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1 Introduction

1.1 Objective

For generations, humans have used manual labor to curb aggressive weeds, which leech nu-

trients and resources from staple crops. As agricultural demands and farm sizes grew, the

industry started to heavily rely on chemical herbicides to ensure maximum yields. Herbicide

use, however, has not been as harmless as originally believed. Long-term exposure to chem-

ical runoffs has been linked to kidney, liver and spleen complications in humans [1]. Recent

developments have also shown that the most commonly used herbicide contributes to a host

of developmental problems in pregnancies, leading to disruption of sex hormones and even

miscarriages [2]. Still, it is hard for the agricultural industry to eliminate this practice, as

there are no cost- and labor-effective, fully chemical-free alternatives. To reduce herbicide’s

use in crops, we propose a solution of an automatic robotic weeding arm that can identify

post-emergent weeds and cut them with an attached blunted sheer. Automated weeders do

exist in the industry, but they still rely on herbicides and just promise localized exposure

[3]. This does not mitigate the risks of the herbicides themselves as repeated exposure to

these specific chemicals is still harmful. Since there are existing agricultural robots in the

market that can navigate the difficult terrain of crop fields, such as the TerraSentia [4], we

are not focusing on the robotic base. Rather, we consider the arm as a potential extension

of a robotic base, allowing us to target the specific problem of chemical-free weed removal.

Our arm focuses on the identification of various seedling species and automization of the

weeding process. The arm is fitted with a camera that can detect different seedlings through

neural network training and can enable real-time video monitoring from a connected com-

puter screen. Once the arm can detect the unwanted plant, it can maneuver and cut the

weed with its motorized sheer. We decided to cut instead of pulling the weeds because cut-

ting requires less force and it is more efficient when treating tall plants. To accomplish this

function, the arm will have four motorized joints with 180 degrees of freedom, allowing the

arm to trim weeds on either side. The flexibility of the arm allows it to attack hard-to-reach

plants effectively. With the arm’s trainability it can also be easily repurposed to perform

many different agricultural functions. For example, once the arm can learn from various

plant databases, it could easily be used to pick fruit or trim foliage just by switching out the

shear-hand attachment for other applicable tools.

1



1.2 Background

Weed control through herbicide has recently become controversial for its carcinogenic poten-

tial [5] and environmental-contamination concerns [6]. Currently, farms use about 44 gallons

of herbicide per acre to kill unwanted weeds [7]. This practice comes with risks. Runoff from

the herbicide sprays threatens the natural ecosystem such as groundwater and soil. Herbicide

use has also affected human lives, as research has linked an increase in cancer with the use of

glyphosate, a popular weed killer used in the industry [5]. In terms of economics, chemical

crop control has been slowly bleeding farmers dry. Agrochemical companies have been sell-

ing genetically modified seeds that can resist the herbicide, but this action only boosts their

herbicide sales over time as weeds have evolved into “superweeds” which require higher and

stronger doses of chemicals to kill [8]. This ballooning effect can be clearly noted in the soy

industry, where, as of 2008, 92% of soy plants had become glyphosate-resistant [9], requiring

the industry to begin using genetically modified crops with herbicide and liquid herbicide in

tandem. Meanwhile, agrochemical companies have quietly quintupled their prices for both

genetically modified seeds and chemical herbicide within the last two decades [10]. Ethically,

herbicide use must be phased out, but regressing to the use of human labor is not a realistic

solution. Modern agriculture requires a solution to streamline the repetitive act of finding

and destroying specific plants while keeping the desired crops safe and healthy. Naturally,

robotics can provide an answer which is both ethical and cost-effective in the long run.
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1.3 Visual Aid

Figure 1: Physical Design
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Figure 2: Robot - Front View

Figure 3: Robot - Side View
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Figure 4: Primary Cutting Mechanism

Figure 5: Complementary Cutting Mechanism
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1.4 High-Level Requirements

• The recognition unit, including camera and the neural network model trained by V2

Plant Seedlings Dataset [11], can successfully detect and differentiate weeds (e.g. black-

grass, loose silky-bent, etc.) from other crop seedlings (e.g. wheat, maize, sugar beet),

with a classification accuracy over 75%.

