

Button	Remapping	for	GameCube	Games	
such	as	Super	Smash	Bros	Melee	

ECE445 Final Paper Report

Michael Qian, Yeda Wu, Srikanth Yaganti

Group 14

TA: Evan Widloski

05/06/2020

	

	

	

ii

Abstract	

This paper describes our completed senior design project. The objective of this project is to allow
GameCube players to remap their controller buttons to alternate button configurations. This
functionality exists in many modern console systems such as the Sony PlayStation or the Nintendo
Switch but was never developed for the GameCube. Being able to remap buttons has various uses for
GameCube games since it allows users to customize each game’s gameplay to their own preferences.
Our final product consists of a PCB that would be connected between the GameCube console and
controller as well as a phone app that would allow users to set their own button configurations.

iii

Contents	

1. Introduction ... 1
2. Design .. 3

2.1 Design Procedure ... 3
2.1.1 Microcontroller ... 3
2.1.2 GameCube Read/Write Algorithms for Controller/Console Interface Subsystems 3
2.1.3 Remapping Algorithm ... 3
2.1.4 Config Selection Subsystem .. 3
2.1.5 Config Creation Subsystem ... 4
2.1.6 PCB .. 4

2.2 Design Details ... 5
2.2.1 Microcontroller ... 6
2.2.2 Controller/Console Interface Subsystems ... 6

Level Shifters .. 6
GameCube Bits ... 6
Interrupts vs Loop .. 6
C vs Assembly ... 6
Write Algorithm ... 7
Read Algorithms ... 8

2.2.3 Remapping Algorithm ... 8
2.2.4 Config Selection Subsystem .. 9

Buttons and LEDs ... 10
Bluetooth Module .. 10

2.2.5 PCB .. 11
2.2.6 Power .. 11

3. Verification ... 12
3.1 Write Verification ... 12
3.2 Read Controller Verification ... 12
3.3 Read Console Verification .. 12
3.4 Remapping Verification .. 12
3.5 User Buttons Verification ... 14

4. Costs ... 15
5. Conclusions .. 16
6. References ... 17

1

1.	Introduction	
The project we have been working on is the “Button Remapping for GameCube” project. Our project
goal is to take user inputs on a GameCube controller and remap them into alternative values according
to some user specified remapping configuration. A few additional goals for our project include having
negligible delay from the remapping, having an easy way to configure and reconfigure the remappings
stored in the microcontroller, and having the ability to toggle between configurations. Beyond these
objectives, we also prioritized minimizing the cost of production and the physical size of our product.

The block diagram in Figure 1 shows an overview of the functionality of our project design. It can be
divided into four essential subsystems: the config selection, the config creation, the controller interface,
and the console interface. The config selection subsystem consists of an array of buttons and LEDs that
allow the user to reset, modify, and toggle between remapping configurations stored within the
microcontroller. This subsystem is the primary interface with users and thus has been designed to
optimize ease of use and clarity. The config creation subsystem represents the interface between the
microcontroller and a phone app we designed which communicate with each other through a Bluetooth
module. The controller subsystem and the console subsystem have the purpose of communicating
between the microcontroller and the GameCube controller and console. Their main requirements are to
match the original bus protocol of the GameCube and to ensure a minimum delay in the signal.

There are also the power requirements for this design. The GameCube console supplies an internal
3.43V and a 5V to the controller. The microcontroller and the config creation subsystem both require a
5V supply but the 5V supply from the console doesn’t provide enough current for all the components in
our project. Therefore, an external 5V supply was required.

This project also includes a considerable software component. In order to enable button remappings,
we wrote functions that can read and write in GameCube’s specific protocol. In addition to this, the
functions must be able to interpret and respond to the various commands that the console sends and
remap the responses of the controller. Furthermore, we wrote a software application to allow users to
create configurations and send them over to the microcontroller.

2

Figure 1. Top-level block diagram of the entire design

Figure 2. The finished product with labels.

