

S0undfingers Design Document

Team - Thomas Driscoll, August Gress, Kyle Patel

ECE 445 Design Document - Spring 2020

Group 8

TA: Dhruv Mathur

1 Introduction

1.1 Objective

Not everyone knows how to play an instrument. And if they do, they might not know how to do

it well and be able to stay in key. But they would like to be able to make some music. People also might

not want to disturb their neighbors or have the space in their house to store instruments, but still want

to engage in making music. They also might have physical impairments that hinder them from being able

to hold them.

Our solution is a Bluetooth-enabled glove that has five force sensitive resistors at the end of

each of the five finger holes. When you would press the pad of your finger while within the glove against

a hard surface, it would play a programmed tone through the speaker on your mobile phone. It would

do this by using an internal app that outputs to audio device drivers provided by Android. The tone that

would play would be programmable from the app, on a per-finger basis.

1.2 Background

Playing and interacting with music is a pastime that many enjoy, but due to financial, space, or

other constraints, can be hard to realize. Coupled with the difficulty of learning a new instrument, there

is just a lot of overhead. Many people, however, do make the tradeoffs to get to play and enjoy making

music in their homes [1]. This usually leads to it negatively affecting the people around them however,

as neighbors or others in the home have to hear the instrument regardless of whether they were

interested in hearing it or not [2].

We saw through these issues that there should exist a way for someone to start playing along

with their favorite songs, no matter which instrument in the piece they wanted to emulate. We also

wanted to make sure that there was a way that the instrument noise could be controlled, so we

designed our glove to play its tones using a phone’s speaker or anything plugged into the phone’s

headphone jack.

The design that we propose is different from the original solution in two ways.

First, we do not use any kind of “mode.” The original project used different modes to specify

how different hand motions (like left to right or finger-bending movements) would affect the notes that

would be played, such as in their “piano mode” where moving left to right would simulate playing down

and up the piano respectively. We do not use movement to control what notes are played, instead it is

based on which finger(s) is(are) currently pressing against a hard surface while within the glove. Further,

the note that is played when this happens is completely programmable and not tied to a specific

movement or finger.

In the original solution, there was also this concept of note “production”, where the notes

produced would always be in the same key so the music produced would be harmonic. We have nothing

of the sort, and instead leave it to the discretion of the end user to decide what they would like to have

play while they are using the glove.

There is one other competitor product on the market in the form of the MINI.MU Glove Kit,

which is essentially a DIY motion driven glove for music production [3]. One of the biggest problems with

it however, is that it is hard to accurately track hand movements, as hands can have very fine motor

control movements that are difficult for a motion sensor to detect. Our solution improves upon this by

being completely force driven, meaning that it's very definite to know when you have made a sound (as

you have physically pressed your finger against a sensor).

1.3 High Level Requirements

● Able to recognize finger taps within a pressure-sensitive bluetooth-enabled glove and turn

those taps into signals based on which finger is being pressed.

● Able to send those signals from that glove via bluetooth to play a given sound from a

mobile phone via an app.

● The latency between a finger tap and sound outputting through the phone is at most

Bluetooth protocol latency (200ms) + 50ms for our processing 100ms (Total: 250ms ± ±
100ms).

1.4 Visual Aid

Fig. 1 Visual Aid

The above visual aid (Fig. 1) is an attempt by the designers to show what a probable prototype

of our glove would look like. The microcontroller/PCB sits on the back of the palm and any/all wirings

are covered with waterproof casings. Pressure sensitive plates are attached to the ends of each finger,

to give the user as much freedom as possible in expressing themselves musically.

2 Design

2.1 Block Diagram

Fig. 2: Block Diagram

2.1.1 Glove

The glove would have a sensor array consisting of 5 FSR402 force-sensitive variable resistors that

connect directly to the analog I/O ports on the data collection microcontroller. These ports connect to

the data collection microcontroller’s 8-channel, 10-bit ADC. The applied force range of these sensors is

about 0.1-10N (10g-1kg) [4]. For reference, the touchweight of a piano key is made to be about 50g (or

0.5N) [5]. We would need to find appropriate pressure thresholds for finger presses based on the actual

voltage readings that are outputted from the ADC in order to register finger presses like piano keys. Like

any variable resistor, a measurement resistor will need to be a part of its circuit to create a voltage

divider circuit. We would also have a soft membrane between the finger and the sensor for comfort, and

to transfer the pressure from the user’s finger to the pressure sensor. Each sensor would have 5V supply

voltages.

Fig. 3: Example configuration of a force-sensitive resistor (op-amp optional)

2.1.2 PCB

We would use an ATMega328P microcontroller to control the glove and collect sensor data, and

an HC-05 Bluetooth module to communicate between the glove and transmit data. We would power the

glove using a 5V wall adapter. The code running on the microcontroller would be written using the

Arduino IDE, and the PCB substrate would be FR-4 using 2 layers.

2.1.3 Mobile/Real-Time App

Our app will be completely stored and run on a user’s phone (a Google Pixel 3a for our demo),

serving three purposes.

The first would be to connect via Bluetooth to the gloves themselves and receive digital input from

them. The second purpose would be to process in real-time the input received from the gloves and

output that to an audio jack. Finally, the app would allow the selection of customizable sounds. The user

would select the instrument desired and a corresponding sound from that instrument for each finger.

