

ECE 445 Final Report
Team 36 - Nikhil Mehta, Irfan Suzali, Abishek Venkit

ECE445 Final Report - Spring 2020
TA: Shuai Tang

Abstract
As online delivery services become more and more common, package theft has become a prevalent and growing
problem. Our project focuses on this central problem area, and uses a computer vision based method to detect,
monitor, and disarm the system. We based our design on an original design from Spring 2018 Team 9, who
chose to solve this problem using a weight-sensing doormat to detect if a package is moved without
authorization. Instead of this approach, we decided to use an entirely vision-based approach, using an object
detection model to track packages and a face recognition model to disarm the system when the user’s face is
detected. This modification makes our design more functional, secure, and durable than the original.

1

Table of Contents

1 Motivation 3
1.1 Problem Statement 3
1.2 Solution 3
1.3 High-Level Requirements 6
1.4 Visual Aid 6
1.5 Block Diagram 8

2 Implementation 10
2.1 Face Recognition Model Background 10
2.2 Face Recognition Model Implementation and Results 11
2.3 Circuit Schematics 13
2.4 Tolerance Analysis 16

2.4.1 PIR Sensor 16
2.4.2 Light Ambient Sensor 17
2.4.3 Software 18

2.5 Bill of Materials 19

3 Conclusions 20
3.1 Implementation Summary 20
3.2 Unknowns, Uncertainties, Testing Needed 20
3.3 Ethics and Safety 21
3.4 Future Improvements 22

Progress Made on First Project 23

References 24

Appendix 26
Facial Recognition Code (Project 2) 26
PIC32 Dispatcher Code (Project 2) 29
OCR Code (Project 1) 32

2

1 Motivation

1.1 Problem Statement
Ordering packages online is extremely commonplace these days, with over 87 billion packages shipped
worldwide in 2018 [1]. However, the added convenience can also have drawbacks. One of the risks of ordering a
package online is theft. When packages are dropped off outside of an unprotected residence, it is easy for a thief
to steal it without being caught. 36% of Americans have experienced package theft, and the average cost to
replace a stolen package is $109. This is costly and inconvenient for the customer and supplier [2]. The package
delivery industry is incredibly large and growing at a fast pace, which tells us that this problem is significant, and
an affordable, reliable, and secure solution would help a lot of people protect their packages from theft.

1.2 Solution
Our solution will implement computer vision to identify when packages are delivered and when they
are picked up. This system will use a camera that is pointed at the location of delivery. The package will be
delivered within a general area in the field of view of the camera. Once the package is delivered, the computer
vision algorithm will detect its presence, and track it to ensure it stays in full view of the camera. The system will
also notify the user via text using WiFi when it detects that a package has arrived. If anyone tries to move it, or if
the package becomes obscured from the camera, an alarm will sound, the user is notified, and a short video
recording will be taken of the offender. Furthermore, if anyone moves the actual camera system or tries to cover
the camera, the alarm will sound as well. In order to disarm the alarm, the actual package recipient must show
their face to the camera. This will disable the alarm from triggering for a short period, allowing the user to pick
up their package. In order for this system to work at night, there will also be a motion sensored spotlight to
illuminate the entryway.

This implementation will use a computer vision object identification and facial recognition algorithm running
on the Raspberry Pi. This model will be trained on various standard package shapes and sizes, to ensure that the
system can recognize any package with the appropriate marking. The Raspberry Pi will only be used for the CV
algorithm and storage system, and will transfer data to a separate microcontroller. This microcontroller will
communicate with the Raspberry Pi, and the alarm, WiFi, and spotlight systems. The alarm system will require
speaker/audio circuitry, which includes a digital-to-analog converter, amplifier, and speaker. The notification
system will require a WiFi module and external cellular device to push text messages to the user. The spotlight
system will require a PIR motion sensor, ambient light sensor, and lighting circuitry. The entire device will need
a power supply and voltage regulation. In order to disarm the alarm and retrieve your package, the system will
utilize a face recognition model to turn off the alarm system when it recognizes the user’s face. This will make
the system seamless and easy to use, while still maintaining the security factors that are most important.

Package security is a large industry with several existing solutions on the market. However, despite the growing
adoption rate of home security systems, only 17% of homes have some type of security system installed [3].
There are several reasons that people don’t use home security systems. This includes the fact that they cost too
much, they are difficult to use, and possibly infringe on privacy [4]. Related to the concern over high cost, many

3

home security systems are fully featured, and serve many purposes beyond just package security. This is great if
you want all of these extra features and can afford it, but there are few options if you only want a way to secure
your packages. Our system will also be easy to use, with a simple notification system and an easy way to disarm
your system when you want to retrieve your package. The hardware will all be in one package, which will be easy
to install and low cost.

Another alternative package delivery solution aimed at reducing theft is choosing to ship your package to a
package locker, like a PO box, or the more recent Amazon Locker [5]. This allows you to secure your package in
a remote facility until you unlock it and pick it up. This solution is less than ideal as well, because it forces you
to travel to a separate destination everytime you want to pick up a package. A more modern and techy solution
is using smart locks to allow delivery inside your home, like the Amazon Key [6]. This solution eliminates the
risk of package theft after delivery, but introduces a new concern of letting someone into your home to deliver
your package. These smart lock systems are also expensive and require installation into your door.

We have defined our target market for this product as anyone who orders packages regularly and
wants an affordable way to monitor their package without investing in an expensive, fully-featured
home security system. This is a large market, because such a small percentage of homes have home security
systems. A major reason for this is the high price of home security systems, complicated usage, and fear of
infringement on privacy. Considering our target market, the purchase conditions for a security system, and the
many alternatives, our product excels when compared to the competition in a few key ways. Firstly, our system
is focused on solving one specific common problem, allowing us to handle it in a complete and effective way.
Other systems on the market have much broader goals, and thus become bloated and spread thin. Our system
can focus more deeply on solving the problem of package theft. The next key strength comes as a byproduct of
the first strength. By focusing on this single problem, we can make our system much more affordable than other
competing products. Many consumers only want a system that will protect their packages from theft, and our
product can provide that without any extra features or added cost. Finally, our product is easy to use and install,
with simple features like face recognition to disarm and text notifications for package delivery and suspicious
activity. Our product can seamlessly fit into our customers existing lifestyle and habits without a large learning
curve or a complicated interface. These key benefits differentiate our product from the competition and provide
value to our customers.