3

2.	Design	

2.1	Design	Procedure	

2.1.1	Microcontroller	
We had considered various different microcontrollers while designing our project but ended up
choosing the ATmega328 after evaluating both the hardware and software requirements of our project.
The microcontroller had to manage the communication between itself and the GameCube console, the
controller, and the Bluetooth module. It also required enough IO pins to handle an array of buttons and
LEDs. Additionally, the microcontroller must be capable of generating a 1MHz signal in order to replicate
the GameCube bus protocol. Lastly, the microcontroller must have enough on-chip memory to store up
to ten button remapping configurations and must be programmable in C and assembly. The ATmega328
checked all these requirements and had the additional advantages of being relatively inexpensive and
available in a small, easy-to-solder package [1].

2.1.2	GameCube	Read/Write	Algorithms	for	Controller/Console	Interface	Subsystems	
GameCube bits are in a non-UART format [2]. This requires us to write our own code for reading and
writing bits. For reading bits, we had to decide between using pin change interrupts or busy wait loops
to detect and read bits. For writing bits, we had to decide between using either timer interrupts or delay
loops to keep signals high/low for set durations of time. The benefit of using interrupts is that other
actions can occur while the interrupts are not being handled, and the detriment of using interrupts is if
there is a non-negligible delay when entering and exiting the interrupt. The benefit of using loops is that
it is more straightforward to write, but the detriment is that no other actions can occur while polling for
a pin change. We ultimately chose to use loops for both reading and writing because there was too
much delay between entering and exiting interrupts for reading and writing to be implemented on a 16
MHz microcontroller. In order to use interrupts, we would need a faster and costlier microcontroller.

Another design decision was to determine if we should use C or assembly to write the read and write
algorithms. The benefit of using C is that it is easier to code using. The benefit of using assembly is that
we would be able to accurately know the timings of every operation. We have decided to use assembly
because we determined that having exact control over pins was more important than ease of coding on
a microprocessor with a slow clock speed.

2.1.3	Remapping	Algorithm	
We also needed to determine the remapping algorithm for the controller. One method is to poll the
controller with the microcontroller when the console polls the microcontroller, then remap the values
and send it back to the console. This method is straightforward, but it may take too long for the
microcontroller to respond back to the console. Another method is to use the microcontroller to poll the
controller, remap the buttons, save that value, and send it immediately to the console when receiving
the console polls command. We chose to implement the second method because we determined that
the delay of the first method would be too long.

2.1.4	Config	Selection	Subsystem	
We decided to have 3 buttons for the user. One button would toggle between configurations. Another
button is for resetting the configurations. The third button is for switching between the 2 modes: the
button remapping mode and the configuration editing mode. To determine if a button is pressed, we
could either use pin change interrupts or poll for the values. Pin change interrupts are beneficial
because the button press can be handled immediately when the button is pressed, but the downside is
that the interrupts would be lost when interrupts are turned off in time-critical sections of code. Polling
is beneficial when interrupts are off during most of the runtime. The downside of polling is that we will

4

miss button presses if we do not poll often enough. We chose to use polling because, for the majority of
the time, interrupts are turned off due to constantly polling for reads and performing writes. Through
manual testing we determined that we poll fast enough to detect button presses.

2.1.5	Config	Creation	Subsystem	
We decided that an easy way for users to create configurations is through their computer. Users can
create a simple config.txt file on their computer where they can write up to ten of their button
remappings. After creating their file, all users have to do is run the python script we have created to
send their configurations to the button remapping module. This script communicates with the
remapping module via Bluetooth, specifically through HC-05. When the user runs the script and sends
config data, the module will parse the config data and store it in structs for each of the ten
configurations. This allows users to easily switch between all of their configurations.

2.1.6	PCB	
The main considerations taken while designing the PCB layout were to minimize the size of the board, to
ensure ease of solderability, and to reduce the delay on the signal path between the console and the
controller. We also followed many general PCB design standards outlined in the IPC-2221 while
designing our board [3]. This includes decisions such as filling in all unused planes with ground to
improve power dissipation and using the current requirements of signals to calculate appropriate trace
widths as described by equation (2.1).

