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1. Introduction 
1.1 Problem and Solution 
When it comes to engineering prototyping, the breadboard is the gold standard for early 
hardware testing. However, as the system being prototyped gets larger in size, for example a 
4-bit calculator as implemented in ECE385 for Lab 3, debugging can become extremely 
challenging. This is due to the overlapping clusters of wires, along with limited insight into what 
is going on in each part of the circuit. This increase in complexity makes the difficulty in 
debugging the system significantly larger, and can lead to a strong sense of frustration. This 
experience could potentially drive away people interested in the field of electrical engineering.  
 
The goal of this project is to make debugging easier on a breadboard. We intend to do so in two 
main ways through a smart breadboard. First, we will be able to read digital logic values in every 
row on the breadboard using IO expanders communicating with a microcontroller via I2C. 
Second, the breadboard will be able to write logic values to each of the rows on the breadboard 
using the same IO expanders. The state of the breadboard will be configured by, and 
communicated back to, the host PC. The user will then be able to adjust inputs to their logic 
circuit, and observe the output of their circuit on the PC, like shown in Figure 1. 
 
1.2 Visual Aid 

 
Figure 1. Visual Representation of the Device [1,2] 
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1.3 High-level requirements list 
● The device can read and write logic values at 3.3V or 5V to each row of the breadboard. 
● The device is capable of communicating with a host PC over USB 2.0. 
● The user can configure the device and receive data from the breadboard through a 

command line interface 

2. Design 
2.1 Block Diagram 

 
Figure 2. Block Diagram 

 
Our device can be split into four distinct blocks, shown in figure 2, each with specific functions in 
facilitating the reading and writing of signals on a breadboard. First, the control block consists of 
two components: a microcontroller and I2C Level Shifter. The microcontroller controls the level 
shifter which then manages the signals from the IO expanders in the Data Acquisition block via 
I2C. The control block also features a voltage level selection circuit to distribute the needed 
voltage values to dedicated IO expanders. Second, the power supply block provides necessary 
power to corresponding components. Third, the Data Acquisition block consists of several IO 
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expanders that connect externally to our breadboard with the purpose of reading/writing voltage 
values. Finally, the USB Communication block externally connects to a host PC, through which 
users interact with our device. 
 
2.2 Physical Design 

 
Figure 3. Physical Design 

 
Figure 3 is a physical representation of our device. Each IO expander covers a section equal to 
a quarter of the each breadboard’s rows, totaling 8 IO expanders for two breadboards. There 
will be two IO expanders on each breadboard which toggle connections to the supply voltage 
and ground for the power rails, instead of reading or writing logic values directly to the 
breadboard rows. These IO expanders cannot read logic values from the power and ground 
rails, as they instead function to make or break connections between the power and ground rails 
and the supply voltage and ground for the device. This allows those rails to be used as either 
power rails, or as bus lines if the power supply connections are not enabled. This design choice 
was made to allow greater current draw from the supply rails at the cost of being unable to read 
values directly from any signals the users wired to the supply lines. 
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2.3 Block Level Descriptions 
The device will be mounted to the backs of two 400-tie modular breadboards [3], connecting the 
metal rails on the back of the breadboard to a PCB integrating all the blocks in the design. Each 
of these rails will connect to a line on one of the eight IO expanders in our design. This allows 
the device to interface with each signal in the logic circuit implemented on the board, as well as 
read and write logic values in each of these rows. Figure 3 shows a typical 400-tie breadboard, 
onto the back of which our PCB would be attached to access the signals in each row. 
 
2.3.1 Control 
The control block will consist of an ATmega32U4 microcontroller that will communicate with the 
host PC over USB and the data acquisition block over I2C. Its EAGLE schematic is shown below 
in Figure 4. The microcontroller will use a single wire to control a voltage selection circuit, the 
EAGLE design of which can be seen in Figure 5, to set the operating voltage of the IO 
expanders. The microcontroller will operate at 5V from the 5V regulated supply from the power 
system. Due to the required capability of operating at multiple voltages, a level shifter is required 
between the microcontroller and I2C peripheral devices. The EAGLE sketch for the level shifter 
is modeled in Figure 6.  
 
