

Digital Logic Smart Breadboard

ECE 445 Design Document
Group 28

Arpan Choudhury arpanc2
Robert Conklin rmc2

Joseph Yang josephy2

TA: Yichi Zhang

4/18/2020

1

ECE 445 Design Document 0
1. Introduction 2

1.1 Problem and Solution 2
1.2 Visual Aid 2
1.3 High-level requirements list 3

2. Design 3
2.1 Block Diagram 3
2.2 Physical Design 4
2.3 Block Level Descriptions 5

2.3.1 Control 5
2.3.2 Power System 8
2.3.3 Data Acquisition 10
2.3.4 USB Communication 12

2.4 Tolerance Analysis 16
3. Differences 17

3.1 Overview 17
3.2 Analysis 18

4. Cost and Schedule 19
4.1 Cost Analysis 19

4.1.1 Labor 19
4.1.2 Cost 20
4.1.3 Sum of Grand Total 22

4.2 Schedule 22
5. Discussion of Ethics and Safety 24
6. Citations 25

2

1. Introduction
1.1 Problem and Solution
When it comes to engineering prototyping, the breadboard is the gold standard for early
hardware testing. However, as the system being prototyped gets larger in size, for example a
4-bit calculator as implemented in ECE385 for Lab 3, debugging can become extremely
challenging. This is due to the overlapping clusters of wires, along with limited insight into what
is going on in each part of the circuit. This increase in complexity makes the difficulty in
debugging the system significantly larger, and can lead to a strong sense of frustration. This
experience could potentially drive away people interested in the field of electrical engineering.

The goal of this project is to make debugging easier on a breadboard. We intend to do so in two
main ways through a smart breadboard. First, we will be able to read digital logic values in every
row on the breadboard using IO expanders communicating with a microcontroller via I2C.
Second, the breadboard will be able to write logic values to each of the rows on the breadboard
using the same IO expanders. The state of the breadboard will be configured by, and
communicated back to, the host PC. The user will then be able to adjust inputs to their logic
circuit, and observe the output of their circuit on the PC, like shown in Figure 1.

1.2 Visual Aid

Figure 1. Visual Representation of the Device [1,2]

3

1.3 High-level requirements list
● The device can read and write logic values at 3.3V or 5V to each row of the breadboard.
● The device is capable of communicating with a host PC over USB 2.0.
● The user can configure the device and receive data from the breadboard through a

command line interface

2. Design
2.1 Block Diagram

Figure 2. Block Diagram

Our device can be split into four distinct blocks, shown in figure 2, each with specific functions in
facilitating the reading and writing of signals on a breadboard. First, the control block consists of
two components: a microcontroller and I2C Level Shifter. The microcontroller controls the level
shifter which then manages the signals from the IO expanders in the Data Acquisition block via
I2C. The control block also features a voltage level selection circuit to distribute the needed
voltage values to dedicated IO expanders. Second, the power supply block provides necessary
power to corresponding components. Third, the Data Acquisition block consists of several IO

4

expanders that connect externally to our breadboard with the purpose of reading/writing voltage
values. Finally, the USB Communication block externally connects to a host PC, through which
users interact with our device.

2.2 Physical Design

Figure 3. Physical Design

Figure 3 is a physical representation of our device. Each IO expander covers a section equal to
a quarter of the each breadboard’s rows, totaling 8 IO expanders for two breadboards. There
will be two IO expanders on each breadboard which toggle connections to the supply voltage
and ground for the power rails, instead of reading or writing logic values directly to the
breadboard rows. These IO expanders cannot read logic values from the power and ground
rails, as they instead function to make or break connections between the power and ground rails
and the supply voltage and ground for the device. This allows those rails to be used as either
power rails, or as bus lines if the power supply connections are not enabled. This design choice
was made to allow greater current draw from the supply rails at the cost of being unable to read
values directly from any signals the users wired to the supply lines.

5

2.3 Block Level Descriptions
The device will be mounted to the backs of two 400-tie modular breadboards [3], connecting the
metal rails on the back of the breadboard to a PCB integrating all the blocks in the design. Each
of these rails will connect to a line on one of the eight IO expanders in our design. This allows
the device to interface with each signal in the logic circuit implemented on the board, as well as
read and write logic values in each of these rows. Figure 3 shows a typical 400-tie breadboard,
onto the back of which our PCB would be attached to access the signals in each row.