This project is an alternate solution to a problem proposed by Spring 2018 Team 9 [7]. Their original solution
detected packages using a doormat with weight sensors, and detected potential thieves through the use of a PIR
sensor. Their system would give a warning if someone approached the package and would take a picture of the
approaching person. If the package is lifted from the mat, the weight sensors will detect it and trigger an alarm.
If an alarm is triggered, the system will notify the user by sending a notification containing the captured photo
to an Android app that is connected to this system over WiFi. The system is disabled using the app, or an RFID
tag.

Our solution is different in a few key ways. First, our system uses only one camera to detect and track a package.
Team 9’s solution contains a camera, but also includes a weight sensor mat. We believe the mat is redundant and
unnecessary if the goal is to detect and track a package. This can be done using the camera alone through
computer vision. Eliminating the doormat also allows the package to be placed in a wider area in your entryway.

4

The old design will only work if the package is placed upon the doormat, but our solution will function as long
as the package is in view of the camera mounted above the door. The field of view of the camera will be much
wider than the doormat, making our solution more flexible and robust. Next, our design will be entirely housed
in one unit that is mounted above your door, instead of having separate units on the floor and above the door.
Having the whole system in one enclosed body reduces the risk of tampering with the system. Another
difference is that if motion is detected near the package, our system will record a short video clip instead of just a
picture. A video clip will give more context and information surrounding events in which an alarm is triggered.
Our system will be disabled using facial recognition instead of an RFID tag as well, which further reduces cost
because using facial recognition does not require any additional hardware, and will simply require software
computation. Finally, our system does not need a dedicated app, and will instead send the user a text when
packages are delivered, or if activity is detected. This will make the system more flexible for different users with
different types of smartphones.

The differences listed all work to make our package security system a better, more effective solution to the
pervasive problem of package theft. By restructuring the system into a single package that utilizes computer
vision to monitor packages when delivered solves several problem points of the old system. The most important
improvements of our system relate to usability and simplicity.

One deficiency of the original project design is the weight sensor mat. There are obvious limitations of this
feature when it comes to usability and security, both of which are important factors for consumers when
purchasing security systems. If a package is not placed within the bounds of the mat, it will not be detected,
making the system essentially useless. In our system, the package can be placed anywhere within the field of the
view of the camera, which is a much wider range. Secondly, the weight sensor can trigger false alarms if some
foreign object like a leaf or branch happened to land on the mat. This is not an issue for our improved design,
because our computer vision system is constantly looking for the package itself rather than a specific weight.

Another aspect that we have improved is the method of disarming the alarm when you want to retrieve your
package. In the original design, the user had to use an Android app or an RFID tag to disarm the alarm and pick
up their package. This method works perfectly fine, but adds an extra layer of complexity to the process of
picking up a package. Using the app requires you to take out your phone and navigate to the app, and using an
RFID tag requires you to carry another physical item with you at all times. Our solution to this problem is to
use the existing camera and incorporate a face recognition model to disarm the system. This does not require the
user to access their phone or carry any additional hardware. It will function seamlessly, and greatly improves the
simplicity and utility of the product.

Overall, the features discussed are all extremely important to consumers when deciding to purchase a security
system. Focusing on usability and simplicity make our product more enjoyable and painless to use, while
maintaining robust security features that protect our customers’ packages. Our improvements on the original
product make it a better value and experience for the user.

5

1.3 High-Level Requirements
In order for this system to be successful, it would need to reduce the risk of package theft from households, and
if packages are stolen anyways, the system would need to provide a video record of the thief.

● The video recording system must capture thefts reliably (90% +/- 5% theft detection rate) and must
disarm reliably using facial recognition (80% +/- 5% true positive facial recognition rate, 90 % +/- 5%
true negative rate)

● The notification system must notify the user reliably (90% +/- 5% WiFi transmission reliability given a
valid outgoing message)

● The sensor and lighting system must illuminate the scene in the dark reliably, using the PIR and
ambient light sensors (90% +/- 5% accurate in identifying and responding to darkness below a given
threshold when movement is detected)

1.4 Visual Aid

Figure 1. Visual representation of how the system can be implemented at a typical home

6

The physical design consists of multiple components that will be mounted inside a robust enclosure near the
user’s entryway. On the front side of the enclosure, the camera, PIR sensor, ambient light sensor, and spotlight
will stick out. On the back side of the enclosure, there will be a power cable that should be wired through the
wall to be connected inside the user’s home.

Figure 2. Physical Design

As shown in Figure 1, this unit will be mounted above the front door. This will keep all electronics secure and
out of reach. In case someone tries to cut power to the system, or tamper with the electronics inside, the camera
would capture it, since it faces outwards and covers the entire entryway. Additionally, since the unit is mounted
above the door, it will also be safe from weather-related stress, including rain and wind. The enclosure will
prevent water from affecting the internal components. These features will make the system robust and durable
for long-term usage.

7

1.5 Block Diagram
Our block diagram displays the distinct different modules in our design. The perception module is composed of
the Raspberry Pi and the Raspberry Pi Camera, and will be connected to the control and power supply
modules. The control module contains a PIC32 microcontroller. The motion sensor module will contain a PIR
motion sensor, ambient light sensor, and a spotlight, and will interface with the control module to send and
receive data. The alarm module will contain a DAC to convert a PWM signal to analog, and a medium sized
speaker which will output the alarm signal. The WiFi module will contain a dedicated WiFi chip that will
interface with the PIC32 over UART, and a LED status light to indicate transmission. Finally, the power
supply module will allow us to convert outlet power (120V) into 5V and 3.3V for usage by the Raspberry Pi,
PIC32, LED, speaker, and other components.