The control system will also process the instructions and configuration information sent from the 
host PC, appropriately configure the required peripheral devices, acquire requested data, and 
transmit it back to the host PC. This process will be handled on the device, at the request of the 
host PC. 
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Figure 4. MCU ICSP Programming Circuit 

 
 
 

 
Figure 5. Voltage Selection Circuit 
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Figure 6. I2C Level Shifter 

 
 
 
 
 

Requirements Verifications Points 
(15) 

Microcontroller 
1) Communicate with Data 

Acquisition block over 
I2C 

Verification Process: 
1) Communication Verification 

a) Obtain a multimeter. 
b) Configure a predetermined output 

state for IO Expander pins. 
c) Place ends of multimeter at each 

predefined row and ground. 
d) Verify that each row holds its 

corresponding logic value, as 
defined in the microcontroller 
software. 

10 
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Voltage Selection Circuit 
1) Switch between an 

operating voltage of 
either 5V or 3.3V  

Verification Process: 
2) Voltage Verification 

a) Set voltage selection circuit to for 
5V 

b) Obtain a multimeter 
c) Place ends of multimeter at output 

and ground 
d) Ensure voltage difference is 5V with 

an allowed variation of 10% 
e) Repeat for 3.3V 

5 

Table 1. Requirements and Verification for Control System 
 
2.3.2 Power System 
The power system will consist of two power circuits in order to provide the board with two 
voltage levels: one at 5V and one at 3.3V. Each of these power circuits will consist of a voltage 
regulator and its needed components (capacitors and resistors). The 5V Power Circuit uses the 
XRP6272IDBTR-F voltage regulator, as seen in Figure 7. We decided to use the same voltage 
regulator for the 3.3V Power Circuit as well, because it can provide the desired output with 
minimal configuration. Figure 8 shows we just add a 390kΩ resistor between the VOUT and 
ADJ pins, as well as a 105kΩ resistor between the ADJ pin and ground to change the output 
from 5V to 3.3V. 
 
 
 

 
Figure 7. 5V Power Circuit 

 

https://en.wiktionary.org/wiki/k%CE%A9
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Figure 8. 3.3V Power Circuit 

 
The voltage regulators take in the input voltage and supply a different output voltage. One 
regulator will supply 5V, and the other will supply 3.3V. Because the output of the first regulator 
is close to the input, the component we use must be a low dropout regulator. These 
components must have a large current tolerance as there is a relatively large amount of current 
going through the circuit at peak draw. 
 

Requirements Verifications Points 
(10) 

5V Power Circuit 
1) Provide voltage at 5V 

+/- 10% 
2) Supply a maximum of 2 

A 

Verification Process: 
1) Voltage Verification 

a) Obtain a multimeter 
b) Place ends of multimeter at output 

and ground 
c) Ensure voltage difference is 5V with 

an allowed variation of 10% 
2) Current Verification 

a) Obtain a multimeter. 
b) Probe current of power supply with 

equivalent load resistance of ~2.5 
ohms. 

c) Ensure current is within 1.7-2.0A 
range. 

5 
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3.3V Power Circuit 
1) Provide voltage at 3.3V 

+/- 10% 
2) Supply a maximum of 2 

A 

Verification Process: 
1) Voltage Verification 

a) Obtain a multimeter. 
b) Place terminals of the multimeter at 

output and ground. 
c) Ensure voltage difference is 3.3V 

with an allowed variation of 10%. 
2) Current Verification 

a) Obtain an multimeter 
b) Probe current of power supply with 

equivalent load resistance of ~1.7 
ohms. 

c) Ensure current is within 1.7-2.0A 
range. 

5 

Table 2. Requirements and Verification for Power System 
 
2.3.3 Data Acquisition 
The data acquisition block consists of eight IO expander ICs, interfacing with the control block’s 
microcontroller via I2C. Each IO expander also utilizes a 2-channel NMOS IC to disable and 
enable supply voltage and ground connections to the corresponding supply rails on the 
breadboard, as shown in Figure 9.  The IO expanders must operate at either 3.3.V and 5V, and 
communicate with the microcontroller at whichever operating voltage they are using at the time. 
This is done using a high-speed bidirectional I2C level shifter, specifically used in I2C 
applications. This allows the microcontroller to always operate at 5V, while allowing the 
peripheral devices to operate at a user-defined voltage. Each IO expander makes 16 
connections to individual rows on the breadboard, allowing for read/write operations to occur on 
any row on the breadboard. In addition, the power and ground rails can be connected to the 
logical high voltage and ground respectively, or be disconnected from the supply for use as 
normal bus lines. 
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Figure 9. Single IO Expander 