• The location of weeds (with respect to ground and homing position) can be successfully

determined by camera and ultrasound modules within ± 2 cm errors.

• Assuming no failures in mechanical and software systems, the robotic arm can success-

fully cut off weeds (5-20 cm tall) through the flexible yet torque-sufficient motors, with

an over 75% successful rate.
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2 Design

2.1 Block Diagram

Figure 6: High-level Block Diagram
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2.2 Functional Overview and Block Descriptions

2.2.1 Control Unit

1. Microcontroller

The input/output of the robotic arm is mainly handled by a microcontroller. It com-

municates with 3 motors, Raspberry Pi, ultrasound module and LED. We chose AT-

mega328 because it is affordable, widely commercialized and compatible with many

programming approaches. In order to fully control 3 motors for homing mechanism,

we will connect the motors with SPI bus in series, with 3kΩ pull-up resistor to ensure

the signal to not interfere. It will follow daisy chain configuration, since speed of oper-

ation is a minor factor to determine the success of our project. The SDA, SCL will be

connected to raspberry Pi (I2C). Since ATmega328 only has one SPI bus, I2C is the

option left for Raspberry Pi, which can also optimize the speed. The UART bus will be

connected to the ultrasound module as the ultrasound unit should not have significant

delay which impairs the sensitivity of the arm (UART is slower). Furthermore, the

ultrasound module only sends data to the microcontroller and does not receive any

feedback. The PWM bus will be connected to the LED since LED is doing a simple

response of lighting up if weed is detected.

Requirement Verification

The microcontroller must be

able to receive electrical signal

To test the microcontroller can receive electrical

signal:

(1) Connect the microcontroller to a battery-

voltage converter and verify with a multimeter

to ensure current flows through

The signal transmission be-

tween microcontroller and the

recognition unit can be indi-

cated by the LED

To test LED can indicate detecting status:

(1) Check the LED remains on when running pic-

tures from weed databases through neural net-

work, and off when running pictures from non-

weed databases through neural network

(2) Mix weed and non-weed pictures. Run the pic-

tures through neural network one-by-one

(3) Record true positive, false positive, true nega-

tive and false negative rates
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Figure 7: PCB Schematics

Figure 8: PCB Board

2. Ultrasound

The second component of the control unit is ultrasound, which helps to locate plants

and to control the position of the arm. We plan to use two HC-SR04 ultrasonic modules

to assist plant locating. The modules can be controlled through either Raspberry Pi
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or microcontroller. We chose this ultrasound module because it has a working distance

2cm to 4m, which is sufficient for locating [14]. Its maximum repetition rate of 50us

is fast enough to prevent crashing [14]. HC-SR04 ultrasonic module is also affordable

and compatible with control devices such as Raspberry Pi and microcontroller, and this

gives us more flexibility in terms of designing and troubleshooting. The first module

will be installed at the bottom of the blade to detect the distance between the arm tip

and the ground, as part of the robot’s weeding mechanism. The second module will

be installed on the top of the blade to detect the distance from the blade to the plant,

when the arm tip moves forward to reach the plant.

Requirement Verification

The ultrasound must be able

to detect the distance to an

obstacle with an error margin

within ±3mm

To test distance detection:

(1) Microcontroller code for ultrasound module is

free of bugs.

(2) Experiment each ultrasound module by draw-

ing a line on the table, which is 3cm away from

a wall. Hand-hold each module (connected to

Raspberry Pi and power), and move it from a

distance larger than 3cm to the line

(3) If Raspberry Pi successfully output 3cm±3mm

at the line, the ultrasound module is working

properly
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Figure 9: Ultrasonic Unit Testing Setup

2.2.2 Recognition Unit

1. Camera

The Arducam 5MP OV5647 Raspberry Pi camera module is connected to the Rasp-

berry Pi series board for image detection and real-time video monitoring. The recog-

nition will be assisted by a trained neural network model. The camera was chosen to

maximize cost efficiency with motorized focus lens, IR and sufficient resolution (still

picture resolution 2592×1944 and max video resolution 1080p). The motorized focus

lens aids in detecting the distance from arm tip to plant by focal plane distance calcu-

lation. The IR feature enables vision at night or darkness for real world application.

