

Braille translator

Team 48
Ashmita Chatterjee (ashmita2), Matthew Price (mjprice2), Aayush Raj (aayushr2)

TA: Shuai Tang
Professor: Rakesh Kumar

1 Introduction

1.1 Objective

Being visually impaired in a world where the majority of tasks are completed by visually
perceiving different objects, can often hamper the day to day functioning of the visually
impaired. Technology has made great strides to make their lives easier through the use of
products such as braille electronic note-pads, braille watches, etc. However, there is still a long
way to go for technology to help them feel more normalized in public settings where they require
to read menus, books, sheets of paper, etc.

In public places like libraries, restaurants or even grocery stores, the visually impaired

face difficulties if there aren’t braille versions available for texts such as menus, books. ​Braille is
a tactile writing system used by people who are visually impaired. ​Most public use libraries have
a very limited selection of braille texts for users (highlighted in the article linked below [1]) and
this limits people’s potential and causes a dependency on other people. ​Since braille menus are
very rare (as highlighted in this article linked below [2]), they often feel like they have to depend
on others to order food or read a novel. In an attempt to empower the visually impaired further,
we are building a hand-held real-time braille translator device which will give back some of their
freedom by allowing them to read menus, sheets with normal text simply using this device.

1.2 Background

We plan to create a device that will be able to read text that visually impaired people
can’t and then produce that same text in a format that is perceivable to them. We plan to do this
by having a scanner at the bottom of the rectangular device that will be able to scan any English
text when placed on a surface with some legible text printed on it. This machine will then
process the image data and produce a braille print on the braille display made using servo
motors placed at the top of the device. This device should be controllable using buttons placed
on the side of the braille display.

This device is different from other products available on the market such as the optacon

because it has certain key components that make it a much more user-friendly product than
some other devices. The optacon, for example, is a more bulky product and requires the user to
move a tiny scanner across the page with one hand while the “read” vibrations produced on a
big machine from the other hand. Our device takes a better approach to this problem by using
micro servo motors that have a very small footprint and allow the device to be portable without
making it too heavy.

Considering the use cases mentioned above, this device addresses certain key issues
users face in scenarios like reading books at the library and menus at restaurants. The
portability of a device for such uses is important to users as has been correctly identified by our
colleague Abhijoy Nandi in his research when building the concept design for Samanaya[3],

which is the basis for our design. Another interesting issue that this device addresses is that
users are presented with a format for a text that is a lot more familiar to them - braille.

1.3 Visual Aid

The following is the pictorial representation of how we have conceptualized our final product to
be working. One purpose is to use the device in a public place like a restaurant to read items on
the menu like portrayed in the picture below.

Figure 1: Concept design showcasing restaurant use [3]

1.4 High Level Requirements

● The device should be able to scan a selected section of text in under 0.5 seconds.
● The device should be able to interpret relevant text with an accuracy of 75%. (interpret

relevant text refers to the device being able to scan given text and convert it to a string of
characters in the correct order)

● The device should be able to display scanned text in the correct order using a
refreshable braille display with an accuracy of 90%.

2 Design

2.1 Physical Design and Block Diagram

Figure 2: Block diagram for project

 Figure 3 : The physical design of the braille translator

2.2 Functional Overview

The functionality of the device is as described below:

● The device is powered on using the power button.

● The microcontroller receives various inputs from the input component like the power
on/off button press, text capture button press, and the next button press. Once power on
button press is received, the microcontroller will activate the scanner and the raspberry
pi for any bootup procedures needed.

● The device can be placed over any surface with readable text and the capture button is
pressed to allow the scanner to scan the text underneath the device.

● On receiving a capture button press, the microcontroller will send signals to the scanner
to capture a block of text and will wait for the scanner to finish processing.

● Once the scanner returns an image, the microcontroller will send image data to the
raspberry pi connected as part of the character recognition component for further
processing and will wait for a return output.

● Once the character recognition component returns a string of characters to the
microcontroller, the microcontroller will convert each character to its braille equivalent
and send part of the selected text (up to 6 characters) to the braille display. The
microcontroller will then wait for more inputs from the user.

● The braille display unit receives a digital signal from the microcontroller containing the
string of characters of the deciphered text in braille. The digital signal is then supplied to
the appropriate servo motors which are pushed up to form braille characters.