 
 

Requirements Verifications Points(10) 

IO Expanders 
1) Read and write 5V and 

3.3V voltage values to 
the breadboard 

Verification Process: 
1) Voltage Verification 

a) Obtain a multimeter. 
b) Set IO Expander to write 5V 
c) Place terminals of the multimeter at 

row and ground. 
d) Ensure it is 5V with allowed +/- 10% 

variation. 
e) Repeat with 3.3V 
f) Repeat for each IO Expander. 

10 

Table 3. Requirements and Verification for Data Acquisition 
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2.3.4 USB Communication 
The USB block communicates with the PC via a standard USB 2.0. In order to communicate 
effectively between the host PC and our breadboard, we are planning to use the open source 
library libusb [4] to manage the USB communication with the microcontroller. This library allows 
users to communicate with the hardware without additional work like building a dedicated 
kernel. There are multiple benefits for choosing libusb. First, it is an active open source library 
which our users have the benefit of accessing online forums. Second, it is compatible with 
multiple platforms, including Windows, IOS, Linux, etc. Third, libusb already supports multiple 
languages. It very well suits our needs because the educational breadboard could be used 
across a broad scope of operating systems and coding environments for beginners from diverse 
backgrounds. 
 
With our design, we chose to synchronously transfer I/O data between our device and the PC. 
We chose to use synchronous device I/O because we are only dealing with 257-bits of data via 
USB 2.0. 257-bits could be broken down into three sections: 128-bits comes from the value of 
the voltage rows; 128-bits of read/write mode of each row on the breadboard; and the last bit is 
to configure the reading voltages of the IO expander (either 3.3V or 5V). Because we are only 
dealing with a single device with 257-bits of data, using synchronous transfer is the best method 
[5].  
 
Lastly, building a Python library on top of the microUSB controller is necessary. The library will 
consist of functions to initialize USB communication, functions to configure the state of the 
device, functions to update the data from the breadboard, and lastly functions to read out the 
data values.  Additionally, the library will parse the data into readable format, so that the user 
can conveniently specify which rows on the breadboard to write on.  
 
The MicroUSB circuit as shown below in Figure 10. was based on the hardware design of the 
Arduino Leonardo schematic [6], a development board utilizing the same ATmega32U4 
microcontroller. 
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Figure 10. MicroUSB Circuit 

 

Requirements Verifications Points (15) 

microUSB 
1) Synchronously read 

data from the 
microcontroller to the 
PC 

2) Synchronously Write 
data from the PC to 
microcontroller 

Verification Process: 
1) Reading Verification 

a) Store ‘10101010’ in the 
ATmega32U4 microcontroller’s RAM 

b) Using usblib in Python, pyusb, to 
perform control_transfer() [7] 

c) Set all function parameters 
according to data sheet from 
ATmega32U4 

d) Specifically, check bmRequestType 
parameter is set read 

e) After calling, make sure that 
‘10101010’ shows on the PC 

2) Writing Verification 
a) Using usblib in Python, pyusb, to 

perform control_transfer() [7] 
b) Set all function parameters 

according to data sheet from 
ATmega32U4 

c) Specifically, check bmRequestType 
parameter is set write 

d) Set data parameter to ‘01010101’ 
e) Ensure we receive ‘01010101’ in 

ATmega32U4 microcontroller’s RAM 

15 

Table 4. Requirements and Verification for USB Communication 
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Figure 11. Operation FSM 

 
Upon startup, the breadboard goes through an initialization process before waiting in a state to 
receive instructions from the host PC. The device performs a different operation based on the 
instruction it receives, then transmits resulting data back to the host PC. The model of the flow 
through which the device goes through is visualized above in Figure 11, the Operation FSM. 
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Figure 12. Software Flowchart  