The resolution can aid to improve neural network accuracy. Arducam 5MP OV5647

has rolling shutter, which scans across the scene rapidly. The camera provides several

options for frame rates, 592×1944 (15fps), 1920×1080 (30fps) and 1280×720 (60fps),

which determine the video resolution for a real-time monitoring system.
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Requirement Verification

The camera must be able to

capture clear images with

a resolution greater than

625×625 to be qualified for

the neural network dataset

images

To test the camera vision:

(1) Connect the camera to Raspberry pi through

ribbon cable

(2) Take 50 pictures with the camera with default

resolution

(3) Verify that at least 95% of the pictures have

resolution over 625×625

The camera must be able to

capture the image in 6 seconds.

To test the speed of photo capturing:

(1) Connect the camera to Raspberry pi through

ribbon cable

(2) Calculate the time of taking a single image

Figure 10: Testing Code of Camera Resolution/Speed

2. Raspberry Pi Board

A Raspberry Pi 3B+ with a 64-bit quad core processor running at 1.4GHz is chosen to

control the camera module and ultrasound sensors. The 1GB SDRAM memory storage

and an additional SD card support are sufficient to store a relative complex trained

neural network model. The Raspberry Pi is responsible for communicating with the

microcontroller, controlling the camera module through the 15-pin MIPI Camera Serial

Interface (CSI) connector and ultrasound sensors through I/O ports.
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Requirement Verification

Raspberry Pi can connect the

camera module to the com-

puter screen for testing and

streaming within a delay ≤ 1s

To test the signal delay:

(1) After connecting the Raspberry Pi to com-

puter through USB port, enable camera mod-

ule through Python Record the monitor screen

to measure the time needed for view shifting

by adjusting camera orientation

The ethernet communication

speed is above 10MB/s

To test ethernet speed:

(1) Test the communication speed through termi-

nal by transferring large files (1GB) through

USB port

3. Neural Network

We will start with a two-layer neural network model and increase the complexity to

achieve higher detection accuracy. The training dataset will be based on the V2 Plant

Seedlings Dataset [11] and Weed Detection in Soybean Crops [15] from Kaggle. These

contain images of 3 kinds of crops (i.e. wheat, maize, sugar beet) and 9 kinds of

weeds (i.e. black-grass, loose silky bent, etc.) seedlings. We will expand the dataset

through basic data augmentation techniques including rotation, flipping, and satura-

tion/brightness adjustment. We may take images by the camera module to expand the

training dataset.

Requirement Verification

The model must reach a clas-

sification accuracy above 75%

To test classification accuracy:

(1) Verify that prediction loss< 0.8, classification

accuracy>75% by the end of the training

The size of the neural net

model is reasonable to be

transferred to Raspberry Pi

To test neural network size:

(1) The size of neural network model is less than

size of the Raspberry Pi SDRAM storage

(1GB)
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2.2.3 Power Unit

1. 12 Volts Rechargeable Lithium Iron Phosphate Battery

A 12 V rechargeable Lithium Iron Phosphate Battery was chosen to power the gear

motors. We chose the 12 V battery to be compatible with higher voltage components

because the gear motors have heavier loads due to the aluminum frame and electronics

components. They would require sufficient power to run at their optimum speeds

(30rpm max and 7rpm max, respectively). We plan on using a rechargeable battery to

better simulate the real-world application of having a free-roaming robot. The Lithium-

Ion Phosphate battery also has a higher maximum recharging cycle (1000-3000) than

a Lead battery (200-1000), and it’s more environmentally friendly [16].