2.3.1 Control
The control block will consist of an ATmega32U4 microcontroller that will communicate with the
host PC over USB and the data acquisition block over I2C. Its EAGLE schematic is shown below
in Figure 4. The microcontroller will use a single wire to control a voltage selection circuit, the
EAGLE design of which can be seen in Figure 5, to set the operating voltage of the IO
expanders. The microcontroller will operate at 5V from the 5V regulated supply from the power
system. Due to the required capability of operating at multiple voltages, a level shifter is required
between the microcontroller and I2C peripheral devices. The EAGLE sketch for the level shifter
is modeled in Figure 6.

The control system will also process the instructions and configuration information sent from the
host PC, appropriately configure the required peripheral devices, acquire requested data, and
transmit it back to the host PC. This process will be handled on the device, at the request of the
host PC.

6

Figure 4. MCU ICSP Programming Circuit

Figure 5. Voltage Selection Circuit

7

Figure 6. I2C Level Shifter

Requirements Verifications Points
(15)

Microcontroller
1) Communicate with Data

Acquisition block over
I2C

Verification Process:
1) Communication Verification

a) Obtain a multimeter.
b) Configure a predetermined output

state for IO Expander pins.
c) Place ends of multimeter at each

predefined row and ground.
d) Verify that each row holds its

corresponding logic value, as
defined in the microcontroller
software.

10

8

Voltage Selection Circuit
1) Switch between an

operating voltage of
either 5V or 3.3V

Verification Process:
2) Voltage Verification

a) Set voltage selection circuit to for
5V

b) Obtain a multimeter
c) Place ends of multimeter at output

and ground
d) Ensure voltage difference is 5V with

an allowed variation of 10%
e) Repeat for 3.3V

5

Table 1. Requirements and Verification for Control System

2.3.2 Power System
The power system will consist of two power circuits in order to provide the board with two
voltage levels: one at 5V and one at 3.3V. Each of these power circuits will consist of a voltage
regulator and its needed components (capacitors and resistors). The 5V Power Circuit uses the
XRP6272IDBTR-F voltage regulator, as seen in Figure 7. We decided to use the same voltage
regulator for the 3.3V Power Circuit as well, because it can provide the desired output with
minimal configuration. Figure 8 shows we just add a 390kΩ resistor between the VOUT and
ADJ pins, as well as a 105kΩ resistor between the ADJ pin and ground to change the output
from 5V to 3.3V.

Figure 7. 5V Power Circuit

https://en.wiktionary.org/wiki/k%CE%A9

9

Figure 8. 3.3V Power Circuit

The voltage regulators take in the input voltage and supply a different output voltage. One
regulator will supply 5V, and the other will supply 3.3V. Because the output of the first regulator
is close to the input, the component we use must be a low dropout regulator. These
components must have a large current tolerance as there is a relatively large amount of current
going through the circuit at peak draw.

Requirements Verifications Points
(10)

5V Power Circuit
1) Provide voltage at 5V

+/- 10%
2) Supply a maximum of 2

A

Verification Process:
1) Voltage Verification

a) Obtain a multimeter
b) Place ends of multimeter at output

and ground
c) Ensure voltage difference is 5V with

an allowed variation of 10%
2) Current Verification

a) Obtain a multimeter.
b) Probe current of power supply with

equivalent load resistance of ~2.5
ohms.

c) Ensure current is within 1.7-2.0A
range.

5

10

3.3V Power Circuit
1) Provide voltage at 3.3V

+/- 10%
2) Supply a maximum of 2

A

Verification Process:
1) Voltage Verification

a) Obtain a multimeter.
b) Place terminals of the multimeter at

output and ground.
c) Ensure voltage difference is 3.3V

with an allowed variation of 10%.
2) Current Verification

a) Obtain an multimeter
b) Probe current of power supply with

equivalent load resistance of ~1.7
ohms.

c) Ensure current is within 1.7-2.0A
range.