Figure 3. Block Diagram

8

Figure 4. Flow diagram of perception alarm system

Figure 5. Flow diagram of ambient light sensor spotlight system

9

2 Implementation
For this new project, we were unable to implement any of the hardware components due to lack of test
equipment and other restrictions. However, we were able to develop a test for one of our main software
subcomponents. Specifically, we were able to develop and test the face recognition part of our system, and
simulate its function with test videos taken from a smartphone. In our actual product, video will be captured by
a Raspberry Pi Camera, but since we were unable to implement any hardware, we tested on smartphone video
and ran the computation on a laptop instead.

We also started implementation of the PIC32 dispatcher code, completing the UART communication interface
and writing pseudocode for the analog input sensor interactions. We could not test this code properly without
the PIC32, but the logic described in Figures 4 and 5 is complete. This code appears in the appendix.

2.1 Face Recognition Model Background
In order to test the face recognition software subsystem, we had to implement the face recognition model
pipeline. This includes a face detection model to identify where the face or faces can be found within an image,
a face recognition training function, and the face recognition function itself. This process is broken down in the
flow diagram below.

Figure 6. Face Recognition Model Flow Diagram

The first computational step in this process is the face detection function. This is needed to extract where the
face or faces are in an input image. This step does not actually extract any information about the faces in an
image. It simply determines whether faces exist in the image at all, and outputs their location. Because of this,
the face detection model is almost universal, and we decided to use a pre-trained face detection deep neural net

10

from the OpenCV library [8]. This model is based on the Single Shot Detector framework with a ResNet base
network. Face detection is a fast and accurate task, and does not require any modification to fit this specific
purpose.

The next computational step is to properly identify each detected face. For the purposes of our product, this
step will identify whether the face in an image is the user, or someone unknown. This information is then used
to either disarm the system, or sound the alarm. Unlike the face detection step, the face recognition step is
specialized to each user, and must be trained on a set of images of that specific user, as well as a random set of
non-authorized faces. The model will then be trained based on this information. This trained model will now be
able to identify faces, completing the pipeline. To accomplish the face recognition task, we used an open source
project called OpenFace [9]. This model quantifies facial images, and can accurately classify based on training
data. Before using the model to classify faces, you must train it in a one-time process that generates a file of
embeddings that classify faces [10]. Once this file is generated, the model can be used to identify faces on an
input image or video stream.

We decided to use a model based entirely on OpenCV because it is most similar to the implementation we
would have applied to our Raspberry Pi [11]. Although we were not able to implement facial recognition on the
Raspberry Pi, our simulation and results are representative of how the model generally would have worked
when embedded on the Pi.

2.2 Face Recognition Model Implementation and Results
After learning about how the face recognition model works, we implemented it using Python. The first step of
our implementation was training the model on a dataset of faces. We decided to train it on images of Nikhil.
Using this dataset, we generated a file of embeddings, and referenced it for each future test. For the actual
device, this process would happen when you first set it up, and will be automated. After mounting the device
above your door, it would walk you through the process of looking at the camera, allowing the camera to
capture several images of you. The system would then train itself based on this set of images. For this simulation,
we did this process manually.

We then tested the face recognition model on a sample image. Figure 7 shows the results of this test, accurately
identifying Nikhil in the image, and labelling the other face as unknown.

11

Figure 7. Face recognition test on a sample image

We then moved on to testing the model on a video that would be similar to actual footage from our device. We
recorded a video of Nikhil walking up to the door of his home, as if he was arriving home and wanted to disarm
the alarm system. The screenshots below show the progression of this video, from walking up to the door, to the
point where the face comes into the frame and is positively recognized.

Figure 8. Screenshots of face recognition test on a sample video

As shown in these examples, the face recognition system is accurate and can locate and identify faces based on its
training. In addition to this, it can function in real-time and identify faces quickly without much lag. We tested
the model on a live webcam feed and maintained a smooth video stream, even while identifying faces. The next
step for this would have been to port the model over to the Raspberry Pi, and continue testing with the
Raspberry Pi Camera module. We would then implement an object detection model to detect packages as well,

12

completing the computer vision subsystem of our device. We were unable to do this, but the success of our face
recognition tests are promising, and imply that the computer vision models on the Raspberry Pi would have
worked as well. An object detection model would be functionally similar to the face recognition model, with a
slightly different pipeline. The model would need to be trained on many images of packages, and would then
detect packages in the input image using that information.

2.3 Circuit Schematics

Figure 9. Circuit Schematic for Control and Alarm Module

13

Figure 10. Circuit Schematic for Sensor Module

14

Figure 11. Circuit Schematic for Perception and Wi-fi Module

15

2.4 Tolerance Analysis
The success of the project is determined by the reliability of our perception and sensor module in tracking a
package and detecting the presence of other objects within a scene with varying lighting conditions. To
successfully achieve this, we require our system to be robust enough to tolerate a range of operating conditions.
In any case, we would want our system to be able to track a package and its status at all times. Failure to
recognize an object will ultimately render our system useless.

2.4.1 PIR Sensor
To analyze the constraints of our system, we will first take a look at our PIR sensor. The sensor is required to
pick up movement by any human entity within a certain range. The following are the specifications of PIR
sensor:

PIR sensor Field of View (FOV):

● Maximum detection range: 5 m (16.404 ft)
● Horizontal FOV = 94°
● Vertical FOV = 82°

Figure 12. Detection performance of PIR sensor

Given that the maximum distance of detection for the PIR sensor is 16.404 feet, it is well within our desired
operating height for our system. Theoretically, any distance less than 16.404 feet from the desired package

16

placement area would work. However, since we will be using the PIR sensor to also switch a spotlight on during
low light conditions, we would want to extend the detection range further from the package placement area.

