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Abstract 
We considered the tedious process of basic circuitry prototyping on breadboards and developed a 
device to assist in the debugging of breadboarded circuits. The Digital Logic Smart Breadboard is 
capable of reading and writing digital logic values to each individual row on the breadboard. The 
state of the board will be configured by, and communicated back to, a host PC, which the user can 
use to adjust inputs and observe outputs of their logic circuit.  Our project is based on the 
Educational Smart Breadboard [1] from the Spring 2018 semester, which created a standalone 
device that reads voltages from sections of the breadboard and displays them on an integrated 
touchscreen. The key improvement we made was instead of using a multiplexing structure in our 
design, we opted to use IO expanders to interface with the breadboard rows. With this 
implementation, instead of only being able to read subsections of the breadboard, we are able to 
read and write to individual rows on the breadboard simultaneously.  By the end of the 8-week 
timeframe, we were able to develop a comprehensive block diagram for our circuitry, sketch out a 
3-D graphical model for our physical design, complete a full device schematic, and implement an 
intuitive graphical user interface for our users. 



 

Contents 

1. Second Project Motivation 1 

1.1 Updated Problem Statement 1 

1.2 Updated Solution 1 

1.3 Updated High Level Requirements 2 

1.4 Updated Visual Aid 2 

1.5 Updated Block Diagram 3 

2. Second Project Implementation 4 

2.1 Implementation Details 4 

2.1.1 Physical Design 4 

2.1.2 Control 5 

2.1.3 Power System 5 

2.1.4 Data Acquisition 6 

2.1.5 USB Communication 6 

2.1.6 Graphical User Interface 7 

2.2 Implementation Analysis 8 

2.2.1 FSM Flowchart 8 

2.2.2 Software Flowchart 9 

2.2.3 Bandwidth Calculation 9 

2.2.4 Hardware Timing Calculations 10 

3. Second Project Conclusions 10 

3.1 Implementation Summary 10 

3.1.1 Physical Organization 11 

3.1.2 Graphical User Interface 11 

3.1.3 Hardware Timing & Bandwidth Calculations 11 

3.2 Unknown, Uncertainties, Testing Needed 11 

3.3 Ethics and Safety 12 

3.4 Project Improvements 12 

3.4.1 Hardware Improvements 13 

3.4.2 Software Improvements 13 

3.4.3 Design Approach Improvements 14 

4. Progress Made on First Project 15 

References 16 

 



 

1. Second Project Motivation 
1.1 Updated Problem Statement 
When it comes to engineering prototyping, the breadboard is the gold standard for early hardware 
testing. However, as the system being prototyped gets larger in size, for example a 4-bit calculator 
as implemented in ECE385 for Lab 3, debugging can become extremely challenging. This is due to 
the overlapping clusters of wires, along with limited insight into what is going on in each part of the 
circuit. As logic circuits get more complex, the number of important test points greatly increases, 
and circuit probing becomes a more time consuming and involved process, which can be extremely 
frustrating. This experience could potentially drive away people interested in the field of electrical 
engineering.  

1.2 Updated Solution 
The goal of this project is to make debugging easier on a breadboard. We intend to do so in two 
main ways through a smart breadboard. First, we will be able to read digital logic values in every 
row on the breadboard using IO expanders communicating with a microcontroller via I2C. Second, 
the breadboard will be able to write logic values to each of the rows on the breadboard using the 
same IO expanders. The state of the breadboard will be configured by, and communicated back to, 
the host PC. The user will then be able to adjust inputs to their logic circuit, and observe the output 
of their circuit on the PC, like shown in Figure 1. 

The device will be configured over USB 2.0 by a host PC using a software library that allows users to 
configure and interact with the device.  On top of the software library, the user is able to read and 
write logical values to and from the individual rows of the breadboard via command line interface 
or a graphical user interface. Within the command line interface, users can also automate testing 
and verification of their design by writing a sequence of inputs to the breadboard, reading a 
sequence of outputs from the breadboard, and comparing these outputs to a set of known desired 
values for the design.  