● On pressing the next button, the microcontroller will send the next set of characters to
the braille display and will continue to wait for inputs.

● On receiving the power off button press, the microcontroller will power down the
scanner, the raspberry pi, and all the other components.

2.3 Scanner Component

This component will be responsible for scanning displayed text on which the device is
placed. This component should scan text and produce an image as an output that will then be
sent over to the microcontroller component for further processing. We are using a scanner
because we simply want the digital format of a 2D previously captured image and so a camera
would be an overkill. We plan on using a 2D hand-held scanner that will be connected to the
Raspberry pi via USB. A typical 2D-hand-held scanner should be around ~$35 which should be
fine in our total budget.
Our device should be able to scan a small block of text (~32 characters on a single line) within a
reasonable amount of time (0.5 seconds) so that the delay between user input (capture button
press) and device output is minimized.

Requirements Verification

The resolution standard for images that
contain text to be interpreted, will be 400 ppi

1. Use both visual and ISO standard 16067
targets to verify scanner resolution to be

at least 400 ppi.

Component is able to scan a string of up to
32 characters in a single line within 0.5
seconds

1. Boot up Brailler device using power on
button

2. Once boot up completes, place a sheet
of paper with 32 characters under the
braille device

3. Press scan button and start timer
4. After 0.5 seconds, boot off the device

and extract memory card
5. Look for a buffer of 32 characters stored

in the memory card to verify the task was
completed within specified time.

2.4 Control Component

 This component will be responsible for the correct operation of the entire device. It will
handle the state machine for the entire device and ensure that each button press is handled
correctly. The control component will mainly comprise of the microcontroller unit and the flash
memory storage unit.

Requirements Verification

Correctly send the signals corresponding to
the right character.

1. Send a known character into the
microcontroller.

2. Monitor the output signals.
3. Compare the output signals to the actual

braille character

Power up or down the device when the power
button is pressed.

1. Toggle the power input.
2. Observe whether or not the device turns

on.
3. Toggle the power again.
4. Observe whether or not the device turns

off.

2.4.1 Microcontroller Component
 The microcontroller will activate the scanner and raspberry pi on booting via USB and
after it has detected a button capture the microcontroller will then send over the captured

image to the Raspberry Pi for processing and deciphering the text in the image. Once
the raspberry pi has deciphered the text using it will send a string of characters to the
microcontroller which will then convert it into a digital signal and with the use of the servo
motors the string of characters will be displayed in braille. The microcontroller that we
have decided to use will be the 32 bit ​STM32F427AIH6 and will communicate with the
scanner component via USB.
2.4.2 Flash Memory Component
The flash memory component will comprise of a SD storage card that will be able to
store the text in the captured image in a buffer as we will not be able to display all of the
deciphered text in the braille display unit at once due to budget limitations. To overcome
this difficulty we decided to display only 4 characters and store the remaining characters
in a memory buffer which the user can swipe through using the next button. We will be
using a 256kB program storage however requirements may change if we require more
storage.

2.5 Character Recognition Component

This component is responsible for converting an image to a string of characters. This
component should include a raspberry pi connected to the microcontroller. This component will
take an image as an input and convert it to a string of characters and return that string back to
the microcontroller.

The exact technology we plan on using is OCR (Optical Character Recognition) on a
Raspberry pi which can be used via the Tesseract OCR engine on the pi. The ability to
recognize the full text in an image is what OCR does. We will be connecting the scanner to the
input of the pi and the pi with the already downloaded Tesseract OCR engine should be
successfully able to interpret the text in the image captured by the scanner.

Requirements Verification

Raspberry pi is able to boot up according to
microcontroller signal correctly

1. Connect raspberry pi to external power
2. Setup circuit on breadboard to emulate

the microcontroller sending out a boot up
signal to raspberry pi

3. Connect circuit to raspberry pi
4. Send signal to boot up
5. Send a test command to raspberry pi
6. Observe returned output in the form of

an LED sequence

Raspberry pi is able to receive data from
microcontroller in the form of an image

1. Connect microcontroller to raspberry pi
2. Connect raspberry pi to monitor
3. Send test image from microcontroller to

raspberry pi
4. Visualize the image on the monitor to

verify functionality

Raspberry pi is able to extract text from
image (with reasonable quality) and send that
text back to microcontroller through data lines
within 2 seconds of transmitting image data

1. Connect raspberry pi to monitor and
keyboard

2. Run OCR function (using OpenCV) and
pass in a test image

3. Once Raspberry Pi completes
processing the image, it should produce
a string of characters which should
represent the text shown in the image
input.