As shown in Figure 1, the system will be placed above the door frame, with an operating height of
approximately 7 feet. This would be our desired operating range. Considering this height, we can calculate the
effective range of the sensor. Below is a visual representation of the FOV, when the distance from the PIR
sensor to the package is 7 feet. The calculations (1) and (2) are used to determine the field of view window.

an (94/2) f t 15.01 f tt ° * 7 * 2 = (1)
an (82/2) f t 12.17 f tt ° * 7 * 2 = (2)

Based on the calculations, at an operating height of 7 feet, we are able to achieve a wide range of detection with
12.17 ft in vertical height and 15.01 ft in horizontal width. This gives our system the ability to detect human
presence beyond the scene in which a package may be initially placed. We are aware that with a wide FOV, we
may have an increased number of false positives when detecting object motion. We would prefer our system to
produce false positives when detecting object motion to add robustness to our system. We have agreed that the
effective FOV of the PIR sensor is optimal for our use case.

2.4.2 Light Ambient Sensor
Another component we need to monitor tolerance levels for is the ambient light sensor. The ambient light
sensor will amplify the photodiode output signal and convert it into a logarithmic current output. The sensor is
able to provide a photocurrent response to a wide dynamic range of 3 lux to 70k lux. The sensitivity of the
sensor allows us to work within a large range of lighting levels. Our challenge is to determine a threshold lux in
which we would like to operate at. The logarithmic current output is advantageous because we will be
determining a lux threshold at lower brightness levels. These smaller changes will be easier to be detected as it
provides a good relative resolution over the entiere ambient light brightness range as shown in Figure 9.

17

Figure 13. Feature of Logarithmic Output

Determining the ambient threshold brightness level will require further testing with the perception module to
ensure optimum results.

2.4.3 Software
It is also important to note that there will be some acceptable tolerance ranges on the software aspect of the
computer vision algorithms. This has to do with image resolution and distance from the subject. Based on the
given metrics of our camera, as well as the OpenCV algorithms we will be using, our image resolution will be in
an acceptable range as long as our sensors satisfy the above constraints.

18

2.5 Bill of Materials
Table 1. Breakdown of parts required with expenses

Module Parts Cost Per
Unit

Reason

Control
PIC32MX270F256D

Microcontroller $4.09
Microcontroller for managing peripherals and

I/O

Power Supply
5V 10A Wall Charger $19.88 Provide 5V power

Voltage Regulator $2.77 5V to 3.3V converter

Perception
Raspberry Pi $35.00 Perform computer vision component

Raspberry Pi Camera Module
v2 $25.25 Image/Video input

Speaker

PCB 8 Ohm Speaker $2.50 Audio output

LM386 Op Amp $1.05 Amplification circuit

IC DAC $7.21 Digital to analog converter

Wi-fi ESP8266 Wi-fi module $6.95 Enable wifi capabilities for microcontroller

Sensor

PIR Sensor $2.29 Motion detection

APDS-9007-020 Light Sensor $2.07 Ambient light detection

Maglite LED Flashlight $24.98 Spotlight for illumination

 Grand Total $134.04

19

3 Conclusions

3.1 Implementation Summary
Due to the circumstances and restrictions this semester, we were unable to implement much of our design.
Specifically, we were unable to implement hardware components, our PCB, and run computation on our
Raspberry Pi. However, we did simulate part of our software subsystem, and found promising results. Our tests
with face recognition were successful, and we gathered enough positive data that we are hopeful that our actual
hardware product would have worked as well. We tested the face recognition model on images, pre-recorded
video, and on a real-time webcam feed, and all resulted in smooth, consistent, and accurate face tracking. This is
an important part of our design and contributes to our first high level requirement of accurate video tracking
and disarm capabilities. If this function was not accurate or efficient, the usability of our system would have
suffered greatly.

In addition to our software simulations, we also developed a detailed tolerance analysis for our PIR sensor
component, and our ambient light sensor. These components are integral parts of our motion-sensing spotlight
subsystem and have somewhat specific tolerances to each of them. The PIR motion sensor has a certain field of
view that is limited by its hardware, and we had to make sure it was wide enough to sense motion in the whole
entryway area. The ambient light sensor also has tolerances on the amount of ambient light it can detect,
measured in lux. It is required for this sensor to be able to detect when ambient light drops below a certain
threshold, indicating that it is nighttime. Because we could not test this ourselves, we developed the tolerance
analysis, and specific requirements for each sensor that we would test for.

Finally, we created circuit schematics for our whole system. The schematic diagrams show each component of
our system, including the power supply, perception subsystem, motion-sensing spotlight subsystem, WiFi
subsystem, and speaker subsystem. These schematics would be the basis of our PCB design.

3.2 Unknowns, Uncertainties, Testing Needed
All hardware testing and integration could not be completed because of a lack of access to the lab and our parts.
If we were to have access to the lab and our parts, our first course of action would be to test and verify our
sensors and voltage regulator. We would ensure they perform as intended straight out of the box and that there
are no defective components. After this, we would need to complete our software implementation and start
integrating software and hardware components. The programming of the PIC32 would require a dedicated
device that can access the pins, and after programming and testing is complete, the PIC32 would be soldered
onto the PCB. Because this process is new for all of us, it would require some trial and error. Once the hardware
components are tested and integrated with software, we would test modules and eventually move on to
complete device tests. We would build our way up to these larger tests so that we can debug individual
components easily before connecting everything together.

20

Ultimately, given an entire semester, we would be able to test, refine, and hopefully create a working prototype.
Still, even without access to any hardware or lab equipment, we were able to make significant progress on the
software components of our design.