	𝑚𝑖𝑛. 𝑡𝑟𝑎𝑐𝑒	𝑤𝑖𝑑𝑡ℎ	 = 	 !
(#$%&')*+,-.&//)×!.34

(5$6.,7''&.)
8.894×(5$6.)&5:&'$)7'&)!.##

)!.34 (2.1)

5

2.2	Design	Details		

Figure 3. Schematic of the entire design

Figure 4. PCB layout of our design

6

2.2.1	Microcontroller	
The microcontroller we are using is the ATmega328. Along with the two connectors and the Bluetooth
module, it is also connected to a crystal oscillator which generates a 16MHz clock signal. This clock
speed was chosen even though the data rate of the GameCube was 1MHz because we wanted to use as
little time as possible with the remapping algorithm to reduce the delay. To support this clock speed, the
ATmega328 needed to be powered with 5V since the performance of the microcontroller dropped at
lower voltages and higher clock speeds [1]. Lastly, a decoupling capacitor was added to this chip to
decrease the noise interference from the power supply.

2.2.2	Controller/Console	Interface	Subsystems	

Level	Shifters	
The logic level of the GameCube bus protocol is 3.43V but the ATmega328 is powered by a 5V supply
and thus produces signals that run at 5V. Therefore, the microcontroller cannot be directly connected to
either the Gamecube console or controller in order to avoid damaging any of these components. The
solution is to place a level shifter both between the microcontroller and the console and between the
microcontroller and the controller. The specific level shifter we chose was the BOB-12009. We chose it
because of its very low propagation delay of 5ns and because it had multiple channels which took care
of both locations where level shifters were needed on a single chip [4].

GameCube	Bits	
Zero and one bits are represented in GameCube’s unique protocol. A zero bit is low for 3µs and then
high for 1 µs. A one bit is low for 1 µs and then high for 3 µs [2]. We must follow this practice if we want
to write 0 and 1 bits. For reading bits, to determine if the bit is a 0 or 1, we can probe the line 2µs after
the line goes low.

Figure 5. Zero and one bits for GameCube [2]

Interrupts	vs	Loop	
We first tried determining if we could read/write using interrupts. We wrote some basic code to time
how quickly we can jump in and out of an interrupt. The fastest square wave we achieved was 1.6 µs on
a microcontroller with a clock speed of 16 MHz. This means that we would need a microcontroller that
was significantly faster in order for the interrupt handling delay to be considered insignificant.

C	vs	Assembly		
In order to achieve precise timings, assembly was used for the reading and writing of bits. This idea was
inspired by NicoHood’s Arduino Nintendo Library [5]. This is to guarantee that our code is waiting the
exact amount of time necessary for the next pin read or pin write. The issue with using C can be
illustrated in the example below. Supposed we have a loop to output 0 bits:

7

The issue with this code is that we hold slightly longer than 3µs due to the fact that we will be branching
back to the start of the loop. In addition to this, we are not certain of how the code compiles to
assembly so we are unsure of how to account for the <condition> and <afterthought>. If we wrote this
in assembly, we can know exactly how many clock cycles each operation is, and thus account for the
jump and any other logic by using the exact amount of NOPs necessary to hold a pin high/low for a
certain amount of time.

Write	Algorithm	

Figure 6. The write algorithm allows the microcontroller to send a specific byte sequence from a uint8_t
array when the user specifies the addr and write_length.

8

Read	Algorithms	

Figure 7. The read controller algorithm allows the microcontroller to send a specific byte sequence from
a uint8_t array when the user specifies the addr and read_length. The read console algorithm differs
from the read controller algorithm because the user doesn’t specify the read length. Instead, the
algorithm determines how much to read. It will read 1 byte for the init command, 1 byte for the origin
command, and 3 bytes for the poll command [2].

2.2.3	Remapping	Algorithm	
The naive method requires the microcontroller to poll the GameCube controller and read the response
before being able to respond to the console (see Figure 8). Polling the controller takes 4 ∗ 24	 = 	72	µ𝑠.

9

This is because each bit takes 4 µs to send, and there are 24 bits in the polling request [2]. Reading the
controller’s response take 4 ∗ 8 ∗ 8 = 256	µ𝑠 because we must read 8 bytes of data from the
GameCube controller. This means that the naive method has at least a 328 µs delay between the
microcontroller receiving a poll command and responding with the remapped buttons. This takes too
long as normally a GameCube controller responds to the console in roughly 4-5 µs [2].