Requirement Verification

The battery must be able to

distribute 12V of power to mo-

tors

To test the battery output

(1) Fully charge the battery

(2) Disconnect from charger

(3) Connect to a multimeter and measure voltage

output

(4) Connect the multimeter to LabView and mon-

itor the voltage for 3hrs to verify a constant

output of 12V with a margin of error of 5%

2. DC-DC Buck Step Down Voltage Converter

Since most of the electrical components run on 5 V, we incorporated a DC-DC Buck

Step Down 12V to 5V Voltage Converter to drive the rest of the circuit. We chose a

voltage converter instead of a regulator because it has a superior power efficiency.

Requirement Verification

The converter must be able to

convert 12V to 5V

To test the functionality of DC converter:

(1) Connect the converter to 12V battery

(2) Use a multimeter to measure whether the out-

put voltage equals to 5V

14



Figure 11: Voltage Converter Schematics

2.2.4 Motor Unit

1. Gear Motors

In our design, we use two gear motors to drive the robot base and elbow. Compared

to a servo motor, the shaft on gear motor can provide the respective joints with better

mechanical support. We chose a DC 12V 7rpm (torque = 30kgcm) gear motor for the

base, which is sufficient to drive the arm (after we consulted a technician in ECEB

machine shop). Because we are not building the mechanical parts, we were only able

to estimate the required torque based on limited information. As such, our estimate

is mainly based on the weight of the Aluminum body. The elbow motor is a DC 12V

30rpm (max torque = 25kgcm; rated torque = 7.4kgcm) gear motor. We chose this

motor due to its higher speed, compared to the base. The two motors were selected

out of 20+ options, as we looked to optimize specifications, cost, shipping dates. These

two motors also have mounted encoders, enabling us to smoothly control the joints and

implement a “homing” mechanism.
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Requirement Verification

The motors must be able to

achieve “homing”

To test whether the motors can implement “hom-

ing” mechanism:

(1) Program and compile code specifying a “hom-

ing” position

(2) Load the code to microcontroller

(3) Connect the microcontroller to each motor

(4) Connect battery to motor and battery-voltage

converter to microcontroller

(5) Verify whether the motor-driven-arm moves to

the “homing” position

The motors must be controlled

by microcontroller to achieve

“cutting” mechanism.

To test “cutting” mechanism:

(1) Program code to conduct “cutting” mecha-

nism

(2) Load the code to microcontroller

(3) Connect the microcontroller to each motor

(4) Run the program to cut the weed

2. Servo Motor

We chose a servo motor with 20kgcm torque to drive the wrist. This was chosen

to balance the cost and the performance, as servo motors are usually cheaper. The

lightweight of the wrist ensures the arm to not tip forward during cutting motions.

This servo motor has a control angle of 270 degrees, enabling sufficient flexibility for

cutting. Its torque of 20kgcm is sufficient to execute cutting. In terms of the rotating

pivot’s stability, this motor is sufficient to drive the shear. The servo runs on 4.8-7.2V,

which can be driven by the same voltage as other 5V electrical components.
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Requirement Verification

The motors must be able to

achieve “homing”

To test whether the motors can implement “hom-

ing” mechanism:

(1) Program and compile code specifying a “hom-

ing” position

(2) Load the code to microcontroller

(3) Connect the microcontroller to each motor

(4) Connect battery to motor and battery-voltage

converter to microcontroller

(5) Verify whether the motor-driven-arm moves to

the “homing” position

The motors must be controlled

by microcontroller to achieve

“cutting” mechanism.

To test “cutting” mechanism:

(1) Program code to conduct “cutting” mecha-

nism

(2) Load the code to microcontroller

(3) Connect the microcontroller to each motor

(4) Run the program to cut the weed
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2.3 Tolerance Analysis

The camera module and ultrasonic distance detection/reaction speed are critical to the

movement of the robotic arm.