5

Table 2. Requirements and Verification for Power System

2.3.3 Data Acquisition
The data acquisition block consists of eight IO expander ICs, interfacing with the control block’s
microcontroller via I2C. Each IO expander also utilizes a 2-channel NMOS IC to disable and
enable supply voltage and ground connections to the corresponding supply rails on the
breadboard, as shown in Figure 9. The IO expanders must operate at either 3.3.V and 5V, and
communicate with the microcontroller at whichever operating voltage they are using at the time.
This is done using a high-speed bidirectional I2C level shifter, specifically used in I2C
applications. This allows the microcontroller to always operate at 5V, while allowing the
peripheral devices to operate at a user-defined voltage. Each IO expander makes 16
connections to individual rows on the breadboard, allowing for read/write operations to occur on
any row on the breadboard. In addition, the power and ground rails can be connected to the
logical high voltage and ground respectively, or be disconnected from the supply for use as
normal bus lines.

11

Figure 9. Single IO Expander

Requirements Verifications Points(10)

IO Expanders
1) Read and write 5V and

3.3V voltage values to
the breadboard

Verification Process:
1) Voltage Verification

a) Obtain a multimeter.
b) Set IO Expander to write 5V
c) Place terminals of the multimeter at

row and ground.
d) Ensure it is 5V with allowed +/- 10%

variation.
e) Repeat with 3.3V
f) Repeat for each IO Expander.

10

Table 3. Requirements and Verification for Data Acquisition

12

2.3.4 USB Communication
The USB block communicates with the PC via a standard USB 2.0. In order to communicate
effectively between the host PC and our breadboard, we are planning to use the open source
library libusb [4] to manage the USB communication with the microcontroller. This library allows
users to communicate with the hardware without additional work like building a dedicated
kernel. There are multiple benefits for choosing libusb. First, it is an active open source library
which our users have the benefit of accessing online forums. Second, it is compatible with
multiple platforms, including Windows, IOS, Linux, etc. Third, libusb already supports multiple
languages. It very well suits our needs because the educational breadboard could be used
across a broad scope of operating systems and coding environments for beginners from diverse
backgrounds.

With our design, we chose to synchronously transfer I/O data between our device and the PC.
We chose to use synchronous device I/O because we are only dealing with 257-bits of data via
USB 2.0. 257-bits could be broken down into three sections: 128-bits comes from the value of
the voltage rows; 128-bits of read/write mode of each row on the breadboard; and the last bit is
to configure the reading voltages of the IO expander (either 3.3V or 5V). Because we are only
dealing with a single device with 257-bits of data, using synchronous transfer is the best method
[5].

Lastly, building a Python library on top of the microUSB controller is necessary. The library will
consist of functions to initialize USB communication, functions to configure the state of the
device, functions to update the data from the breadboard, and lastly functions to read out the
data values. Additionally, the library will parse the data into readable format, so that the user
can conveniently specify which rows on the breadboard to write on.

The MicroUSB circuit as shown below in Figure 10. was based on the hardware design of the
Arduino Leonardo schematic [6], a development board utilizing the same ATmega32U4
microcontroller.

13

Figure 10. MicroUSB Circuit

Requirements Verifications Points (15)

microUSB
1) Synchronously read

data from the
microcontroller to the
PC

2) Synchronously Write
data from the PC to
microcontroller

Verification Process:
1) Reading Verification

a) Store ‘10101010’ in the
ATmega32U4 microcontroller’s RAM

b) Using usblib in Python, pyusb, to
perform control_transfer() [7]

c) Set all function parameters
according to data sheet from
ATmega32U4

d) Specifically, check bmRequestType
parameter is set read

e) After calling, make sure that
‘10101010’ shows on the PC

2) Writing Verification
a) Using usblib in Python, pyusb, to

perform control_transfer() [7]
b) Set all function parameters

according to data sheet from
ATmega32U4

c) Specifically, check bmRequestType
parameter is set write

d) Set data parameter to ‘01010101’
e) Ensure we receive ‘01010101’ in

ATmega32U4 microcontroller’s RAM

15

Table 4. Requirements and Verification for USB Communication

14

Figure 11. Operation FSM

Upon startup, the breadboard goes through an initialization process before waiting in a state to
receive instructions from the host PC. The device performs a different operation based on the
instruction it receives, then transmits resulting data back to the host PC. The model of the flow
through which the device goes through is visualized above in Figure 11, the Operation FSM.