This design solution differs from the original project in three key ways. The first is that our device 
focuses on debugging digital logic circuits, instead of mixed signal circuits, as with the original 
project [1]. We chose to focus on digital circuits, because these types of circuits tend to be more 
difficult to debug using traditional debugging methods for entry-level engineers and hobbyists. 
Secondly, our design uses IO expanders to read and write digital logic values to each row of the 
breadboard, instead of a hierarchical tree muxing structure that connected the rows of the 
breadboard to the ADC pins of a microcontroller [1]. This difference means our device is unable to 
read analog values from the breadboard, but is able to have much faster board read speeds as a 
result.  Finally, our design communicates with a host PC over USB, and is configured using either a 
command line interface or a graphical user interface, whereas the original design implemented a 
touch screen interface to make the device standalone [1]. While there are benefits to designing a 
standalone device, this comes at a cost of making automation of testing measurably harder for the 
user. 
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1.3 Updated High Level Requirements 
● The device can read and write logic values at 3.3V or 5V to each row of the breadboard. 
● The device is capable of communicating with a host PC over USB 2.0. 
● The user can configure the device and receive data from the breadboard through a 

command line interface or a circuit debugging graphical user interface. 
 

1.4 Updated Visual Aid 

 
Figure 1. Visual Representation of the Device [2,3] 
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1.5 Updated Block Diagram 

 
Figure 2. Block Diagram 

 
Our device can be split into four distinct blocks, shown in Figure 2, each with specific functions in 
facilitating the reading and writing of signals on a breadboard. First, the control block consists of 
two components: a microcontroller and I2C Level Shifter. The microcontroller controls the level 
shifter which then manages the signals from the IO expanders in the Data Acquisition block via I2C. 
The control block also features a voltage level selection circuit to distribute the needed voltage 
values to dedicated IO expanders. Second, the power supply block provides necessary power to 
corresponding components. Third, the Data Acquisition block consists of several IO expanders that 
connect externally to our breadboard with the purpose of reading/writing voltage values. Finally, 
the USB Communication block externally connects to a host PC, through which users interact with 
our device. 
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2. Second Project Implementation 
2.1 Implementation Details 
In this section, we will discuss the implementation of our project one subsection at a time. Chapter 
2.1.1 explores the complete physical design of the device, addressing feedback received in the 
design review. Chapters 2.1.2-2.1.5 detail the four subsections of our device: Control, Power, Data 
Acquisition, and USB Communication. Chapter 2.1.6 focuses on the Graphical User Interface that the 
user can use on the host PC to configure the device. We will provide figures such as a 3D model and 
a GUI design to help illustrate the layout and operation of our device. 
 

2.1.1 Physical Design 

 
Figure 3. Coverage of IO Expanders on Breadboard 

 
Figure 3 is a physical representation of our device. Each IO expander covers a section equal to a 
quarter of the each breadboard’s rows, totaling 8 IO expanders for two breadboards. There will be 
two IO expanders on each breadboard which toggle connections to the supply voltage and ground 
for the power rails, instead of reading or writing logic values directly to the breadboard rows. These 
IO expanders cannot read logic values from the power and ground rails, as they instead function to 
make or break connections between the power and ground rails and the supply voltage and ground 
for the device. This allows those rails to be used as either power rails, or as bus lines if the power 
supply connections are not enabled. This design choice was made to allow greater current draw 
from the supply rails at the cost of being unable to read values directly from any signals the users 
wired to the supply lines.  
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Figure 4. Physical Layout of Breadboard and Circuitry 

 
The added circuitry lies on a PCB attached to the bottom of the breadboards, connecting through 
the rails on each row of the breadboard. This is demonstrated in Figure 4, where the shielded PCB is 
shown in green and the breadboards in white. We created this 3D model based on feedback in the 
design review to make our physical organization clearer. The copper wires joining the two are the 
connections from the IO expanders to the rails on the breadboards. For the PCB itself, we decided to 
position the IO expanders according to their coverage on the breadboard to be consistent. 
Spreading out the IO expanders also decreases the potential heat dissipation in a given area. The 
microcontroller and other components would be near the middle of the PCB, away from the IO 
expanders. In terms of the breadboard area, this is under the space between the rails of the two 
sections of the breadboard. There are few connections between the IO expanders and rails here, 
which makes it a perfect place for the microcontroller and remaining components. 
 

2.1.2 Control  
The control block handles the processing of instructions from the host PC and configuring the 
breadboard’s state based on user input.  It consists of an ATmega32U4 microcontroller and a 
voltage selection circuit to toggle between the two logical high voltage values.  The control block 

also handles the I2C communication with the IO expanders, processes the acquired data, and 

packages it for the host PC to receive over USB and display to the user.  The key functions that will 
be handled by this block are the processing of the configuration data sent from the host PC, and the 
setting of the configuration registers of the IO expanders according to this data.  This includes 
setting the mode (input/output) of each GPIO pin on the IO expander, and the logic value to be 
written to the output mode pins.  Additionally, any other configuration data or instructions will be 
processed by the control block and sent to the IO expanders, such as configuration of interrupts for 
future development of the device, as discussed later in Chapter 3.4.2. 