For the chosen method, we are able to respond to the console directly after detecting the read. Steps 1
and 4 take 72 µs each because they are both poll commands. Steps 2 and 5 take 256 µs because they are
both poll responses. In total, all steps but step 3 will require 72 + 72 + 256 + 256	 = 	656	µ𝑠. This
means that we can handle any game that polls slower than 656 µs without skipping poll commands.

A poll command occurs at variable rates. For Super Smash Bro’s Melee, the rate is fixed at 8 ms, but for
other games it may be different. For example, the GameCube options menu polls from 0.7 ms to 19 ms
[5]. That is why we chose to conservatively poll the controller right after the console polls the
microcontroller. This way, we can always guarantee that the microcontroller won’t be communicating
with the controller when the console tries to communicate with the microcontroller.

Figure 8. Comparison of polling methods.

2.2.4	Config	Selection	Subsystem		
This subsystem is integral for users to create their own button configurations and for setting and
sending configurations to the button remapping module. The most important part of this subsystem is
the communication between the python script, which users can use to send their configs, and the
module. In order to achieve proper communication we designed a simple communication protocol.
Basically, when sending configuration information from the script we send a string of bytes. First byte
always represents how many bytes are left to read. The next byte specifies which config’s button
remapping we are sending followed by twelve bytes of button data in order seen in the config struct
below. This way when the button remapping module receives the data, we can easily parse it and store
that config information on the microcontroller.

10

Storage of these configurations is done simply via a struct for each configuration. After parsing the data
from the python script, we store button data into the corresponding configuration struct.

For users to create configurations, all they need to do is create a config.txt file. In the config.txt file, they
can create up to 10 configurations. To create a config, first the user has to state the number of the
config(0-9) and then in the button order above write “button : new button value” on each line. For
example, “A:B” means button A will be mapped to button B in this config. Users can have all 10 configs
one after the other just by separating each config by their numbers.

Our polling algorithm requires us to constantly read and write. The reads have active waits and writes
have delays. These sections of code require interrupts to be turned off so using pin interrupts for
detecting button presses would not be possible. We instead chose to poll for button presses between
remappings and during active wait of detecting a console command.

Buttons	and	LEDs	
We needed three buttons to adjust the configurations of the microcontroller. We opted for 12mm push
buttons for this task because of their small size and durability. We needed LEDs to display the current
configuration being used and the current mode of the microcontroller (the button remapping mode or
the configuration editing mode). We used a red 7-segment LED and a red radial LED to accomplish these.
We determined that 330Ω resistors were needed to produce the desired brightness (10mA of forward
current) for forward voltages of 2V [6]. This was determined using equation (2.2).

𝑅 = (𝑉$%& − 𝑉')/𝐼' = (5𝑉 − 2𝑉)/10𝑚𝐴 = 300𝛺 (2.2)

Bluetooth	Module	
The bluetooth module we have selected is the HC-05. It converts the incoming bluetooth signal into a
UART interface with a programmable baud rate [7]. This makes it very compatible with the ATmega328.
Since the bluetooth communication would only be in one direction (from the phone app to the

11

microcontroller), only the TX pin of the HC-05 needed to connect to the microcontroller as seen in
Figure 3.

2.2.5	PCB	
The final design of our PCB (shown in Figure 2) is a two-layered board measuring 57mm by 55mm. The
board is compacted to close to its absolute minimum size given the components we are using which will
reduce the overall cost of fabrication. All the components we use are through-hole in order to ensure
solderability. We also added a structural drill hole near the console/controller connectors to fix the
connector wires to the board with a zip tie in order to add some structural support. To minimize the
delay between the connectors and the microcontroller, the minimum trace length was used and no vias
were used thus decreasing the resistance of the trace and the propagation delay of the signal path.

2.2.6	Power	
Most of the power needs of this project come from the microcontroller and the Bluetooth module which
require up to 7mA and 40mA respectively [1] [7]. The microcontroller has an operating voltage range of
3.3V to 6V but it is recommended to at least have 5V when using a 16MHz oscillator. Thus, the entire
design requires a conservative estimate of about 50mA of current at 5V. The GameCube console
supplies a 3.43V and a 5V power to the controller. The 5V from the console has a current limit of 30mA
[2]. Therefore it cannot supply power to the rest of the design. Therefore, an external power supply in
the form of a barrel connector and a USB cable was necessary.