2.6 Display Component

This component will be responsible for displaying the braille characters for the user to be
able to read in real-time. It will be able to take the control signals from the microcontroller and
turn those into the correct characters. We will be using servo motors that can be switched on
easily, which will be able to push the characters up and down, creating the braille characters.

Requirements Verification

Each servo motor is controlled independently. 1. Attach each motor to the breadboard .
2. Set up the correct circuit for each motor.
3. Supply the 6 volts to the breadboard and

across each motor.
4. One by one supply each motor with a

positive signal and verify that only that
one motor moves.

The motor will be able to push the characters
up and down within 0.2 seconds of receiving
a signal.

1. Attach a motor to the breadboard with
the correct supply voltage.

2. Supply a positive signal to the motor.
3. Record time for the motor to properly

move up.
4. Supply another positive signal to the

motor.
5. Record time for the motor to move down.

Each servo motor will be controlled to rotate
80-90 degrees, to accurately display braille
dot.

1. Attach a motor to the breadboard with
the correct supply voltage.

2. Supply a positive signal to the motor.
3. Observe for the motor to properly move

from the down position to having the
braille dot fully pushed up.

2.6.1 Braille Display Plate
This part will be where the motors are attached together. For each individual character,
we will need six different motors, because each character is made up of six dots. We will
also use a 3D printed armature, in order to assure that the dots are close enough
together for someone to recognize them as a single character. The size of each motor
will be the constraint for the number of characters we wish to display because we want
the device to be handheld, so we want it to be small enough for a person to carry
around.
2.6.2 Status Indicator
We will use one extra servo motor to push up when the device is powered on, and to be
down when it is powered off. This is necessary, because the visually impaired users
would not be able to see a light or any other indicator that could signal it being powered
on.

2.7 Input Component

This component is responsible for correctly passing user input to the microcontroller. It
consists of three buttons, “power on/off” button, “image capture” button and “next characters”
button. For each button press, the input component is expected to pass a signal to the
microcontroller that is then perceived as an interrupt by the system and is handled by the
microcontroller.

Requirements Verification

When the buttons get pushed, a signal is sent
to the microcontroller.

1. Power the device on.
2. Press the button of interest.
3. Check if the signal is sent to the

microcontroller.

2.7.1 Power Button
This button is necessary to toggle the power of our device. This will allow us to not drain
the battery pack, considering it is a limited power supply.
2.7.2 Capture Button
This button will send a signal to the processor telling it to scan what is currently
underneath the device, and then begin the process of converting the characters.

2.7.3 Next Characters Button
This button is necessary, because the amount of characters recognized by the device
may end up being more that our device can display at once. If this is the case, the next
character button will display the next characters that are left in the string.

2.8 Power Supply Component

This component is responsible for supplying the correct voltage to each of the different
components of the design. The power supply needs to be able to supply different voltages to
different components.

Requirements Verification

Must regulate the 9 V source to provide the
required voltages, with minimal noise to
ensure our components are safe

1. Build an example circuit with the voltage
regulator and resistors.

2. Power the circuit using a 9 volt battery
3. Measure the voltage at the output pin

using a multimeter.

Must supply 3.3 V for the processing unit,
scanner component, input unit and character
recognition unit.

1. Power the device on.
2. Measure the voltage at the scanner

component.

Must supply 6 V to the servo motors so that
they rotate to the proper position.

1. Power the device on.
2. Measure the voltage across the display

unit using a multimeter.
3. Check to make sure the motors turn

when powered on.

2.8.1 Battery Pack
Our device is to be designed as a portable device, making it easier for the users to bring
it to the desired locations. This means that we are going to use a battery pack that can
supply the necessary voltage. The motors will require up to 6 volts. We should use a 9
Volt standard battery to provide the necessary voltages.
2.8.2 Voltage Regulator
We will need a different voltage for the display component, the scanner, and then
everything else. In order to ensure that each component is receiving the correct voltage,
we will need three voltage rectifiers to take the input voltage from the batteries and turn it
to the correct voltages for each component

2.9 Supporting Diagrams

Figure 4: Dimensions of a single servo motor

Figure 5: Layout of motors for a single character

Figure 6: Layout of motors for the entire device

Figure 7: Diagram of Motor Rotation and Arm Movement

2.10 Risk Analysis

There are some risks associated with the development of this device however the main
few pressure points are the scanner, power supply unit and the servo motors. A few factors that
come into play while deciding on a scanner for our device is the size of the scanner and it’s
compatibility with our selected microcontroller. If we are unable to find a scanner which is
portable or small enough to fit in our hands then this device may be at a risk of being too bulky.
The scanner should also be able to receive and transmit information to the microcontroller as
this is crucial for the completion of our project.