To achieve accurate cutting function, the camera needs to first capture clear images and

detect the weed species on the focal plane. According to the datasheet of Arducam 5MP

OV5647 Raspberry Pi camera [17] , the sensor size of the camera is 3.67×2.74 mm (1/4”

format). The camera has an angle of view (AoV) of 54×41 degrees, and a field of view(FoV)

of 2.0×1.33m at 2m. For any camera lens, AoV and FoV are defined in the following image

and equations:

Figure 12: Definition of FoV and AoV [18]

AoV = 2× arctan(
sensor width

2× focal length
) (1)

FoV = 2× tan(
AoV

2
)× distance to object (2)

Therefore, the focal length of the camera can be calculated as

0.003672

2× tan(54◦/2)
≈ 0.274

2× tan(41◦/2)
≈ 0.0036m (3)

As the Raspberry Pi camera lens falls into the standard lens range, it ensures images to not

have any kind of distortion. In order to capture weed and crop images similar to the images

from neural network model training dataset, the ideal images captured by the camera should

have objects take up > 80% of the frame. As all types of weeds are relatively small objects,
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we approximate a field of view to be about 0.5m×0.35m. Then the distance of the lens to

the weed needs to be

FoV

2× tan(AoV/2)
=

0.5

2× tan(54◦/2)
≈ 0.35

2× tan(41◦/2)
≈ 0.5m (4)

to ensure the camera produces focused clear images. As the camera is attached to the arm,

the motion could possibly cause instability that affects the quality of the images.

Ultrasonic distance detection-reaction speed is the last defense to prevent the arm tip from

crashing into plants or ground. Therefore, the arm tip should move at a speed of micro-

controller’s full-cycle computing speed. The start of a full cycle is defined when ultrasound

module outputs alert distance 3cm. The end of a full cycle is defined when the two gear

motors stop moving. Considering the length of the shear (2cm), the tolerant dislocation is

1cm (3cm → 2cm). Using equation

L = vt (5)

1cm > v(arm tip) × t(full cycle). Therefore, the arm tip, based on 3D kinematics calculation,

should move at the speed lower than 1cm/t(full cycle). In other words, if a full cycle takes

1s, the arm tip should not move more than 1cm/s.
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3 Cost and Schedule

3.1 Cost Analysis

Physical Parts Unit

Cost

Quantity Subtotal

Cost

SunFounder 20KG Servo Motor Waterproof

High Torque Servo, SF3218MG Metal Gear

Digital Servo

$14.99 1 $14.99

Yosoo High Torques Worm Geared Motor DC

12V Reduction Motor with Encoder Strong Self-

locking

$29.17 1 $29.17

uxcell DC 12V 7RPM 30Kg.cm Self-Locking

Worm Gear Motor with Encoder and Cable,

High Torque Speed Reduction Motor

$34.99 1 $34.99

Arducam 5 Megapixels 1080p Sensor OV5647

Mini Camera Video Module for Raspberry Pi

Model

$12.99 2 $25.98

Shear from ECE Supply Shop $10 1 $10

Element14 Raspberry Pi 3 B+ Motherboard $49.98 1 $49.98

TMS320F28335 control card $69 1 $69

HiLetgo 5pcs DC-DC Buck Step Down Voltage

Module 6-24V 12V/24V to 5V 3A

$7.59 1 $7.59

SainSmart HC-SR04 Ranging Detector Mod

Distance Sensor

$4.95 1 $4.95

Mighty Max Battery ML9-12 12V 9Ah

Rechargeable SLA Battery

$21.99 1 $21.99

Subtotal: $273.59

Table 1. Physical Parts Cost
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Labor Type Number of

Workers

Hourly

Cost

Total Hours Subtotal

Cost

ECE Machine Shop

Machinist

1 $19 [19] 35 hrs $665

Team 9 ECE Engi-

neers

3 $50 8 hrs × 15 weeks $18,000

Subtotal: $18,665

Table 2. Labor Cost

Combining the physical parts cost and the labor cost, the grand cost for the entire project

is $18938.59.
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3.2 Schedule

Week Sophie & Sowji Lucia

1/20/20 Brainstorm ideas and create project scoping.

Literature review and research on potential hardware and software compo-

nents.

1/27/20 Finish early RFA.

Refine projects with TAs to improve hardware design.

2/3/20 Design block diagram.

Create physical model with AutoDesk.

Draft project proposal.

2/10/20 Edit and submit project proposal.

2/17/20 Communicate with ECE Machine Shop

and obtain feedback on the mechanical

design. Start order physical parts for

the project.