 
2.1.3 Power System 
The power system will consist of two power circuits in order to provide the board with two voltage 
levels: one at 5V and one at 3.3V. Each of these power circuits will consist of a voltage regulator and 
its needed components (capacitors and resistors). The components must have a large current 
tolerance as there is a relatively large amount of current going through the circuit at peak draw. 
Because the output of the 5V regulator is close to the input, the component we use must be a low 
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dropout regulator. We chose the XRP6272IDBTR-F voltage regulator for this purpose. We also 
decided to use the same voltage regulator for the 3.3V Power Circuit as well, because it can provide 
the desired output with minimal configuration. This voltage regulator can handle up to a 10W draw, 
while our components draw 8.1W maximum, so the regulator works for our purposes. 

 
2.1.4 Data Acquisition 
The data acquisition block consists of 8 IO expanders, each managing 
16 rows on the breadboard.  This allows the data acquisition block to 
read and write logic values to all 120 breadboard rows, and toggle 
connections to the board power supply for 8 power rails (4 positive 
voltage rails, and 4 ground voltage rails).  Each IO expander controls 
16 distinct electrical contact points on the breadboard, and is capable 
of reading and writing digital logic values to each of these rows.  A 
total of eight IO expander pins are dedicated to enabling/disabling 
direct connections between the positive and negative power supply 
rails and the positive and ground terminals of the soltage selection 
circuit, allowing the user to draw larger amounts of current from the 
supply rails at the operating voltage of the rest of the breadboard. 
Shown in Figure 5 is a single IO expander schematic as included in our 
design. 
 
2.1.5 USB Communication 
The USB block communicates with the PC via a standard USB 2.0. In order to communicate 
effectively between the host PC and our device, we use the open source library libusb to manage the 
USB communication with the microcontroller [4]. This library allows users to communicate with 
our hardware without additional work, like building a dedicated kernel. In addition, with our 
design, we chose to synchronously transfer I/O data between our device and the PC. Because we are 
only dealing with a single device with 257-bits of data per transfer, using synchronous transfer is 
the best method due to its simplistic nature [5]. Lastly, building a Python library and graphical user 
interface is a necessity for this project. The library will consist of functions to initialize USB 
communication, configure the power state of the device, read data from the breadboard, and, lasly, 
write voltage values on the breadboard. Similarly, the GUI is built on top of the Python library so 
that the users have a convenient accessibility to our device. 
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2.1.6 Graphical User Interface 

 
Figure 6. Graphical User Interface 

 
Figure 6 is the user interface built using Tkinter [6]. It has two buttons to specify the users’ 
commands, reading or writing, and two radio buttons to indicate voltage values, 5V or 3.3V. Each 
row on the breadboard has a checkbox and a spinbox, except for the bus lines which only have 
checkboxes for writing purposes. Additionally, the breadboards were retrieved online [7] and 
displayed on the window using Tkinter canvas widget. In order to perform a read, the users will 
press the ‘Read’ button. Then, the breadboard voltage values will be loaded onto their 
corresponding spin boxes on the GUI. If the users want to perform a writing command, they will 
specify a voltage value through the radio button on top of the GUI, select the checkboxes and 
spinbox values of the breadboard rows, and press the ‘Write’ button. The data that is specified on 
the GUI will then configure our IO expanders and display the results on the physical breadboard.  In 
the end, we wish to provide an intuitive GUI, so that the users can conveniently operate our device.  
 

2.2 Implementation Analysis 
In this section, we will provide graphs and calculations to support and analyze our 
implementations. For the software analysis, we will present the operational FSM and the software 
flowchart to discuss the distinctive states which the device will operate in. On the other hand, for 
hardware analysis, we will provide  bandwidth and timing calculations to show the hardware 
propagation delay and discuss the speed of the board..  
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2.2.1 FSM Flowchart 

 
Figure 7. Operation FSM 

 
The model of the flow through which the device goes through is visualized above in Figure 7, the 
Operation FSM. Upon startup, the breadboard goes through an initialization process before waiting 
in a state to receive instructions from the host PC. The device performs a different operation based 
on the instruction it receives, then transmits resulting data back to the host PC.  
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2.2.2 Software Flowchart 

 
Figure 8. Software Flowchart  

 
In Figure 8, we are able to show the process of how software operates in our device. When the 
device gets turned on, it first initializes all communications between the PC, microcontroller, IO 
expander, and voltage supply. It then enters a wait state for the PC to send either a reading or 
writing command. Depending on the command, the device will communicate with the IO expander 
and voltage supply to perform different tasks. After finishing its task, the device will return to its 
wait state, waiting for the next PC command. 
 