We plan on using a battery pack to power our device however a few risks associated
with that is the battery pack may not be able to supply enough power to the servo motors which
should individually take up to 6 V, the scanner which should be operable at 9 V and the
raspberry pi. We plan on mitigating these risks through trial and error.

2.11 Tolerance Analysis

Our device is to be used as a way to convert written text to a braille display in real time in
order to help the visually impaired read. The key here is in real time, we obviously want our
device to function quickly, so that the user doesn't have a hard time using it. The key timing
components we need to be aware of are the time it takes for the servo motor to rotate after
receiving the signal and the time it takes for the scanner to scan the entire area of interest.

For the time for the servo motor to spin, it can depend on the total angular distance you
want the motor to spin. For the specific servo motor that we chose to use, we know that the
speed of rotation is about 0.1 second/60 degrees. Ideally we want our servo motors to spin 85
degrees. So to find the time it will take to rotate we can just use the equation below to find it
should take seconds about 0.142 second
. .1/60 ime/850 = t

3 Project Differences

3.1 Overview

The previous solution we had was to build a device that captured a close-up image using a
camera (placed 15cms of the surface), processed the image using a raspberry pi and produced
output text in the form of braille using solenoids to represent each dot on a braille character.

Our current solution changes the two main parts of the device. We plan to use a scanner to
capture images of text printed on a flat surface, then process that image using a raspberry pi
and print characters in braille using servo motors to represent dots.

The biggest differences between our previous project and the current one are as follows:

● We will be using a scanner instead of a camera to capture images of the underlying text
● We will be using six servo motors instead of six solenoids to represent a braille character

3.2 Analysis

Using solenoids for the braille display allowed us to make a braille display that was
simplistic and relatively cheap. When we were searching for how to produce the braille
characters, we were limited by the size constraints, as braille characters are very small. These
solenoids were small and had a rounded shape, so that we couldn't directly use it as the actual
braille dots. This would help simplify the design, keep the design smaller and reduce the
number of potential problems. After continuing to design our product, we realized that powering
25 solenoids would be a major problem. This is because, to power a solenoid, you have to
continuously be supplying the rated voltage and current, and doing that for up to 25 solenoids at
a time adds up. Supplying that much power would eliminate the idea of being portable using
batteries, and would also require more mechanical parts to help alleviate some of the demand
that the wall power supply would have to supply. More mechanical parts would give our product
more areas where we could have problems. When we were redesigning, our main goal was to
find a new mechanism that would drastically reduce the power demand. To do this, we landed
on servo motors, which only need to be powered when they are turning, not continuously like
the solenoids. The drawback to the servo motors is that they are larger, making our device
larger than before. Also, we have to be aware that instead of vertical movement, the motors
spin, so we have to add an arm that can be moved up and down to display the characters.
Given all of the pros and cons, ultimately the servo motors make our design better because
reducing the power demand will help us to actually make our product portable as we were
hoping for.

Additionally, we changed from a camera module in the first design, to now use a
scanner. Our design has either the camera or scanner, as the closest thing to the desired
object. This would hopefully be as close as possible, considering we want our device to be small
and portable. Originally, when we were using a camera module, we ran into the problem that

most cameras cannot focus and take clear images at a short distance away. Also, having a
camera close to the desired image, means that it would not be able to read as many characters
as we want. Using the camera effectively meant we may have to change our original design, but
using a scanner can help us solve this issue.

4 Cost and Schedule

4.1 Cost Analysis

When looking to determine the cost of our labor, we settled on the idea that each
engineer working on this project should make $50 per hour. Also, we determined that this would
take around 100 hours (per person) for us to complete. Therefore we were able to see that the
cost of our individual labor would be $15,000. In order for us to have our project actually
manufactured, we will need the machine shops help to create the physical parts. We estimate
that it would take them about 15 hours in order to research and build what we need. At $25 per
hour, this means the cost of the machine shop’s labor would be $325. The last main cost we
have is the total cost of our parts. Below we have a table with our main parts and their cost. The
parts total come out to $176.36. In the end, we see the total cost to be $15,501.36.