3.3 Ethics and Safety
We have an obligation to our profession to uphold the highest level of ethical and professional conduct. We
stand to follow and commit ourselves to the guidelines stated by the IEEE Code of Ethics. Safety of the user is
of utmost importance especially since there are significant hardware components situated on the body of the
user. There is a potential danger of hardware components short circuiting and overheating after prolonged
usage that could cause harm to the user. We intend to design our product with these risks in mind in accordance
to the IEEE Code of Ethics #1 - “To hold public safety first and to disclose factors of our project that might
endanger the public” [12]. Mitigating these risks are our main priority. To avoid overheating, we will ensure
that all components operate in low power mode when not in use. Additionally, hardware components will be
spaced out accordingly within our designed enclosure so that electrical contact is avoided risking a short circuit
and ultimately device malfunction. The enclosure should uphold OSHA provision standards 1910.303(b)(7)(i)
stating “Unless identified for use in the operating environment, no conductors or equipment shall be located in
damp or wet locations; where exposed to gases, fumes, vapors, liquids, or other agents that have a deteriorating
effect on the conductors or equipment; or where exposed to excessive temperatures.”[13] to provide protection
against any case of exposure to liquids that could cause a short circuit. This is critical as the device will most
likely be placed outdoors where it will be exposed to the elements. The sensor components have humidity
conditions which if not upheld may produce performance issues.

We acknowledge that there is a certain degree of error that can arise from object identification. The core of the
project depends on users being able to trust our system to identify and label an object in its scene with a high
level of accuracy. To adhere to the IEEE Code of Ethics #3 - “To be honest and realistic in stating claims or
estimates based on the available data.”[12], it is our duty to be honest of the estimates provided from the
available data provided to us. To uphold this, we will ensure that our system has a reliable output and is able to
verify and identify different packages. This will be done by training our object recognition model extensively
with a variety of packages of all shapes and sizes. In addition, we will also be using a facial recognition algorithm
to authorize user access to the system. This will require a significant degree of accuracy as to ensure proper
access is given to authorized users. The standard of accuracy in which we will be aiming for will be high to
ensure the overall security of our anti-theft system.

Finally, our product would not be possible without the advances in computer vision algorithms developed by
pioneers before us. In accordance to the IEEE Code of Ethics #7 - “To seek, accept, and offer honest criticism of
technical work, to acknowledge and correct errors, and to credit properly the contributions of others.” [12], we
would like to formally acknowledge and give due credit to those who have contributed to the open source
software, OpenCV.

21

3.4 Future Improvements
If given ample time to work on our second project, we would not only be able to complete our initial
implementation, but we could expand on the software and hardware to make the product more practical and
polished. Initially, we would complete the original project following these steps:

1. Design PCB for PIC32 and sensors
2. Complete sensor verification and testing
3. Complete PIC32 dispatch code (interacting with sensors and Raspberry Pi)
4. Integrate Raspberry Pi, sensors, and PIC32
5. Design hardware enclose and mounting system

After completing our initial design, we would thoroughly test the product in various scenarios, evaluating the
successes and shortcoming of our device. In order to improve our device, we would try to implement the
following 3 additional features:

1. Convert Raspberry Pi Code to run on a dedicated GPU using CUDA
2. Develop a mobile app to deal with user notifications
3. Use a cloud hosting service to back up video recordings in real time

We selected these features because each one improves the practicality and usefulness of the product, but were
too involved for us to implement in a single semester. Using GPUs instead of the Raspberry Pi would majorly
speed up the computer vision algorithm runtime. While we were not able to test the actual runtime of our code
on a Raspberry Pi, we expected it to run significantly slower than on a normal computer. This would cause a
delay between thefts and alarms, or face recognition and disarm, a significant issue that could affect the accuracy
and practicality of our product. A dedicated GPU will run even faster than a standard laptop, although it would
take significant expertise to implement correctly. The use of a mobile app would increase the usability and
versatility of user interactions with the product. Instead of receiving simple SMS text messages from the device,
the user can get notifications that include images, they can access the history of alerts in the past, and they can
change settings to vary what events will trigger notifications. They could even change the alarm tone, or vary the
light threshold. There are numerous possibilities. One issue to note with this improvement is that it may
increase cost such that our product is no longer a cheap alternative to a full-fledge security system. If the app
were implemented, we would need to do a cost-benefit analysis to ensure it fits the product and the target
market. Finally, a cloud hosting service is a secure and reliable way to store theft data. If a thief were to somehow
destroy our original security system, the recorded data would be lost. Backing up data on the cloud in real time
resolves this issue, and lets the user view recordings online with ease. Each one of these improvements refines
our prototype and moves it closer to a market-ready product.

22

Progress Made on First Project
In addition to the work done on our second project, we made some progress on our first project (EyeCU -
Assistive Eyewear with Computer Vision) as well. Similar to the face recognition simulation we did for our
second project, we also completed a simulation for the OCR (Optical Character Recognition) model required
for our first project. The same restrictions applied to the development on our first project, in that we were not
able to implement or test any hardware. We instead simulated the software components only on our laptops.

The OCR model is explained in the flow diagram below. Unlike the face recognition model, there is no need to
provide a training dataset since recognizing english text only requires recognizing the relatively small set of
characters.

Figure 14. Flow diagram for OCR

The text detection task was completed using the pre-trained EAST text detection model [14]. This model
detects and locates individual segmented words within an image. Each detected word is then quantified using
the OpenCV Tesseract model [15].

After implementing the model, we tested on various images. We found that the OCR model worked well on
standard, simple fonts, but struggled on more unique, specialized fonts.

Figure 15. Results of OCR Testing

23

References

[1] K. Buchholz and F. Richter, “Infographic: 87 Billion Parcels Were Shipped in 2018,” Statista

Infographics, 08-Nov-2019. [Online]. Available:
https://www.statista.com/chart/10922/parcel-shipping-volume-and-parcel-spend-in-selected-countries/.
[Accessed: 03-Apr-2020].