Start image processing and data aug-

mentation to expand training dataset.

2/24/20 Start PCB design. Verify the require-

ments of individual parts, i.e. battery,

motor, sensors, etc.

Finish image processing and data aug-

mentation.

3/2/20 Finalize PCB design. Electri-

cal/mechanical parts assembly and

connection.

Complete the baseline neural network

model.

3/9/20 Order PCB. Continue electri-

cal/mechanical parts assembly and

connection. Create motor motion

control through kinematics.

Improve neural net model performance

to meet >75% requirement.

3/23/20 Design homing system. Connect ultra-

sound to Raspberry Pi. Combine PCB

and the electrical system.

Transfer neural net model to Raspberry

Pi. Test camera and Raspberry Pi con-

nection. Improve camera module de-

tection accuracy.

3/30/20 Test the mechanical and electrical parts

of the arm.

Work on the real-time monitoring sys-

tem. Expand training dataset by tak-

ing pictures with the camera module.

4/6/20 Unit test individual subsystems.
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4/13/20 Final round of testing and debugging the whole project.

Prepare for the demo.

4/20/20 Mock demo.

Improve the whole project based on feedback.

4/27/20 Final demo.

5/4/20 Complete final project report.

Table 3. Project Plan Time Table
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4 Safety and Ethics

Following the IEEE Code of Ethics #1, we aim “to hold paramount the safety, health, and

welfare of the public, to strive to comply with ethical design and sustainable development

practices, and to disclose promptly factors that might endanger the public or the environ-

ment” [20].

There are several potential concerns regarding the safety and ethics related to our project.

One main safety concern is the usage of rechargeable lithium batteries. The batteries are

central to the project as it is the main component of the power unit and intended to supply

power to all other units. While our robotic arm is designed to fit for an outdoor environment,

it needs to function well under direct sunlight or high temperatures. We will carefully check

the datasheet of the chosen battery and ensure it is safe to use in the target environment. In

addition, we will conduct circuit implementation and testing in the lab, which is equipped

with a fire extinguisher and sand bucket. We will also constantly monitor the battery voltage

to avoid over-discharging.

Since the weeding arm is an autonomous system, another potential safety risk is that the

system could unexpectedly get out of control and cause damage to the surrounding environ-

ment. As indicated by the IEEE Code of Ethics #9, we understand it is our responsibility to

“avoid injuring others [and] their properties” [20]. Not only will we carefully check each step

when implementing our system, but we will also design a switch particularly for the weeding

arm that can stop the whole system immediately in case of any emergency. According to

the IEEE Code of Ethics #5, we also strive “to improve the understanding by individuals

and society of the capabilities and societal implications of conventional and emerging tech-

nologies, including intelligent systems.” Hence, we would provide a detailed description of

our robotic design to all of the users for both safety and education purposes.

The blades are important components of the weeding arm to ensure cutting efficiency and

efficacy. They, however, pose a potential safety concern. Sharp blades can easily cause

accidental cuts if not handled with enough care. To prevent any injuries to the users, we

choose to adopt small, blunted shears to trim the weeds in our design. This precaution to

avoid sharp shears will drastically reduce the risk of accidental cuts.

An ethical concern is the source of data used for the neural net model. In order to obtain a

neural net model that can perform accurate detection and classification, we need a relatively

large plant seedling dataset for training. While we do not have access to the field to take

in plant seedling images to construct our dataset, we will mainly rely on online resources.
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Based on the IEEE Code of Ethics #5, we will “be honest and realistic in stating claims or

estimates based on available data” [20]. We will clearly state the datasets we decide to use

for training and honestly report obtained accuracy for classification.

We will only use open-source datasets that are free to share and adapt for non-commercial

use. We have checked the license of V2 Plant Seedlings Dataset [11] to be CC BY-SA 4.0

and Weed Detection in Soybean Crops [15] to be CC BY NC 3.0. In addition, we will also

carefully examine the permission of any additional data, code, and information before using

it. We will ensure “to credit properly the contributions of others” [20] as stated in the IEEE

Code of Ethics #7 to avoid violating the code of ethics.
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