	 	

12

3.	Verification	
3.1	Write	Verification			
We connected the microcontroller to one of the console’s ports. Then, we open up Super Smash Bro’s
Melee and enter a game. When the console sends the poll command, the microcontroller sends the
“jump” command. We then verified that the character jumped on the screen.

Figure 9. Write verification through using a logic analyzer. When zooming into the microcontroller’s
response. it can be seen that 0 bits are written as 3µs low then 1µs high, and 1 bits are 1µs low and 3µs
high. Additionally, at the end of the response, it can be seen that the last bit sent is a 1.

3.2	Read	Controller	Verification	
This verification was performed after verifying that we can properly write 0’s and 1’s. We used 2
microcontrollers. One microcontroller would output a fixed length byte sequence once to the second
microcontroller with bits in the GameCube protocol. The second microcontroller would know the length
of the byte sequence and read it in. If the value that the second controller read was correct, it will turn
on an LED.

Read controller was also verified by having the microcontroller sit between the controller and console.
The console would poll the microcontroller and microcontroller poll the controller like in the polling
timings explained later. Then, we would perform no remappings and send the last poll response the
controller outputted to the console. The controller acted normally when we started and played a game.

3.3	Read	Console	Verification	
We set up 3 LEDs for the 3 commands that the console can send: init (0x00), origin (0x41), and poll
(0x400302) [8]. Each LED would only light up if a specific command was read. When we plug in the
microcontroller to one of the console’s ports, we see 1 LED light up quickly for the poll command, then 1
LED light up quickly for the origin command, and finally 1 LED stay lit for the poll commands.

The console sends the poll command which also indicates that the controller was detected and
initialized. If the console did not receive a valid response for the init command, it would not send the
origin command, and if the console did not receive a valid response for the origin command, it would
not send the poll commands.

3.4	Remapping	Verification		
We verified that the naive method of remapping doesn’t work because the microcontroller responds too
slowly to the controller.

13

Figure 10. The console initializes the microcontroller and sends out the origin and poll commands.
Unfortunately, the microcontroller’s poll response was too slow, so the console sends out an init
command because it believed that the microcontroller disconnected from the console (a). Parts b, c, and
d show close ups of the origin, remapping, and init sequences respectively.

To verify that the second remapping method worked, we tested the remapping unit with a game and
also probed the logic lines (Figure 11).

Figure 11. Console and controller logic lines were probed when the user decided to remap the B button
to perform the action of the Start button (a), and it is clear that we alternate between the console
sending a poll and receiving a response from the microcontroller and the microcontroller sending a poll
and receiving a response from the controller. When observing the controller line, it is clear that the B
button is the only button that is pressed (b). When the microcontroller responds to the console, the
Start button is the only button that is pressed (c). This indicates that the B button was remapped to the
Start button, which was expected.

14

	
3.5	User	Buttons	Verification	
When we press the toggle button, we notice that the 7 segment LED changes to the next number and
the configuration has changed to the next configuration. When we press the reset button, the 7
segment LED turns off and the buttons are now in the default configuration. When we press the change
mode button, the LED for the mode toggles on/off, and we enter the other mode on the controller.

	 	

15

4.	Costs	
At $50 per hour and 10 hrs per week for 3 people for 16 weeks, we expect this to result in $24,000 for
the labor cost. Below is the cost breakdown for one manufacturing one part:

Part Quantity Cost (prototype) Cost (bulk)

ATmega328
Microcontroller

1 1.90 (Digikey, ATMEGA328-PU-
ND)

1.58 (Digikey, ATMEGA328-PU-
ND)

Gamecube extension
cord

1 5.85 (Amazon, company: Mizar) 2.75 (Amazon, company: Pegly)

HC-05 Bluetooth
Module

1 19.14 (Digikey, 1738-1164-ND) 2.58 (DHgate, seller: Tenypure)

Assorted resistors,
capacitors, buttons,
crystals, led

1 3.00 (Digikey, est.) 0.25 (Digikey, est.)