Description Manufacturer Part # Qty Unit Cost Total Cost

Servo Motor SparkFun ROB-09065 25 $19.00 (10
pack)

$57.00

Scanner Konica Minolta 4037-0015-02 1 $49.00 $49.00

MicroController STMicroelectron
ics

STM32F427AIH6 1 $13.45 $13.45

Raspberry Pi Raspberry Pi Raspberry Pi 4 1 $35.00 $35.00

Battery Ultralife UV9LJPBK 1 $17.03 $17.03

SD Card Port Samtec Inc. HSEC8-130-01-
S-DV-A

1 $4.88 $4.88

Total Cost for R&D: $15,501.36

Engineering Labor Cost: $15,000
Machine Shop Cost: $325
Parts Cost: $176.36

4.2 Schedule

The following schedule has been proposed assuming the start date to be the week of spring
break and going up to the last working week of Spring semester 2020.

Date range Aayush Raj Matthew Price Ashmita Chatterjee

03/16 - 03/22 (Spring Research alternative Research Research servo

break) parts for pricing and
place orders for
them. Send email to
the machine shop
with details on servo
motor purchased

microcontroller
program loading
methods. Work with
other members to
write test programs
for a microcontroller

motor functionality
and make
approximations
regarding power
needed to turn the
level appropriately

03/23 - 03/29 Test servo motor
functionality and the
amount of power
needed to rotate the
level by 90 degrees
(based on
calculations done by
Ashmita)

Deliver a sample
servo motor to the
machine shop and
finalize changes to
the physical design of
the product.

Research alternative
options to a camera.
Look into the scanner
as a possible
replacement and
evaluate the changes
that have been
considered so far.

03/30 - 04/05 Finalize the PCB
design and place the
order for the PCB on
mypcbway.

Design the eagle
schematic for the
braille display unit,
camera, and
microprocessor

Load OCR software
on Raspberry Pi to
test out how OCR
works with Raspberry
Pi

04/06 - 04/12 Load microcontroller
with state machine
instructions and test
using basic signal I/O

Starting to develop
the display
component,
specifically design
the metal plate and
send in order to the
machine shop.

Connect the scanner
to the PI and test
functionality of the
scanner and
capability of PI to use
OCR to detect text.

04/13 - 04/19 Ensure OCR works
successfully on Pi
and then continue to
test with an image
captured using an
optical scanner.

Start testing the
braille display unit by
connecting the plate
to the power supply.
Test the mechanical
pins as well.

Building the body of
the product to contain
the pi, battery pack,
and all other
components of the
device.

04/20 - 04/26 Test individual
components with the
microcontroller. Begin
testing with the
scanner and ensure
the scanner is able to
successfully send the
scanned image to the
microcontroller.

Test the
microcontroller with
the servo motors to
ensure that the
microcontroller can
power the servo
motors and move
them up and down
based on a digital
signal.

Test the Pi with the
microcontroller and
ensure the Pi is able
to use OCR on an
image scanned and
sent by the
microcontroller and
then send a string of
characters to the
microcontroller.

04/27 - 05/03 Finish testing on
individual
components and
ensure that the
device is able to
successfully translate
to braille.

Finish testing on
individual
components and
debug to increase the
success rate of
translation into
braille.

Finish the testing
phase and prepare to
get the device ready
with it satisfying all
the high-level
requirements
mentioned.

5 Ethics and Safety

There are quite a few safety hazards that our project could potentially present. Our
device makes use of a battery pack to power the device which is dangerous as batteries can
leak. Leakage from batteries can cause hazardous liquid to damage other electronic
components present in the device and can also cause the battery to explode. Lithium-ion
batteries are known to explode if overheated. Some other potential dangers are electrocution or
burning from overheating of the battery or its components. While it may not be possible to avoid
these hazards completely, there are precautions that can be taken by us to possibly avoid some
of these hazards. We can always make sure that the device is powered down before we make
any changes in the circuitry and also remember not to touch any of the components of the
device while testing as some of the components may be carrying more current than possible
causing it to overheat and cause burns[4].