[2] Kaza, “6 Shocking Stats about Package Theft,” Smiota, 17-Feb-2020. [Online]. Available:

https://smiota.com/resources/6-shocking-stats-package-theft/. [Accessed: 03-Apr-2020].

[3] “Burglary Statistics: The Hard Numbers,” National Council For Home Safety and Security, 19-Dec-2019.

[Online]. Available: https://www.alarms.org/burglary-statistics/. [Accessed: 03-Apr-2020].

[4] “5 Reasons Why Homeowners Don't Have Home Security Systems,” ADT Home Security and Alarm

Systems | ProtectYourHome.com. [Online]. Available:
https://www.protectyourhome.com/blog/articles/2014/march/5-reasons-why-homeowners-dont-have-
home-security-systems. [Accessed: 03-Apr-2020].

[5] H. Blodget, “Here's A Picture Of Amazon Locker, The New Delivery Box Amazon Is Using To Take

Over The World,” Business Insider, 24-Aug-2012. [Online]. Available:
https://www.businessinsider.com/amazon-locker-2012-8. [Accessed: 03-Apr-2020].

[6] T. Haselton, “Amazon Key changes how packages are delivered - just beware of your dog,” CNBC,

16-Nov-2017. [Online]. Available:
https://www.cnbc.com/2017/11/16/amazon-key-in-home-delivery-review.html. [Accessed:
03-Apr-2020].

[7] J. Bianco, J. Graft, and J. Simonaitis, “Package Anti-Theft System,” Feb. 2018. [Online]. Available:

https://courses.engr.illinois.edu/ece445/getfile.asp?id=12482. [Accessed: 03-April-2020].

[8] Rosebrock, A., 2020. Face Detection With Opencv And Deep Learning - Pyimagesearch. [online]

PyImageSearch. Available at:
<https://www.pyimagesearch.com/2018/02/26/face-detection-with-opencv-and-deep-learning/>
[Accessed 8 May 2020].

[9] OpenFace. [Online]. Available: https://cmusatyalab.github.io/openface/. [Accessed: 08-May-2020].

[10] Rosebrock, A., 2020. Opencv Face Recognition - Pyimagesearch. [online] PyImageSearch. Available at:

<https://www.pyimagesearch.com/2018/09/24/opencv-face-recognition/> [Accessed 8 May 2020].

[11] A. Rosebrock, “Raspberry Pi Face Recognition,” PyImageSearch, 25-Jun-2018. [Online]. Available:

https://www.pyimagesearch.com/2018/06/25/raspberry-pi-face-recognition/. [Accessed: 17-Apr-2020].

[12] “IEEE Code of Ethics,” IEEE. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 03-Apr-2020].

24

[13] Osha.gov. (2020). 1910.303 - General. | Occupational Safety and Health Administration. [online]

Available at: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.303 [Accessed
28 Feb. 2020].

[14] “OCRTesseract Class Reference,” OpenCV. [Online]. Available:

https://docs.opencv.org/3.4/d7/ddc/classcv_1_1text_1_1OCRTesseract.html. [Accessed:
28-Feb-2020].

[15] Rosebrock, A., 2020. Opencv OCR And Text Recognition With Tesseract - Pyimagesearch. [online]

PyImageSearch. Available at:
<https://www.pyimagesearch.com/2018/09/17/opencv-ocr-and-text-recognition-with-tesseract/>
[Accessed 8 May 2020].

25

Appendix

Facial Recognition Code (Project 2)

USAGE

python recognize_video.py --detector face_detection_model \

--embedding-model openface_nn4.small2.v1.t7 \

--recognizer output/recognizer.pickle \

--le output/le.pickle

import the necessary packages

from imutils.video import VideoStream

from imutils.video import FileVideoStream

from imutils.video import FPS

from threading import Thread

import numpy as np

import argparse

import imutils

import pickle

import time

import cv2

import os

construct the argument parser and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-d", "--detector", required=True,
help="path to OpenCV's deep learning face detector")

ap.add_argument("-m", "--embedding-model", required=True,
help="path to OpenCV's deep learning face embedding model")

ap.add_argument("-r", "--recognizer", required=True,
help="path to model trained to recognize faces")

ap.add_argument("-l", "--le", required=True,
help="path to label encoder")

ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")

ap.add_argument("-i", "--input", help="input video filepath")
ap.add_argument("-o", "--output", help="output path")
args = vars(ap.parse_args())

load our serialized face detector from disk

print("[INFO] loading face detector...")
protoPath = os.path.sep.join([args["detector"], "deploy.prototxt"])
modelPath = os.path.sep.join([args["detector"],

"res10_300x300_ssd_iter_140000.caffemodel"])
detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath)

load our serialized face embedding model from disk

26

print("[INFO] loading face recognizer...")
embedder = cv2.dnn.readNetFromTorch(args["embedding_model"])

load the actual face recognition model along with the label encoder

recognizer = pickle.loads(open(args["recognizer"], "rb").read())
le = pickle.loads(open(args["le"], "rb").read())

initialize the video stream, then allow the camera sensor to warm up

if args["input"]:
print("[INFO] reading input video...")
vs = FileVideoStream(args["input"]).start()
time.sleep(2.0)

else:

print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)

check_output = False

if args["output"]:
fourcc = cv2.VideoWriter_fourcc(*'MJPG')

videowriter = None

check_output = True

start the FPS throughput estimator

fps = FPS().start()

loop over frames from the video file stream

while True:

grab the frame from the threaded video stream

grabbed, frame = vs.read()

if not grabbed:

break

resize the frame to have a width of 600 pixels (while

maintaining the aspect ratio), and then grab the image

dimensions

frame = imutils.resize(frame, width=600)
(h, w) = frame.shape[:2]

if (check_output) and (not videowriter):

videowriter = cv2.VideoWriter(args["output"],fourcc,20,(w,h),True)

construct a blob from the image

imageBlob = cv2.dnn.blobFromImage(

cv2.resize(frame, (300, 300)), 1.0, (300, 300),
(104.0, 177.0, 123.0), swapRB=False, crop=False)

apply OpenCV's deep learning-based face detector to localize

faces in the input image

detector.setInput(imageBlob)