2.2.3 Bandwidth Calculation 
An important aspect of our design is the rate at which data can be acquired from the data 
acquisition block.  Due to hardware limitations, the fastest clocking speed of the I2C bus is 1 MHz, or 
a clock period of 1 us.  As shown in Figure 9, the example I2C communication framework, a total of 
47 SCL clock cycles are required to receive 16 bits from a single IO expander on our device.  As 
there are 8 IO expanders total on our device, this brings us to 368 clock cycles to complete a total 
board read, or a 368 µs period.  Since each board read consists of 128 bits of data, the bandwidth of 
the data acquisition block is 348 kb/s, which is far lower than the 12 Mbit/s bandwidth of the USB 
2.0 full-speed standard our microcontroller uses to transmit data to the host PC. 

9 



 

 
Figure 9. I2C Data Read Communication Framework 

 

2.2.4 Hardware Timing Calculations 
Finally, the responsiveness of our device is also important for ensuring it is capable of quickly and 
efficiently testing circuits according to the user’s configuration of the device.  This means ensuring 
the device is capable of quickly reconfiguring the state of the breadboard to the user’s desired 
configuration.  There are two major cases where response time is important.  
 
The first case is where the voltage level is changed, and the second is for constant voltage reads. 
For voltage change writes, the voltage selection circuit needs to select the new operating voltage, 
and allow for the power mux’s output to reach the desired voltage level, which takes a maximum of 
60 µs.  After this, the IO expanders need to go through a reset to ensure they will operate correctly 
at the newly selected voltage, and this takes another 2 µs.  Also, because they then have gone 
through a power-on reset, they need to be reconfigured to operate as the user intends, which takes 
a minimum of 592 µs to have the configuration registers reset, as setting each set of registers 
requires 74 clock cycles, or 592 total cycles, or 592 µs.  Finally, the actual read operation takes 368 
µs to complete, as shown in chapter 2.2.3.  This brings the total time for a voltage change board 
update to 1.022 ms.  
 
In the case of a full board update without a voltage change operation only takes 0.960 ms to 
complete.  The most important detail, however, is that a full board state change is the longest part of 
this process, and takes up over half of the response time in the case that each IO expander has to be 
overwritten.  Should the user only seek to change a small number of inputs (given they are on the 
same sub-board of our device), the time to update the board will be significantly shorter.  
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3. Second Project Conclusions 
3.1 Implementation Summary 
The problem we set out to solve with our design was to make logic circuit debugging easier.  Our 
physical design shows our device is non-intrusive, as none of the structure of the original 
breadboard is altered. We designed a full device circuit schematic, enabling the user to debug via a 
GUI or command line interface. This aspect of our design makes debugging much easier, since users 
will not have to go through a mess of wires just to see where the problem in a circuit lies. Arpan 
Choudhury was in charge of the physical design and power system; Robert Conklin was in charge of 
the control and data acquisition; Joseph Yang was in charge of the USB communication and 
graphical user interface. 
 

3.1.1 Physical Organization 
As shown in Figure 4, the PCB containing our device’s circuitry would attach to the breadboard 
through the rails on the bottom of the breadboard.  We had produced a full device schematic before 
the design review, and had analyzed it to minimize the risk of a mistake being in our design.  All 
these circuits would be placed on the back of a PCB which will have its front mounted to the bottom 
of the breadboards, and will be inside a shielded enclosure, therefore minimizing the risk to the 
user when they use our device. 
 

3.1.2 Graphical User Interface 
The GUI has 2 radio buttons to configure power values, 120 spinboxes to display a voltage value of a 
given breadboard row, 124 checkboxes to mark whether a given row is being written or not, and 2 
buttons to specify users’ commands. The whole GUI was built using Tkinter in Python [6]. The 
breadboards were retrieved online [7] and displayed on the window using Tkinter canvas widget. 
Furthermore, all the buttons and check marks are responsive and configurable.  
 