15

Figure 12. Software Flowchart

In figure 12, we are able to show the process of how software operates in our device. When the
device gets turned on, it first initializes all communications between the PC, microcontroller, IO
expander, and voltage supply. It then enters a wait state for the PC to send either a reading or
writing command. Depending on the command, the device will communicate with the IO
expander and voltage supply to perform different tasks. After finishing its task, the device will
return to its wait state, waiting for the next PC command.

16

2.4 Tolerance Analysis
The USB transfer functionality is absolutely critical to the success of this project. Due to this,
and our limited collective experience in USB communication, the USB data transfer was
determined to be the greatest risk to the completion of our design. For the completion of this
block, we decided to utilize the open-source library libusb to facilitate the USB communication
between the host PC and our device. In libusb, there are two types of device I/O transfer
methods: synchronous or asynchronous. In general, if the host is reading from the device, two
steps are performed:

1. A request for data is sent to the device
2. The requested data will be received by the host

If the host is writing on the device, two steps are also performed:
1. Data is sent to the device
2. Host will receive a signal containing the success of the process

The difference between the synchronous and asynchronous methods is the number of function
calls the two use. The synchronous method only performs on the function call for the above two
steps. This is simpler because when the call returns, it tells the host if the transfer was complete
or not. On the other hand, the asynchronous method performs 2 seperate function calls for
reading or writing. This makes the transfer method able to communicate with multiple
end-points, but also increases the complexity.

For our device, we decided to use synchronous I/O transfer because we are only dealing with
one device and one array of data. We will be using USB 2.0 full-speed that has a rate of
12±0.24 Mbits/s or roughly 1.5 MB/s [8]. This satisfies the rate we needed as the total amount of
data we will be transmitting between the PC and the device is 257-bits. However, there are
potential problems that could cause issues. First, once a request is sent, it cannot be canceled.
Second, when performing a synchronous call, the function will be blocked. In other words, the
application will be in the libusb function until the transfer is completed. If one of our IO Expander
does not respond, the command line on the PC would be frozen without displaying any error
messages.

The USB 2.0 transfer speed is more than sufficient to transfer the maximum amount of data
from the IO Expanders, even when they are operating at the maximum possible speed the
microcontroller can manage. The complete I2C data request framework is as shown in Figure
13. below :

17

Figure 13. I2C Data Read Framework

This framework requires 46 SCL clock cycles to complete a full 16-bit read from each IO
expander, as shown in the framework in Figure 13. To receive data from each IO expander, this
requires a total of 46 * 8 = 368 clock cycles to read from all IO expanders. Using the
microcontroller’s maximum possible I2C clock speed of 1MHz, this brings the maximum
theoretical full-board read frequency to ~2.72 kHz, or a total period of 368μs. Since each of
these transfers contains a maximum of 128 bits of data (16 IO pins * 8 IO expanders), the data
transfer rate of the IO expander block is 348 kb/s. This is far lower than the USB 2.0 full-speed
standard of 12Mbit/s, and still will be the bottleneck in read operations.

3. Differences
3.1 Overview
The original project was the Educational Smart Breadboard [9], originally proposed by
Chinemelum Chibuko, Minseong Kim, and Mostafa Elkabir in Spring 2018. It was a standalone
device capable of reading voltages from the rows of a breadboard and displaying them on an
integrated touchscreen display. Their design divided the full breadboard into 8 distinct
sub-boards that were multiplexed into the microcontroller using a hierarchical tree mux
structure, in addition to a smaller dedicated space for chip testing. Our design reads and writes
logic values in every row on the breadboard using IO expanders and a microcontroller via I2C.
The state of the breadboard will be configured by and communicated back to a host PC, which
the user can use to adjust inputs and observe the output of their logic circuit.

https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=25937

18

Our approach to tackling the problems with debugging complex breadboard circuits differs from
the original design in a few key details. First, instead of incorporating multiplexers in our design,
we use IO expanders. With this implementation, instead of only reading subsections of the
breadboard, we are able to read and write to individual rows on the breadboard. This also
eliminates the need for a dedicated chip testing area, as our whole breadboard can achieve this
functionality. However, the trade-off here is that our design is unable to read analog signals.
Second, we dropped the standalone touch screen functionality in favor of a PC connected
configurable device via USB 2.0. This lets the user conveniently configure the device with the
help of usblib to gain command line experience.