 
In figure 12, we are able to show the process of how software operates in our device. When the 
device gets turned on, it first initializes all communications between the PC, microcontroller, IO 
expander, and voltage supply. It then enters a wait state for the PC to send either a reading or 
writing command. Depending on the command, the device will communicate with the IO 
expander and voltage supply to perform different tasks. After finishing its task, the device will 
return to its wait state, waiting for the next PC command. 
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2.4 Tolerance Analysis 
The USB transfer functionality is absolutely critical to the success of this project. Due to this, 
and our limited collective experience in USB communication, the USB data transfer was 
determined to be the greatest risk to the completion of our design.  For the completion of this 
block, we decided to utilize the open-source library libusb to facilitate the USB communication 
between the host PC and our device.  In libusb, there are two types of device I/O transfer 
methods: synchronous or asynchronous. In general, if the host is reading from the device, two 
steps are performed: 

1. A request for data is sent to the device 
2. The requested data will be received by the host 

If the host is writing on the device, two steps are also performed: 
1. Data is sent to the device 
2. Host will receive a signal containing the success of the process 

The difference between the synchronous and asynchronous methods is the number of function 
calls the two use. The synchronous method only performs on the function call for the above two 
steps. This is simpler because when the call returns, it tells the host if the transfer was complete 
or not. On the other hand, the asynchronous method performs 2 seperate function calls for 
reading or writing. This makes the transfer method able to communicate with multiple 
end-points, but also increases the complexity.  
 
For our device, we decided to use synchronous I/O transfer because we are only dealing with 
one device and one array of data. We will be using USB 2.0 full-speed that has a rate of 
12±0.24 Mbits/s or roughly 1.5 MB/s [8]. This satisfies the rate we needed as the total amount of 
data we will be transmitting between the PC and the device is 257-bits. However, there are 
potential problems that could cause issues. First, once a request is sent, it cannot be canceled. 
Second, when performing a synchronous call, the function will be blocked. In other words, the 
application will be in the libusb function until the transfer is completed. If one of our IO Expander 
does not respond, the command line on the PC would be frozen without displaying any error 
messages. 
 
The USB 2.0 transfer speed is more than sufficient to transfer the maximum amount of data 
from the IO Expanders, even when they are operating at the maximum possible speed the 
microcontroller can manage. The complete I2C data request framework is as shown in Figure 
13. below : 
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Figure 13. I2C Data Read Framework 

 
This framework requires 46 SCL clock cycles to complete a full 16-bit read from each IO 
expander, as shown in the framework in Figure 13.  To receive data from each IO expander, this 
requires a total of 46 * 8 = 368 clock cycles to read from all IO expanders.  Using the 
microcontroller’s maximum possible I2C clock speed of 1MHz, this brings the maximum 
theoretical full-board read frequency to ~2.72 kHz, or a total period of 368μs. Since each of 
these transfers contains a maximum of 128 bits of data (16 IO pins * 8 IO expanders), the data 
transfer rate of the IO expander block is 348 kb/s. This is far lower than the USB 2.0 full-speed 
standard of 12Mbit/s, and still will be the bottleneck in read operations.  
 

3. Differences 
3.1 Overview 
The original project was the Educational Smart Breadboard [9], originally proposed by 
Chinemelum Chibuko, Minseong Kim, and Mostafa Elkabir in Spring 2018. It was a standalone 
device capable of reading voltages from the rows of a breadboard and displaying them on an 
integrated touchscreen display. Their design divided the full breadboard into 8 distinct 
sub-boards that were multiplexed into the microcontroller using a hierarchical tree mux 
structure, in addition to a smaller dedicated space for chip testing. Our design reads and writes 
logic values in every row on the breadboard using IO expanders and a microcontroller via I2C. 
The state of the breadboard will be configured by and communicated back to a host PC, which 
the user can use to adjust inputs and observe the output of their logic circuit.  

 

https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=25937
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Our approach to tackling the problems with debugging complex breadboard circuits differs from 
the original design in a few key details. First, instead of incorporating multiplexers in our design, 
we use IO expanders. With this implementation, instead of only reading subsections of the 
breadboard, we are able to read and write to individual rows on the breadboard. This also 
eliminates the need for a dedicated chip testing area, as our whole breadboard can achieve this 
functionality. However, the trade-off here is that our design is unable to read analog signals. 
Second, we dropped the standalone touch screen functionality in favor of a PC connected 
configurable device via USB 2.0. This lets the user conveniently configure the device with the 
help of usblib to gain command line experience. 
 