3.1.3 Hardware Timing & Bandwidth Calculations 
The response time of our device is extremely important in its effectiveness at tackling circuit 
debugging.  A full board write, including a voltage level change, would take around 1 ms to 
complete, while a full board write without a voltage level change would take 960 µs.  These are 
worst case estimates, and most board writes would be far shorter.  Additionally, the simplest way to 
decrease these response times would be to increase the bandwidth between the control and data 
acquisition blocks, as discussed in chapter 3.4.1 as a future hardware improvement to our design. 
 

3.2 Unknown, Uncertainties, Testing Needed 
Due to the inaccessibility to the lab, we are unable to implement any hardware for our project past 
the design phase. This includes ordering our parts, testing our components, soldering our 
components onto the PCB, and attaching the PCB to the breadboard. Without a lab, assembling 
these components and verifying they were assembled properly would be very difficult. To verify 
that our design’s IO expanders read and write 5V and 3.3V to the breadboard, we would need to go 
through a voltage verification process. This involves using an oscilloscope to debug the I2C 
communication between the IO expanders and microcontroller. The verification process would 
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consist of setting the IO expanders to a predetermined output state, and using the multimeter to 
ensure the output on the breadboard matches the desired output as configured through the 
microcontroller. An oscilloscope probed between the data acquisition block and the microcontroller 
measuring voltage would be integral to verifying that data is being transferred from the breadboard 
rows to the microcontroller. The microcontroller is also integral in verifying the functions in usblib, 
but this is a component we cannot configure with our limited resources. Even if orders were not 
delayed due to the pandemic, the limited time we have is insufficient to properly set up and test the 
microcontroller. 
 

3.3 Ethics and Safety 
There are a number of safety issues that could arise depending on the user’s decision in creating a 
circuit. Careless actions such as using too high a voltage or shorting a line somewhere could damage 
used chips or burn certain components. The user should be wary of powering a component at too 
high a current and voltage, as touching such components could cause burns. A regular breadboard 
is typically rated at 5W [8], so operating components at values above this could result in parts 
catching on fire or exploding, which endangers people in the surrounding area. As a result, the 
circuitry we are using operates at a maximum of 5V, with current to each pin at a low value.  
 
The ACM Code of Ethics and Professional Conduct specifies avoiding harm, ‘unless there is a 
compelling ethical reason to do otherwise.’ [9] In accordance with these guidelines, we will shield 
our circuitry from the user such that it is not easily tampered with. The higher wattage elements of 
our device will not be accessible to the user, so they will not be able to come in contact with 
anything that could cause harm. With a commercial product, we would also warn the user of 
potential consequences of poor circuitry design. 
 
Our approach to the potential safety issues with our device fall in line with the first IEEE code of 
ethics: “to hold paramount the safety, health, and welfare of the public, to strive to comply with 
ethical design and sustainable development practices, and to disclose promptly factors that might 
endanger the public or the environment” [10]. The safety of the user will always be of utmost 
importance.  
 

3.4 Project Improvements 
There are a number of improvements that can be done on our design.  While some of these 
improvements require large scale changes to the current hardware, some improvements can be 
done with minimal to no hardware changes to the existing design.  
 

3.4.1 Hardware Improvements 
The first improvement to our design would be to increase the number of modular breadboards 
available to users.  The current design is unable to support an increase in the number of modular 
breadboards without large scale hardware architecture changes.  This would include an overhaul of 
the power supply circuits to accommodate the increased power draw, a new microcontroller with a 
larger number of IO pins and I2C communication ports to handle the increased number of IO 
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expanders required to increase the number of IO expanders.  Additionally, a good deal of the 
communication facilitation hardware such as the level shifters would need to be changed, as 
changing to a more complex microcontroller would likely operate at a lower voltage level than our 
current one.  Finally, the software would also need to be rewritten to function on the new 
microcontroller.  
 
The second improvement to our design would be to increase the communication speed between the 
control block and the data acquisition block.  The current microcontroller is capable of clocking the 
data acquisition block hardware at 1 MHz.  The microcontroller is the bottleneck in our current 
hardware, as it is only capable of clocking I2C communication at speeds 16 times slower than the 
microcontroller’s clock frequency.   As the microcontroller is clocked at 16 MHz, which is the 
maximum clock speed for this IC, this means any further increase in clock speed would require a 
different microcontroller.  However, replacing the microcontroller would only yield a maximum 
70% increase in bandwidth, as the data acquisition block can only handle a maximum clocking 
frequency of 1.7 MHz.  Any further increases would require changes to the IO expanders used in the 
data acquisition block.  Bandwidth could be increased by a maximum of 1000% from the original by 
selecting a new microcontroller capable of communicating over SPI at speeds up to 10 MHz, as the 
IO expanders in our design have variants that use SPI instead of I2C, and are capable of handling 
much higher clocking speeds.  However, utilizing the SPI IO expanders would require a much larger 
number of pins on the microcontroller, and the higher clocking speeds would require more careful 
design considerations for placing the ICs and routing the copper on the board.  
 