3.2 Analysis
The original project’s design had a hierarchical tree muxing structure as the core of its data
acquisition architecture. This muxing structure allowed the ATmega328 microcontroller at the
core of their processing block to select a particular sub-board on their breadboard device[9].
Muxing the breadboard rows into a set of shared pins on the microcontroller allowed the original
design to read analog values on the breadboard directly from the microcontroller’s ADC pins.
However, this design choice limited the microcontroller to operating on a single sub-board at a
time, disconnecting all unselected sub-boards from the microcontroller. This limitation greatly
inhibits testing of more complex logic circuits, as their design’s chip testing “can handle any chip
that has stable input-output relationship that allows for fixed truth table.”[10] This restriction on
chip testing prevents the user from using the testing functionality of the board on more complex
circuits, such as register ICs or FSM circuits. Our design choice of using IO expanders removed
this restriction, as our design was capable of writing logic values to any combination of rows on
the breadboard simultaneously. This capability allows for testing and debugging of any IC or
logic circuit where a known set of inputs should produce a known set of outputs, such as with a
register IC or FSM circuit. This design difference greatly increases the functionality of our
device, and maximizes its utility for debugging, testing, and verification applications.

While a key drawback of using IO expanders in place of muxing the breadboard rows to the
microcontroller’s ADC pins is that we are limited to reading only digital logic values from the
breadboard, we decided this was not a crucial feature for our design for two reasons. The first is
that the type of analog circuits being tested on a breadboard by entry-level users would likely
have fewer crucial test points for debugging, and therefore have less of a need for a more
complex device similar to ours. However, digital logic circuits can have a large degree of
complexity that would be well suited to having a large number of test points for debugging,
which is why we prioritized digital circuit utility. The second is that the range of analog voltages
that a device similar to ours would be able to tolerate is extremely limited, as the voltage range
for simple ADC ICs places limits on the maximum voltage that can be applied to the rows on the
breadboard. This limited voltage tolerance on ADC ICs limits the range of analogue values that
can be present on the breadboard without damaging sensitive components. Digital logic circuits
are not restricted by these low voltage tolerances, as most logic ICs operate at supply voltages

19

< 5V, which is where our microcontroller and IO expanders operate. This means that they are
not as affected by the limited voltage tolerance range.

The second key difference is the interface through which users interact with the device. The
original project was designed to be a standalone device utilizing a touchscreen display to allow
for user configuration and data output. This design decision inhibited automated testing and
verification, because it required the user to input the full truth table for whatever logic circuit or
IC into the touch display to run tests. However, by instead making the device a USB peripheral,
and making the user configure the device and read data through a Python library, we give the
user a greater degree of freedom in operating the device. By instead using a code library to
allow the user to configure the device and read data from it, automated testing and verification is
possible. Along with this, testing of FSMs can now be done, as inputs to a circuit can be set,
and the resulting state changes can be directly measured in the logic circuit without excessive
probing. This decision to shift away from the touchscreen display greatly increases the utility of
our device, while simultaneously decreasing the cost by eliminating an expensive component.

4. Cost and Schedule
4.1 Cost Analysis
4.1.1 Labor

We will use the equation 3.1 to estimate the labor cost for this project:

Labor Cost = Salary * Total Work Time * Number of Members

Equation 3.1 Labor Cost

According to the Engineering Career Center in UIUC, the average starting salary for a BS
graduate is $78,159 per year in the 2017-2018 report [11]. Converting to hours, it will be $37.58
per hour per person. As for the total work time, according to the Office of Provost in UIUC, we
are expected to put three times the amount of work time in the number of credit hours we
receive per week [12]. That is 12 hours of work time per week for Senior Design. Lastly, we
have a total of 3 engineers in this group. The total labor cost will sum up to be $21,646.08 for a
semester.