3.2 Analysis 
The original project’s design had a hierarchical tree muxing structure as the core of its data 
acquisition architecture. This muxing structure allowed the ATmega328 microcontroller at the 
core of their processing block to select a particular sub-board on their breadboard device[9]. 
Muxing the breadboard rows into a set of shared pins on the microcontroller allowed the original 
design to read analog values on the breadboard directly from the microcontroller’s ADC pins. 
However, this design choice limited the microcontroller to operating on a single sub-board at a 
time, disconnecting all unselected sub-boards from the microcontroller. This limitation greatly 
inhibits testing of more complex logic circuits, as their design’s chip testing “can handle any chip 
that has stable input-output relationship that allows for fixed truth table.”[10] This restriction on 
chip testing prevents the user from using the testing functionality of the board on more complex 
circuits, such as register ICs or FSM circuits. Our design choice of using IO expanders removed 
this restriction, as our design was capable of writing logic values to any combination of rows on 
the breadboard simultaneously. This capability allows for testing and debugging of any IC or 
logic circuit where a known set of inputs should produce a known set of outputs, such as with a 
register IC or FSM circuit. This design difference greatly increases the functionality of our 
device, and maximizes its utility for debugging, testing, and verification applications.  
 
While a key drawback of using IO expanders in place of muxing the breadboard rows to the 
microcontroller’s ADC pins is that we are limited to reading only digital logic values from the 
breadboard, we decided this was not a crucial feature for our design for two reasons. The first is 
that the type of analog circuits being tested on a breadboard by entry-level users would likely 
have fewer crucial test points for debugging, and therefore have less of a need for a more 
complex device similar to ours. However, digital logic circuits can have a large degree of 
complexity that would be well suited to having a large number of test points for debugging, 
which is why we prioritized digital circuit utility. The second is that the range of analog voltages 
that a device similar to ours would be able to tolerate is extremely limited, as the voltage range 
for simple ADC ICs places limits on the maximum voltage that can be applied to the rows on the 
breadboard. This limited voltage tolerance on ADC ICs limits the range of analogue values that 
can be present on the breadboard without damaging sensitive components. Digital logic circuits 
are not restricted by these low voltage tolerances, as most logic ICs operate at supply voltages 
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< 5V, which is where our microcontroller and IO expanders operate. This means that they are 
not as affected by the limited voltage tolerance range. 
 
The second key difference is the interface through which users interact with the device. The 
original project was designed to be a standalone device utilizing a touchscreen display to allow 
for user configuration and data output. This design decision inhibited automated testing and 
verification, because it required the user to input the full truth table for whatever logic circuit or 
IC into the touch display to run tests. However, by instead making the device a USB peripheral, 
and making the user configure the device and read data through a Python library, we give the 
user a greater degree of freedom in operating the device. By instead using a code library to 
allow the user to configure the device and read data from it, automated testing and verification is 
possible. Along with this, testing of FSMs can now be done, as inputs to a circuit can be set, 
and the resulting state changes can be directly measured in the logic circuit without excessive 
probing. This decision to shift away from the touchscreen display greatly increases the utility of 
our device, while simultaneously decreasing the cost by eliminating an expensive component. 

4. Cost and Schedule 
4.1 Cost Analysis 
4.1.1 Labor 

We will use the equation 3.1 to estimate the labor cost for this project:  
 

Labor Cost = Salary * Total Work Time * Number of Members 

Equation 3.1 Labor Cost 
 
According to the Engineering Career Center in UIUC, the average starting salary for a BS 
graduate is $78,159 per year in the 2017-2018 report [11]. Converting to hours, it will be $37.58 
per hour per person. As for the total work time, according to the Office of Provost in UIUC, we 
are expected to put three times the amount of work time in the number of credit hours we 
receive per week [12]. That is 12 hours of work time per week for Senior Design. Lastly, we 
have a total of 3 engineers in this group. The total labor cost will sum up to be $21,646.08 for a 
semester. 
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4.1.2 Cost 