7-segment Display 1 1.24 (Digikey, est.) 0.83 (Digikey, est.)

5V Power supply 1 4.69 (Amazon, company: Yosoo) 2.30 (DHgate, seller: Vizgiz)

Level shifter 1 2.95 (Sparkfun, BOB-12009) 0.54 (Digikey, 296-21929-2-ND)

PCB 1 2.30 (PCBWay) 0.13 (PCBWay)

Total 41.07 10.96

In total, if we wish to create 10 parts, then the overall development cost will be $24,410.70.

	 	

16

5.	Conclusions	
Overall we believe we had a very successful project. We can successfully communicate the GameCube
console and GameCube controller using our button remapper module as a middle man. We can properly
read and write to the GameCube controller to mimic controller communication with the console using
our button remapper module. We are able to successfully take the button inputs we read from the
controller and remap the button inputs quickly to ensure that there is no perceivable delay in
communication between the GameCube controller and the GameCube console. We are also successfully
able to read and write to the GameCube console mimicking the GameCube communication protocol. In
addition users can easily create configurations by editing config.txt and running the python script to
send user configs to the button remapper module. We believe that the simplicity of our button
remapper module and creating of configs allow anyone to quickly understand and utilize our product.

Next steps for our project will be to enable remapping for more input data such as joysticks. We believe
that we can expand this project to remap data to reduce sensitivity of the joysticks, inverting the joystick
movements, and even using joystick movements as button inputs. In addition we believe expanding the
user config creations to phones is the next step for setting configurations on the button remapping
module. Finally we would upgrade the display on the button remapping module to show the button
remaps for the current configuration that is being used.

In terms of ethics, we hold responsibility for our project, which is the first rule in the IEEE Code of Ethics
[9]. Additionally, our product could introduce a situation within professional gaming if the device is used
when non-Nintendo/performance-enhancing devices are not allowed. This would be an unethical use of
our device. In addition to this, it may be possible for people to tamper with our microcontroller such
that certain button presses can lead to button macros. These two situations violates the IEEE Code of
Ethics #9 because, if used in such a way, the trust in and reputation of professional gamers will be
harmed [9].

	
	 	

17

6.	References	

[1] “8-bit Atmel Microcontroller with 16/32/64KB In-System Programmable Flash,” ATMEL. [Online].
Available: https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-
microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf. [Accessed: 30-Mar-2020].

[2] “Nintendo Gamecube Controller Protocol,” Nintendo Gamecube Controller Pinout. [Online].
Available: http://www.int03.co.uk/crema/hardware/gamecube/gc-control.html. [Accessed: 30-
Mar-2020].

[3] “Generic Standard on Printed Board Design,” IPC. [Online]. Available: http://www-
eng.lbl.gov/~shuman/NEXT/CURRENT_DESIGN/TP/MATERIALS/IPC-2221A(L).pdf

[4] “BSS138 N-Channel Logic Level Enhancement Mode Field Effect Transistor,” On Semiconductor.
[Online]. Available: https://www.onsemi.com/pub/Collateral/BSS138-D.PDF. [Accessed: 30-Mar-
2020].

[5] NicoHood. Arduino Nintendo Library. (Version 1.2.1) [Source code].
https://github.com/NicoHood/Nintendo. [Accessed: 30-Mar-2020].

[6] “Model No.: YSD-160AR4B-8” CHINA YOUNG SUN LED TECHNOLOGY CO.,” LTD. [Online].
Available:https://cdn.sparkfun.com/datasheets/Components/LED/YSD-160AR4B-8.pdf. [Accessed:
30-Mar-2020].

[7] “HC-05 -Bluetooth to Serial Port Module,” ITeadStudio. [Online]. Available:
http://www.electronicaestudio.com/docs/istd016A.pdf. [Accessed: 30-Mar-2020].

[8] Dowty, M. (2004). Unicone Gamecube Emulation [Source code].
http://svn.navi.cx/misc/trunk/wasabi/devices/unicone/fpga/gamecube/gamecube.v. [Accessed:
30-Mar-2020].

[9] “IEEE Code of Ethics,” IEEE. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 30-Mar-2020].