20

4.1.2 Cost

Part # Qty Mft Vendor Desc Price/Unit Total

ATmega32U4 1 Microchip Mouser 8-bit AVR Microcontroller 4.08 4.08

1N4148W-7-F 1 Diodes
Incorporated

Mouser SMD Switching/Power Diode 0.16 0.16

MF-MSMF050-
2

1 Bourns Mouser 500mA Resettable Fuse 0.42 0.42

MH2029-300Y 2 Bourns Mouser 30 Ohm Ferrite Bead 0.10 0.20

TCA9517DGK
RQ1

1 Texas Instruments Mouser Level-Shifting I2C
Buffer/Repeater

1.38 1.38

SN74HCS32Q
PWRQ1

1 Texas Instruments Mouser 4-Channel OR Gate 0.59 0.59

XRP6272IDBT
R-F

2 MaxLinear Mouser LDO Adjustable Voltage
Regulator

0.98 1.96

TPS2115APW
R

1 Texas Instruments Mouser 2-Channel Manual Switching
Power Mux

2.33 2.33

MCP23017T-E
/SO

8 Microchip Mouser 16-bit I2C I/O Expander 1.20 9.60

0476420001 1 Molex Mouser MicroUSB Female Connector 0.77 0.77

BSS138DWQ-
7

4 Diodes
Incorporated

Mouser 2-Channel NMOS Transistor 0.40 1.60

CG0603MLC-0
5E

2 Bournes Mouser ESD 5V TVS Diode 0.41 0.82

FSM6JH 1 TE Connectivity Mouser Tactile Momentary
Pushbutton Switch

0.13 0.13

CSTNE16M0V
51Z000R0

1 Murata Mouser 16.0 MHz Ceramic Resonator 0.31 0.31

Table 6. Cost for Single Order of Device Components

In table 6, after adding up all of the components, the device’s largest components will cost
$26.35. This is assuming we are only making one device. If we order parts in bulks, the cost of
components will be a lot less.

21

Part # Qty Mft Vendor Desc Price/Uni
t

Total

ATmega32U4 500 Microchip Mouser 8-bit AVR Microcontroller 3.39 1,695.00

1N4148W-7-F 500 Diodes
Incorporated

Mouser SMD Switching/Power Diode 0.053 26.50

MF-MSMF050-
2

500 Bourns Mouser 500mA Resettable Fuse 0.238 119.00

MH2029-300Y 1000 Bourns Mouser 30 Ohm Ferrite Bead 0.021 21.00

TCA9517DGKR
Q1

500 Texas Instruments Mouser Level-Shifting I2C
Buffer/Repeater

0.798 399.00

SN74HCS32QP
WRQ1

500 Texas Instruments Mouser 4-Channel OR Gate 0.299 149.50

XRP6272IDBT
R-F

1000 MaxLinear Mouser LDO Adjustable Voltage
Regulator

0.538 269.00

TPS2115APWR 500 Texas Instruments Mouser 2-Channel Manual Switching
Power Mux

1.38 690.00

MCP23017T-E/
SO

4000 Microchip Mouser 16-bit I2C I/O Expander 0.91 3,640.00

0476420001 500 Molex Mouser MicroUSB Female
Connector

0.48 240.00

BSS138DWQ-7 2000 Diodes
Incorporated

Mouser 2-Channel NMOS Transistor 0.124 248.00

CG0603MLC-0
5E

1000 Bournes Mouser ESD 5V TVS Diode 0.107 107.00

FSM6JH 500 TE Connectivity Mouser Tactile Momentary
Pushbutton Switch

0.097 48.50

CSTNE16M0V5
1Z000R0

500 Murata Mouser 16.0 MHz Ceramic
Resonator

0.198 99.00

Table 7. Cost for Bulk Order of Device Components

If we were to mass produce the product and buy the parts in bulks the cost for the components
will be a lot less. Assuming that we have 500 devices in one batch, in table 7, our cost per
device is not $15.5 dollars per device. If we order a higher volume per batch, the price will

22

decrease even more. For convenience, we will proceed with using $15.5 as bulk production cost
to calculate price tag per device.

4.1.3 Sum of Grand Total
Summing up the grand total, we estimate the total device’s development cost is $21,672.49.
However, if we want to put a price tag on this device, we will have to sum the bulk production
cost per unit, board assembly fee, as well as revenue cost. This could be better explained with
Equation 3.2.

Price = Bulk Production per Unit + Assembly Fee + Revenue

Equation 3.2 Device Price Calculation

Using the PCB assembly calculator [13] and preliminary estimates for device requirements, we
estimated that the cost for assembling 500 units is $1,467.35, which is $2.935 per device. As for
packaging, the cost of the material for packaging will be $255 [13], which is $0.51 per device.
Additionally, we estimate it takes a minute to package 3 devices. The total assembly labor cost
will be minimum wage multiplied by the number of packaging hours, that is $22.9 or $0.0458 per
device. In the end, the total cost for bulk production will be $9,485.4 which is $18.99 per device.