27

detections = detector.forward()

loop over the detections

for i in range(0, detections.shape[2]):
extract the confidence (i.e., probability) associated with

the prediction

confidence = detections[0, 0, i, 2]

filter out weak detections

if confidence > args["confidence"]:
compute the (x, y)-coordinates of the bounding box for

the face

box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")

extract the face ROI

face = frame[startY:endY, startX:endX]

(fH, fW) = face.shape[:2]

ensure the face width and height are sufficiently large

if fW < 20 or fH < 20:
continue

construct a blob for the face ROI, then pass the blob

through our face embedding model to obtain the 128-d

quantification of the face

faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255,
(96, 96), (0, 0, 0), swapRB=True, crop=False)

embedder.setInput(faceBlob)

vec = embedder.forward()

perform classification to recognize the face

preds = recognizer.predict_proba(vec)[0]
j = np.argmax(preds)

proba = preds[j]

name = le.classes_[j]

if name == "nikhil":
color = (0, 255, 0)

else:

color = (0, 0, 255)

draw the bounding box of the face along with the

associated probability

text = "{}: {:.2f}%".format(name, proba * 100)
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(frame, (startX, startY), (endX, endY),

color, 2)
cv2.putText(frame, text, (startX, y),

cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)

28

update the FPS counter

fps.update()

if check_output:

videowriter.write(frame)

else:

show the output frame

cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF

if the `q` key was pressed, break from the loop

if key == ord("q"):
break

stop the timer and display FPS information

fps.stop()

print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

do a bit of cleanup

cv2.destroyAllWindows()

vs.stop()

if check_output:

videowriter.release()

PIC32 Dispatcher Code (Project 2)

//pragma statements and UART configs taken from below link

//https://people.ece.cornell.edu/land/courses/ece4760/PIC32/PLIB_examples/plib_examples/uart

/uart_basic/source/main.c

// Section: Includes

// ***

// ***

#include <GenericTypeDefs.h>

#include <plib.h>

// ***

// ***

// Section: Configuration bits

// ***

// ***

#pragma config FPLLODIV = DIV_1, FPLLMUL = MUL_20, FPLLIDIV = DIV_2, FWDTEN = OFF, FCKSM =

CSECME, FPBDIV = DIV_1

#pragma config OSCIOFNC = ON, POSCMOD = XT, FSOSCEN = ON, FNOSC = PRIPLL

#pragma config CP = OFF, BWP = OFF, PWP = OFF

// ***

// ***

// Section: System Macros

29

// ***

// ***

#defineGetSystemClock() (80000000ul)

#defineGetPeripheralClock() (GetSystemClock()/(1 << OSCCONbits.PBDIV))

#defineGetInstructionClock() (GetSystemClock())

UINT32 GetDataBuffer(char *buffer, UINT32 max_size, UINT32 UART_NUM);

void SendDataBuffer(const char *buffer, UINT32 size, UINT32 UART_NUM);

UINT32 activate_alarm = 0;

#include "PIC32MX270_STD.h"

#include <string.h>

int main(void) {

 //UART1 configs
 UARTConfigure(UART1, UART_ENABLE_PINS_TX_RX_ONLY);

 UARTSetFifoMode(UART1, UART_INTERRUPT_ON_TX_NOT_FULL | UART_INTERRUPT_ON_RX_NOT_EMPTY);
 UARTSetLineControl(UART1, UART_DATA_SIZE_8_BITS | UART_PARITY_NONE | UART_STOP_BITS_1);
 UARTSetDataRate(UART1, GetPeripheralClock(), 57600);
 UARTEnable(UART1, UART_ENABLE_FLAGS(UART_PERIPHERAL | UART_RX | UART_TX));
 //UART2 configs
 UARTConfigure(UART2, UART_ENABLE_PINS_TX_RX_ONLY);

 UARTSetFifoMode(UART2, UART_INTERRUPT_ON_TX_NOT_FULL | UART_INTERRUPT_ON_RX_NOT_EMPTY);
 UARTSetLineControl(UART2, UART_DATA_SIZE_8_BITS | UART_PARITY_NONE | UART_STOP_BITS_1);
 UARTSetDataRate(UART2, GetPeripheralClock(), 57600);
 UARTEnable(UART2, UART_ENABLE_FLAGS(UART_PERIPHERAL | UART_RX | UART_TX));

 while(1) {
 //read Rpi input data over UART1
 //directive buffer ("THEFT", "DELIVERY", "USER")
 char Rpi_data[] = itoa(GetDataBuffer(buf, 1024, 1));
 char str_theft[] = "THEFT";
 char str_delivery[] = "DELIVERY";
 char str_user[] = "USER";
 if (strcmp(Rpi_data, str_delivery) == 0) {

 //send notification to WIFI module over UART2
 SendDataBuffer("Delivery Occurred", sizeof("Delivery Occurred"), 2);
 activate_alarm = 1;

 }

 if (strcmp(Rpi_data, str_theft) == 0 && activate_alarm) {

 //send notification to WIFI module over UART2
 SendDataBuffer("Theft Occurred", sizeof("Theft Occurred"), 2);
 //function not implemented
 soundAlarm();

 }

 if (strcmp(Rpi_data, str_user) == 0) {

 activate_alarm = 0;

 }

30

 //pseudo code for analog inputs (functions not implemented)
 UINT32 light_level_low = readAnalog1() > light_threshold ? 0 : 1;
 UINT32 movement_detected = readAnalog2() > movement_threshold ? 1 : 0;
 if (light_level_low && movement_detected){
 activateSpotlight(); //turns on spotlight for 10 seconds before polling motion
 }