3.4.2 Software Improvements 
The third improvement to our design would be to test and develop glitch detection functionality. 
Our existing design is already capable of asynchronously recognizing input state changes, and 
capturing them for the user to view the changing state that triggered an interrupt in the IO 
expander.  This is accomplished by using the interrupt-on-change pin functionality of the IO 
expanders, allowing the microcontroller to detect the IO expander interrupt, and read back the 
input state of the IO expander at the time of the pin change.  This functionality would allow users to 
detect glitches in their logic,  and determine exactly where and when they are occurring, allowing 
for much easier debugging. 
 
The final improvement to our design would be to improve the functionality of the GUI to support 
automation of testing and validation by implementing a block-based programming interface 
specifically for this purpose.  The current GUI is designed to support debugging, and is incapable of 
automating testing and validation of circuits, as this functionality is delegated to the software 
library written to facilitate communication with the device.  A further improvement of our project 
would be to implement this functionality into our GUI, allowing users to automate testing and 
validation using a graphical interface instead of writing code to interface with the device. 
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3.4.3 Design Approach Improvements 
Our initial approach to this project strongly took into account the limited time available to complete 
it.  This meant that our initial design had to take into account the design time for the schematic 
design, board layout, board assembly, and software features.  Because of this, our original design 
was built on a limited scale, and only included a limited number of IO expanders.  However, if 
instead the project timeline spanned a year instead of the 8 weeks we have, a number of aspects of 
our design could have been more comprehensively developed and improved.  
 
The current hardware design cannot support faster communication between the data acquisition 
and control blocks, and is also unable to support any increase in the number of modular 
breadboards it can support.  If instead we had a year to work on this project, we would have further 
improved our design to support a greater number of modular breadboards, along with faster 
communication speeds between the data acquisition and control blocks.  However, this would 
greatly increase the complexity of our schematic design, board layout design, and also the assembly 
time of our PCB due to the increased complexity of our hardware architecture, and increased 
number of ICs to place on the board.  
 
Additionally, the increased complexity of our hardware would also cause the software development 
to be more complicated as well.  Overall, if the schedule had been extended to a full year, the initial 
planning and early design phases would have been far more crucial to the success of the project. 
Along with this, comprehensive advance scheduling of the project’s progress that still maintained a 
strong degree of flexibility in case of surprise problems appearing in the process would be 
absolutely essential to the success of our project.  
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4. Progress Made on First Project 
The first project we worked on was a portable bluetooth music player, aiming to reduce the bulk of 
listening to music while exercising. Before spring break and transition to our second project, we 
made considerable progress after the first design review, including the submission for the early 
bird PCBway order to our TA and the research and confirmation of our software scope for the 
project.  

 
 
 
 

 
 

 
Because a key point of our project was sizing the PCB, a small and compact board layout was 
integral to our design. Figure 10 is a representation of how small of a footprint we could size our 
components on. This board layout passed the PCBway audit and was the most we could do before 
the COVID-19 pandemic shut down PCB ordering. The important subsystems on the board layout 
are numbered and listed to clarify the physical organization. 
 

Table 1. Software scope for Portable Bluetooth Music Player 

Reuse  Develop 

SD file system management OLED display interface 

Audio Transmission Buttons configuration 

 

Additionally, during the first design review, Professor Kumar pointed out the insufficient software 
details of this device. After doing some extensive research, we were able to define our software 
scope as the following: SD file system management, OLED display interface, audio transmission, and 
buttons configuration. The audio transmission describes the process of decoding MP3 files and 
encoding it to SBC, so that we can transmit data via UART. We know that there are multiple open 
source libraries that we can reuse to our advantage due to the time pressuring nature of the course. 
Therefore, Table 1 accurately partitions the sections of software we will reuse and develop. We will 
be using MBED’s library to access the SD card as a file system [11]. And, we will be using libsndfile 
to decode MP3 and encode SBC [12]. Lastly, we will also be responsible for stitching all the software 
sections and FSM together to meet real time requirements. 
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