4.2 Schedule

Week Task (Assuming an 8-week period to build a working product)

3/23 Write up RFA by 3/27

Arpan: Research possible project ideas and determine differences in implementation

Joseph: Research possible project ideas and determine problem and success criteria

Robert: Research possible project ideas and determine solution components

3/30 Write up Proposal by 4/3

Arpan: Research power system and safety and ethics concerns

Joseph: Determine problem, provide background and draft high level requirements

Robert: Research solution components and design block diagram

4/6 Begin Design Document

Arpan: Research components, draw power schematics and discuss safety concerns

Joseph: Research USB drivers and software side of the project

23

Robert: Work on interfacing the control system and data acquisition

4/13 Finish Design Document by 4/17

Arpan: Finish possible 8-week timeline for device completion

Joseph: Begin work on the command line interface for programming values

Robert: Compile schematics, submit PCB design for approval and order required parts

4/20 Prepare for and attend Design Reviews by 4/24

Arpan: Prepare presentation and oral explanation of power system

Joseph: Prepare presentation and oral explanation of USB communication

Robert: Prepare presentation and oral explanation of control and data acquisition

4/27 Finish up Final Report by 5/6

Arpan: Assemble components and build device; Order new parts if necessary

Joseph: Integrate feedback from design review for USB communication and interface

Robert: Build device and integrate feedback from design review for relevant sections

5/4 Submit Notebooks by 5/7

Arpan: Begin debugging and testing edge cases in power circuits

Joseph: Debug and test cases in usb communication and interface

Robert: Begin debugging of control system and data acquisition

5/11 Complete and demo final product

Arpan: Finalize assembly of device and demo the product

Joseph: Finish coding and software portion of the project

Robert: Interface control, power, data and computer systems for a working project
Table 8. Calendar for Project Goals

24

5. Discussion of Ethics and Safety
There are a number of safety issues that could arise depending on the user’s decision in
creating a circuit. Careless actions such as using too high a voltage or shorting a line
somewhere could damage used chips or burn certain components. The user should be wary of
powering a component at too high a current and voltage, as touching such components could
cause burns. A regular breadboard is typically rated at 5W [14], so operating components at
values above this could result in parts catching on fire or exploding, which endangers people in
the surrounding area. The circuitry we are using operates at a maximum of 5V, with current to
each pin at a low value. The ACM Code of Ethics and Professional Conduct specifies avoiding
harm, ‘unless there is a compelling ethical reason to do otherwise.’ [15] In accordance with
these guidelines, we will shield our circuitry from the user such that it is not easily tampered
with. The higher wattage elements of our device will not be accessible to the user, so they will
not be able to come in contact with anything that could cause harm. With a commercial product,
we would also warn the user of potential consequences of poor circuitry design.

Our approach to the potential safety issues with our device fall in line with the first IEEE code of
ethics: “to hold paramount the safety, health, and welfare of the public, to strive to comply with
ethical design and sustainable development practices, and to disclose promptly factors that
might endanger the public or the environment” [16]. The safety of the user will always be of
utmost importance.

25

6. Citations
[1] Radio Locman, “Electronic Breadboard Templates,” radiolocman.com, [Online]. Available:

https://www.radiolocman.com/shem/schematics.html?di=33992
[Accessed: April 14th, 2020]

[2] Clipart Library, “Transparent Computer Clipart,” clipartkey.com, [Online]. Available:
https://www.clipartkey.com/view/hmRJbh_transparent-computer-clipart-white-computer-c
lipart/
[Accessed: April 14th, 2020]

[3] Global Specialties, “GS-400: Solderless Breadboard, 400 Tie-Points, with Bus Strip”
globalspecialties.com, 2017. [Online]. Available:

https://www.globalspecialties.com/solderless-breadboards/breadboards-singles/37-gs-40
0.html
[Accessed: April 2, 2020]

[4] libusb, “libusb,” libusb.info, 2012. [Online]. Available:
https://libusb.info/
[Accessed: March 31, 2020]

[5] libusb, “Synchronous device I/O,” libusb.info, 2012. [Online]. Available:
http://libusb.sourceforge.net/api-1.0/libusb_io.html
[Accessed: April 14, 2020]