Part # Qty Mft Vendor Desc Price/Unit Total 

ATmega32U4 1 Microchip Mouser 8-bit AVR Microcontroller 4.08 4.08 

1N4148W-7-F 1 Diodes 
Incorporated 

Mouser SMD Switching/Power Diode 0.16 0.16 

MF-MSMF050-
2 

1 Bourns Mouser 500mA Resettable Fuse 0.42 0.42 

MH2029-300Y 2 Bourns Mouser 30 Ohm Ferrite Bead 0.10 0.20 

TCA9517DGK
RQ1 

1 Texas Instruments Mouser Level-Shifting I2C 
Buffer/Repeater 

1.38 1.38 

SN74HCS32Q
PWRQ1 

1 Texas Instruments Mouser 4-Channel OR Gate 0.59 0.59 

XRP6272IDBT
R-F 

2 MaxLinear Mouser LDO Adjustable Voltage 
Regulator 

0.98 1.96 

TPS2115APW
R 

1 Texas Instruments Mouser 2-Channel Manual Switching 
Power Mux 

2.33 2.33 

MCP23017T-E
/SO 

8 Microchip Mouser 16-bit I2C I/O Expander 1.20 9.60 

0476420001 1 Molex Mouser MicroUSB Female Connector 0.77 0.77 

BSS138DWQ-
7 

4 Diodes 
Incorporated 

Mouser 2-Channel NMOS Transistor 0.40 1.60 

CG0603MLC-0
5E 

2 Bournes Mouser ESD 5V TVS Diode 0.41 0.82 

FSM6JH 1 TE Connectivity Mouser Tactile Momentary 
Pushbutton Switch 

0.13 0.13 

CSTNE16M0V
51Z000R0 

1 Murata Mouser 16.0 MHz Ceramic Resonator 0.31 0.31 

Table 6. Cost for Single Order of Device Components 
 
In table 6, after adding up all of the components, the device’s largest components will cost 
$26.35. This is assuming we are only making one device. If we order parts in bulks, the cost of 
components will be a lot less. 
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Part # Qty Mft Vendor Desc Price/Uni
t 

Total 

ATmega32U4 500 Microchip Mouser 8-bit AVR Microcontroller 3.39 1,695.00 

1N4148W-7-F 500 Diodes 
Incorporated 

Mouser SMD Switching/Power Diode 0.053 26.50 

MF-MSMF050-
2 

500 Bourns Mouser 500mA Resettable Fuse 0.238 119.00 

MH2029-300Y 1000 Bourns Mouser 30 Ohm Ferrite Bead 0.021 21.00 

TCA9517DGKR
Q1 

500 Texas Instruments Mouser Level-Shifting I2C 
Buffer/Repeater 

0.798 399.00 

SN74HCS32QP
WRQ1 

500 Texas Instruments Mouser 4-Channel OR Gate 0.299 149.50 

XRP6272IDBT
R-F 

1000 MaxLinear Mouser LDO Adjustable Voltage 
Regulator 

0.538 269.00 

TPS2115APWR 500 Texas Instruments Mouser 2-Channel Manual Switching 
Power Mux 

1.38 690.00 

MCP23017T-E/
SO 

4000 Microchip Mouser 16-bit I2C I/O Expander 0.91 3,640.00 

0476420001 500 Molex Mouser MicroUSB Female 
Connector 

0.48 240.00 

BSS138DWQ-7 2000 Diodes 
Incorporated 

Mouser 2-Channel NMOS Transistor 0.124 248.00 

CG0603MLC-0
5E 

1000 Bournes Mouser ESD 5V TVS Diode 0.107 107.00 

FSM6JH 500 TE Connectivity Mouser Tactile Momentary 
Pushbutton Switch 

0.097 48.50 

CSTNE16M0V5
1Z000R0 

500 Murata Mouser 16.0 MHz Ceramic 
Resonator 

0.198 99.00 

Table 7. Cost for Bulk Order of Device Components 
 
If we were to mass produce the product and buy the parts in bulks the cost for the components 
will be a lot less. Assuming that we have 500 devices in one batch, in table 7, our cost per 
device is not $15.5 dollars per device. If we order a higher volume per batch, the price will 
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decrease even more. For convenience, we will proceed with using $15.5 as bulk production cost 
to calculate price tag per device. 
 