 }

}

//functions modified from below link

//https://people.ece.cornell.edu/land/courses/ece4760/PIC32/PLIB_examples/plib_examples/uart

/uart_basic/source/main.c

//send data over UART

void SendDataBuffer(const char *buffer, UINT32 size, UINT32 UART_NUM){

 if (UART_NUM == 1) {
 while(size){

 while(!UARTTransmitterIsReady(UART1));

 UARTSendDataByte(UART1, *buffer);

 buffer++;

 size--;

 }

 while(!UARTTransmissionHasCompleted(UART1));

 }

 if (UART_NUM == 2) {
 while(size){

 while(!UARTTransmitterIsReady(UART2));

 UARTSendDataByte(UART2, *buffer);

 buffer++;

 size--;

 }

 while(!UARTTransmissionHasCompleted(UART2));

 }

}

//receive data from UART

UINT32 GetDataBuffer(char *buffer, UINT32 max_size, UINT32 UART_NUM){

 UINT32 num_char;

 num_char = 0;
 while(num_char < max_size){

 UINT8 character;

 if (UART_NUM == 1){
 while(!UARTReceivedDataIsAvailable(UART1));

 character = UARTGetDataByte(UART1);

 }

 if (UART_NUM == 2){
 while(!UARTReceivedDataIsAvailable(UART2));

 character = UARTGetDataByte(UART2);

 }

 if(character == '\r')

 break;

31

 *buffer = character;

 buffer++;

 num_char++;

 }

 return num_char;

}

OCR Code (Project 1)

USAGE

python recognize_video.py --detector face_detection_model \

--embedding-model openface_nn4.small2.v1.t7 \

--recognizer output/recognizer.pickle \

--le output/le.pickle

import the necessary packages

from imutils.video import VideoStream

from imutils.video import FileVideoStream

from imutils.video import FPS

from threading import Thread

import numpy as np

import argparse

import imutils

import pickle

import time

import cv2

import os

construct the argument parser and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-d", "--detector", required=True,
help="path to OpenCV's deep learning face detector")

ap.add_argument("-m", "--embedding-model", required=True,
help="path to OpenCV's deep learning face embedding model")

ap.add_argument("-r", "--recognizer", required=True,
help="path to model trained to recognize faces")

ap.add_argument("-l", "--le", required=True,
help="path to label encoder")

ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")

ap.add_argument("-i", "--input", help="input video filepath")
ap.add_argument("-o", "--output", help="output path")
args = vars(ap.parse_args())

load our serialized face detector from disk

print("[INFO] loading face detector...")
protoPath = os.path.sep.join([args["detector"], "deploy.prototxt"])

32

modelPath = os.path.sep.join([args["detector"],
"res10_300x300_ssd_iter_140000.caffemodel"])

detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath)

load our serialized face embedding model from disk

print("[INFO] loading face recognizer...")
embedder = cv2.dnn.readNetFromTorch(args["embedding_model"])

load the actual face recognition model along with the label encoder

recognizer = pickle.loads(open(args["recognizer"], "rb").read())
le = pickle.loads(open(args["le"], "rb").read())

initialize the video stream, then allow the camera sensor to warm up

if args["input"]:
print("[INFO] reading input video...")
vs = FileVideoStream(args["input"]).start()
time.sleep(2.0)

else:

print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)

check_output = False

if args["output"]:
fourcc = cv2.VideoWriter_fourcc(*'MJPG')

videowriter = None

check_output = True

start the FPS throughput estimator

fps = FPS().start()

loop over frames from the video file stream

while True:

grab the frame from the threaded video stream

grabbed, frame = vs.read()

if not grabbed:

break

resize the frame to have a width of 600 pixels (while

maintaining the aspect ratio), and then grab the image

dimensions

frame = imutils.resize(frame, width=600)
(h, w) = frame.shape[:2]

if (check_output) and (not videowriter):

videowriter = cv2.VideoWriter(args["output"],fourcc,20,(w,h),True)

construct a blob from the image

imageBlob = cv2.dnn.blobFromImage(

cv2.resize(frame, (300, 300)), 1.0, (300, 300),

33

(104.0, 177.0, 123.0), swapRB=False, crop=False)

apply OpenCV's deep learning-based face detector to localize

faces in the input image

detector.setInput(imageBlob)

detections = detector.forward()

loop over the detections

for i in range(0, detections.shape[2]):
extract the confidence (i.e., probability) associated with

the prediction

confidence = detections[0, 0, i, 2]

filter out weak detections

if confidence > args["confidence"]:
compute the (x, y)-coordinates of the bounding box for

the face

box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")

extract the face ROI

face = frame[startY:endY, startX:endX]

(fH, fW) = face.shape[:2]

ensure the face width and height are sufficiently large

if fW < 20 or fH < 20:
continue

construct a blob for the face ROI, then pass the blob

through our face embedding model to obtain the 128-d

quantification of the face

faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255,
(96, 96), (0, 0, 0), swapRB=True, crop=False)

embedder.setInput(faceBlob)

vec = embedder.forward()

perform classification to recognize the face

preds = recognizer.predict_proba(vec)[0]
j = np.argmax(preds)

proba = preds[j]

name = le.classes_[j]

if name == "nikhil":
color = (0, 255, 0)

else:

color = (0, 0, 255)

draw the bounding box of the face along with the

associated probability

text = "{}: {:.2f}%".format(name, proba * 100)

34

y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(frame, (startX, startY), (endX, endY),

color, 2)
cv2.putText(frame, text, (startX, y),

cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)

update the FPS counter

fps.update()

if check_output:

videowriter.write(frame)

else:

show the output frame

cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF

if the `q` key was pressed, break from the loop

if key == ord("q"):
break

stop the timer and display FPS information

fps.stop()

print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

do a bit of cleanup

cv2.destroyAllWindows()

vs.stop()

if check_output:

videowriter.release()

35