[6] Arduino, “Arduino Board Leonardo,” arduino.cc, 2020. [Online]. Available:
https://www.arduino.cc/en/Main/Arduino_BoardLeonardo
[Accessed: April 10, 2020]

[7] Github, “pyusb, pyusb,” 2010. [Online]. Available:
https://github.com/pyusb/pyusb
[Accessed: April 15, 2020]

[8] USB, “2.0 Specification | USB,” 2018. [Online]. Available:
https://www.usb.org/document-library/usb-20-specification
[Accessed: April 15, 2020]

[9] Chinemelum Chibuko, Minseong Kim, and Mostafa Elkabir, “Educational Smart Breadboard,”
courses.engr.illinois.edu/ece445, February 7, 2018. [Online] Available:

https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=25937
[Accessed: March 22, 2020]

[10] Chinemelum Chibuko, Minseong Kim, and Mostafa Elkabir, “Educational Smart
Breadboard,” courses.engr.illinois.edu/ece445, May 2, 2018. [Online]. Available:

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwji
hfXMxfDoAhUuAZ0JHVNpBQgQFjAAegQIARAB&url=https%3A%2F%2Fcourses.engr.ill
inois.edu%2Fece445%2Fgetfile.asp%3Fid%3D12787&usg=AOvVaw0CjRvgghpLUp_1N
DQv0Y-V
[Accessed: April 17, 2020]

[11] University of Illinois, “Illini Success Annual Reports,” 2020. [Online]. Available:
https://illinisuccess.illinois.edu/annual-reports/
[Accessed: April 17, 2020]

https://www.radiolocman.com/shem/schematics.html?di=33992
https://www.clipartkey.com/view/hmRJbh_transparent-computer-clipart-white-computer-clipart/
https://www.clipartkey.com/view/hmRJbh_transparent-computer-clipart-white-computer-clipart/
https://www.globalspecialties.com/solderless-breadboards/breadboards-singles/37-gs-400.html
https://www.globalspecialties.com/solderless-breadboards/breadboards-singles/37-gs-400.html
https://libusb.info/
http://libusb.sourceforge.net/api-1.0/libusb_io.html
https://www.arduino.cc/en/Main/Arduino_BoardLeonardo
https://github.com/pyusb/pyusb
https://www.usb.org/document-library/usb-20-specification
https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=25937
https://courses.engr.illinois.edu/ece445/getfile.asp?id=12787
https://courses.engr.illinois.edu/ece445/getfile.asp?id=12787
https://courses.engr.illinois.edu/ece445/getfile.asp?id=12787
https://courses.engr.illinois.edu/ece445/getfile.asp?id=12787
https://illinisuccess.illinois.edu/annual-reports/

26

[12] University of Illinois Office of the Provost, “Credit Hour Definition,”
provost.illinois.edu/policies, 2020. [Online] Available:

https://provost.illinois.edu/policies/policies/courses/credit-hour-definition/
[Accessed: April 17, 2020]

[13] BITTLE, ‘PCB Assembly Quote Calculator,’ 2020 [Online]. Available:
https://www.7pcb.com/PCB-Assembly-Quote.php?d3=0&d5=1&c6=500&c8=10&c11=0&
c13=1&c18=6&c20=1&c23=4&c25=0&send=Calculate&x=117&y=9
[Accessed: April 10, 2020]

[14] George Leger, “Common Breadboard Specifications,” circuitspecialists.com, March 29,
2014. [Online] Available:

https://www.circuitspecialists.com/blog/common-breadboard-specifications/
[15] ACM, ‘ACM Code of Ethics and Professional Conduct,’ acm.org, [Online]. Available:

https://www.acm.org/code-of-ethics
[Accessed: February 4, 2020]

[16] IEEE, ‘IEEE Code of Ethics,’ ieee.org, [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html
[Accessed: February 4, 2020]

https://provost.illinois.edu/policies/policies/courses/credit-hour-definition/
https://www.7pcb.com/PCB-Assembly-Quote.php?d3=0&d5=1&c6=500&c8=10&c11=0&
https://www.7pcb.com/PCB-Assembly-Quote.php?d3=0&d5=1&c6=500&c8=10&c11=0&
https://www.circuitspecialists.com/blog/common-breadboard-specifications/
https://www.acm.org/code-of-ethics
https://www.ieee.org/about/corporate/governance/p7-8.html