4.1.3 Sum of Grand Total 
Summing up the grand total, we estimate the total device’s development cost is $21,672.49. 
However, if we want to put a price tag on this device, we will have to sum the bulk production 
cost per unit, board assembly fee, as well as revenue cost. This could be better explained with 
Equation 3.2.  
 

Price = Bulk Production per Unit + Assembly Fee + Revenue 

Equation 3.2 Device Price Calculation 
 
Using the PCB assembly calculator [13] and preliminary estimates for device requirements, we 
estimated that the cost for assembling 500 units is $1,467.35, which is $2.935 per device. As for 
packaging, the cost of the material for packaging will be $255 [13], which is $0.51 per device. 
Additionally, we estimate it takes a minute to package 3 devices. The total assembly labor cost 
will be minimum wage multiplied by the number of packaging hours, that is $22.9 or $0.0458 per 
device.  In the end, the total cost for bulk production will be $9,485.4 which is $18.99 per device. 
 
4.2 Schedule 

Week Task (Assuming an 8-week period to build a working product) 

3/23 Write up RFA by 3/27 

Arpan: Research possible project ideas and determine differences in implementation 

Joseph: Research possible project ideas and determine problem and success criteria 

Robert: Research possible project ideas and determine solution components 

3/30 Write up Proposal by 4/3 

Arpan: Research power system and safety and ethics concerns 

Joseph: Determine problem, provide background and draft high level requirements 

Robert: Research solution components and design block diagram 

4/6 Begin Design Document 

Arpan: Research components, draw power schematics and discuss safety concerns 

Joseph: Research USB drivers and software side of the project 
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Robert: Work on interfacing the control system and data acquisition 

4/13 Finish Design Document by 4/17 

Arpan: Finish possible 8-week timeline for device completion 

Joseph: Begin work on the command line interface for programming values 

Robert: Compile schematics, submit PCB design for approval and order required parts 

4/20 Prepare for and attend Design Reviews by 4/24 

Arpan: Prepare presentation and oral explanation of power system 

Joseph: Prepare presentation and oral explanation of USB communication 

Robert: Prepare presentation and oral explanation of control and data acquisition 

4/27 Finish up Final Report by 5/6 

Arpan: Assemble components and build device; Order new parts if necessary 

Joseph: Integrate feedback from design review for USB communication and interface 

Robert: Build device and integrate feedback from design review for relevant sections 

5/4 Submit Notebooks by 5/7 

Arpan: Begin debugging and testing edge cases in power circuits 

Joseph: Debug and test cases in usb communication and interface 

Robert: Begin debugging of control system and data acquisition 

5/11 Complete and demo final product 

Arpan: Finalize assembly of device and demo the product 

Joseph: Finish coding and software portion of the project 

Robert: Interface control, power, data and computer systems for a working project 
Table 8. Calendar for Project Goals  
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5. Discussion of Ethics and Safety 
There are a number of safety issues that could arise depending on the user’s decision in 
creating a circuit. Careless actions such as using too high a voltage or shorting a line 
somewhere could damage used chips or burn certain components. The user should be wary of 
powering a component at too high a current and voltage, as touching such components could 
cause burns. A regular breadboard is typically rated at 5W [14], so operating components at 
values above this could result in parts catching on fire or exploding, which endangers people in 
the surrounding area. The circuitry we are using operates at a maximum of 5V, with current to 
each pin at a low value. The ACM Code of Ethics and Professional Conduct specifies avoiding 
harm, ‘unless there is a compelling ethical reason to do otherwise.’ [15] In accordance with 
these guidelines, we will shield our circuitry from the user such that it is not easily tampered 
with. The higher wattage elements of our device will not be accessible to the user, so they will 
not be able to come in contact with anything that could cause harm. With a commercial product, 
we would also warn the user of potential consequences of poor circuitry design. 
 
Our approach to the potential safety issues with our device fall in line with the first IEEE code of 
ethics: “to hold paramount the safety, health, and welfare of the public, to strive to comply with 
ethical design and sustainable development practices, and to disclose promptly factors that 
might endanger the public or the environment” [16]. The safety of the user will always be of 
utmost importance.  
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