Our device is also meant to be used in public places like restaurants, libraries, grocery
stores, etc. One potential hazard of using a device in places like restaurants or grocery stores
are spills. It is extremely easy to spill water or any other liquid in restaurants and if our device
was exposed to such a spill there could be possible short circuitry of the device causing it to
malfunction or even electrocute its user. To prevent such mishaps we could look into making
some of the components of the device waterproof however that may increase the budget of the
device. As a temporary fix, we think that a waterproof case for the device may be enough to
prevent damage[5].

Another potential hazard of this device as with any other electronic device, it should be
kept out of reach for infants. Children using this device should be under adult supervision simply
because children often misuse electronic devices as they are not aware of the precautions that
one should take before operating such a device.

While there might be quite a few ethical issues with the project one major ethical issue
could be with the copyrights to this project. There are other companies or organizations that
strive to churn out products aimed towards the visually impaired and hence have already
developed similar products. We aim to design and develop a unique product that will cater to the
needs of the visually impaired while flaunting a new proposed design compared to our previous
project.

6 References

[1] ​Oh Where, Oh Where, Are the Braille Books? ​ [Online]. Available:
https://www.nfb.org/sites/www.nfb.org/files/images/nfb/publications/bm/bm13/bm1303/bm1303
08.htm. [Accessed: 29-Mar-2020].

[2] ​K. Shah, “How American restaurants fail to accommodate blind diners,” ​Mic ​, 09-Sep-2016.
[Online]. Available:
https://www.mic.com/articles/153739/how-american-restaurants-fail-to-accommodate-blind-dine
rs. [Accessed: 8-Apr-2020].

[3] ​“Samanya,” ​Portfolio ​. [Online]. Available: https://www.abhijoynandidesigns.com/samanya.
[Accessed: 8-Apr-2020].

[4] ​“IEEE Code of Ethics,” ​IEEE ​. [Online]. Available:
http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 4-Apr-2020].

[5] ​K. CarreroKara, “Stress free ways to protect electronics from rowdy kids and water spills,”
Extremely Good Parenting​, 14-Feb-2018. [Online]. Available:
https://karacarrero.com/protect-laptop-water-spill-kids/. [Accessed: 14-Apr-2020].

[6] ​“Konica Minolta Bizhub C450 Optical Scanner Pwb-Ic 4037-0115-02,” ​eBay ​. [Online].
Available:
https://www.ebay.com/itm/Konica-Minolta-Bizhub-C450-Optical-Scanner-Pwb-Ic-4037-0115-0
2/301343535976?hash=item4629797368:g:s~gAAOSw1x1UMtDg&fbclid=IwAR0T_c8JpqhRV
8YuBi5gOTtQLqNVsOe306nweP6ba62Z5NNxDrsgfp8Zark. [Accessed: 18-Apr-2020].

[7] ​R. Squirrel, “Servo - Generic (Sub-Micro Size),” ​ROB-09065 - SparkFun Electronics ​.
[Online]. Available: https://www.sparkfun.com/products/9065. [Accessed: 1-Apr-2020].

[8] ​“Optical Microscanners and Microspectrometers using Thermal Bimorph Actuators,” ​Google
Books​. [Online]. Available:
https://books.google.com/books?id=m2mMT-472qgC&pg=PA212&lpg=PA212&dq=power+con
sumption+of+optical+scanner&source=bl&ots=ocZZP6zdsb&sig=ACfU3U1Kwl-nKh--b-TwSt0
i4sRUNVoTGQ&hl=en&sa=X&ved=2ahUKEwjpyLXO7vDoAhVBV80KHfNFCiEQ6AEwCH
oECAwQNQ#v=onepage&q=power consumption of optical scanner&f=false. [Accessed:
13-Apr-2020].

[9] M. Wei-Haas, “This Device Translates Text To Braille in Real Time,” ​Smithsonian.com​,
08-May-2017. [Online]. Available:
https://www.smithsonianmag.com/innovation/device-translates-text-braille-real-time-180963171
/. [Accessed: 14-Apr-2020].

[10] Haque and M. M. Asaduzzaman, “Low Cost Wireless Electronic Braille Reader,”
Academia.edu​. [Online]. Available:
https://www.academia.edu/25527839/Low_Cost_Wireless_Electronic_Braille_Reader.
[Accessed: 17-Apr-2020].

