirement   Push Button Verification 
    

Can be momentarily clicked, incrementing the  1. On a breadboard, connect the push 

interval time by 15 minutes when rated up to   button to an LED circuit, with one pin to 

50mA current.   specified power supply, second to ground 

   and third to a digital I/O pin of Raspberry 

   Pi (pin 7). 

  2. Examine from the third pin, while button 

   open (unpressed), the pin is connected to 

   power, so we read High. 

  3. Similarly, when the button is closed 

   (pressed), the pin is connected to ground, 

   so we read Low. 

  4. Program microcontroller for a logic 

   where each button press/unpress 

   increments the minute timer by 15 

   minutes, and resets to 0, reaching 90 

   minutes. 
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LCD Display Requirement  LCD Display Verification 
   

Must be able to display numbers precisely when a 1. Connect your laptop to ESP32 with LCD 

push button is pressed.  directly to its GPIO pins. 

 2. The I2C address should be displayed on 

  the serial monitor. Find the LCD I2C 

  address. 

 3. With the LCD properly wired to the 

  ESP32, upload the I2C Scanner sketch. 
 4. Select where to display characters on 

  screen, and simply send a "Hello" for 

  testing. 
   

 

Computer Vision Requirements  Computer Vision Verifications 
   

Be able to trigger the Raspberry Pi Camera NoIR 1. Connect the Raspberry Pi 3 along with 

V2.  the Camera Module NoIR V2 to any 

  laptop. 

 2. Confirm that Raspberry Pi 3 triggers the 

  Camera Module V2, after keypress from 

  laptop 

 3. Confirm the camera takes a picture in any 

  picture formats stored on the laptop. 
   

Must be able to perform 2D Pose Estimation 1. Visually confirm if the output from the 

accurately stating the person is sitting, sleeping  open source 2D Pose Estimation 

or standing.  algorithm accurately judges the person's 

  posture. 
   

Be able to record surroundings when notified by 1. Connect the Raspberry Pi 3 along with 

the Raspberry Pi 3 that is good enough quality of  the Camera Module NoIR V2 to any 

an image that it is properly analyzed by the 2D  laptop using a USB cable. 

Pose Estimation software. 2. Run the Raspberry Pi script for taking a 

  picture via camera module. 

 3. Visually confirm the camera takes a 

  picture of good quality stored on the 

  laptop. 
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Speaker Requirement  Speaker Verification 
   

Be able to output alarm sound when supplied 1. Hook up the speaker to the Arduino 

with input voltage of ~1.5V.  board and add it to a 1.5 V power supply. 

 2. Add Arduino code to take in an input on 

  the board and have the speaker output a 

  loud sound each time the input is 

  triggered 
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