The overarching framework for our project will run on Corona SDK. Due to the need to access the

underlying operating system and device drivers, we plan to use the Android MediaPlayer API to

guarantee native Android development (our app will not be accessible using Apple systems for our

demo). To initialize and interact with the Bluetooth transceiver, the app, on startup, will also utilize the

Android native Bluetooth API, which will configure a majority of our settings and allow us to customize

the Bluetooth connection for our needs. In order to test our design, we will also require a mock

Bluetooth device. To accomplish this, as Bluetooth is just a protocol, we will be mocking our Bluetooth

device using Wireshark [6], an open-source library used to test Bluetooth protocols. Further, we will be

using the general purpose testing suite JUnit, as Android is Java-native.

2.1.4 Power

This glove will be powered by a barrel jack connection to a wall socket, using a Sparkfun

TOL-15312 wall adapter device, which acts as an AC/DC converter and outputs 5V DC. On our PCB will be

a barrel jack connector that outputs to a linear regulator on the PCB attached to the glove. The linear

regulator would be a Texas Instruments ​LP2985-N​ device, which has an input voltage range of 2.5-16V

[7], within our required 5V.

2.1.5 Glove Schematic

Fig. 4 Glove Schematic

The side of the schematic (Fig. 4) to the left of the ATmega328P MICROCONTROLLER is the array

of FSR 402 force resistors that will be placed at the tip of each finger in the glove. The change in

resistance when you press your finger against the sensor will then be reported to the microcontroller in

the middle, which processes the input to be sent to your mobile phone via the HC-05 Bluetooth Module

on the right. The barrel jack connector on top will be how all of these devices receive the 5V power they

require.

2.1.5 Glove

Module Requirements Verification

Glove: FSR 402
Force Sensitive
Resistors

1. Each force sensitive resistor can
register a keypress 95 ± 5% of
the time.

1.) a.) Supply 5V to
microcontroller and glove.
b.) Press each force sensitive
resistor with a force of
~0.5N± 2%
c.) Repeat Part B 20 times for
each resistor.
d.) Confirm in the Arduino IDE
serial terminal that the press is
registered 95% of the time, on
average.

2.1.6 PCB

Module Requirements Verification

PCB:
Microprocessor
(ATMega328P)

1. Must be able to facilitate
sequential collection of quantized
FSR 402 data.

2. Must be able to send digital
sensor readings to Bluetooth
Microchip via USART.

1.) a.) Open a serial monitor that can
output whether a sensor was
pressed or not.
b.) Press down on each FSR 402
resistor in a sequence of 5
presses without repeating
fingers.
c.) Confirm that the sequence of
presses in the terminal matches
the real sequence of presses.

2.) a.) Select the COM port that
corresponds to the output of the
Bluetooth module.
b.) Confirm that sensor readings
(can be raw ADC values) can be
read in the Arduino’s serial
monitor.

PCB: Bluetooth
Microchip (HC-05)

1. Has a discoverable Bluetooth
profile on the mobile device.

2. Must be able to maintain
connection with a
bluetooth-connected phone with
over a period of 5 minutes while
in motion.

1.) a.) On a mobile device, open
Bluetooth settings and select a
Bluetooth device to pair with.

 b.) Confirm that the address of the
Bluetooth microchip appears in
the pairing list.

2. a.) Pair the Bluetooth module with
the mobile device.

 b.) Confirm that randomly moving
the device within 2 feet of the
device does not compromise the
Bluetooth connection between
the phone and device.

2.1.7 User Phone

Module Requirements Verification

Android
application:
Corona SDK

1. Users should be able to view
supported instrument sounds.

2. Users should be able to pair a
particular sound to a particular
finger.

3. Front-end should have an icon
showing the current status of
Bluetooth pairing with gloves.

4. >80% unit test coverage for
every React component.

1.a) Unit test dropdown menu so that
each string has an associated
value (Test is boolean)

1.b) Unit test each option becomes a
global variable for use upon
selection. (Test is boolean)

2.a) Software integration test where
each finger and pairing combo is
tested. (Test is boolean)

2.b) At demo, show that test works in
reality

3) Simulate a Bluetooth device (see
below) on a laptop or PC as part
of the testing package. Test that
this mock device works with the
system.

Bluetooth
Server[6]

1. Service discovery process
successfully caches the security
key for bluetooth operation.

2. Process only accepts recognized
Bluetooth profiles.

3. When paired, connection lasts
until it is outside of range (30m

 5m).±
4. When paired, <1% data loss.
5. Data stream is received

server-side and manipulatable.

ALL REQUIREMENTS: Create a simulated
Bluetooth device with PC (i.e. mock
protocol) for testing purpose
1.a) Cache security key from mock
Bluetooth (unit test cache space)
1.b) Verify security key matches mock
device (unit tests for successful
verification, unit tests for unsuccessful
verification)
1.c) Test connection (unit tests for
successful pairing, unit tests for
unsuccessful pairing)
2.a) Add mock Bluetooth device to
whitelist and verify connection
2.b) Change device security key and
attempt to connection; verify connection
is impossible (test is boolean)
3.a) With the phone, generate a
bluetooth signal.
3.b) Signal must be received from 30 ±
5m
4.a) Using mock Bluetooth device, use
ping functionality to monitor data loss
4.b) Verify data loss <1%
5) Simple unit test that data stream is
received from Bluetooth module

Module Requirements Verification

Power: 5V Texas Instruments
LP2985-N Linear Regulator

1. Provides 5 ± 0.05V to other
project components (regulator
provides 1% accuracy in output
voltage). [7]

1. Using a DMM, measure the
voltage difference across all
hardware devices to ensure that
the supplied voltage is within
appropriate range for 30
minutes.

2.1.8 Other Design Considerations

Something else that we had considered was doing some sort of synthesis when a finger was

pressed within the glove instead of playing a sample. While possible, we felt that giving the user to play

any sample of any instrument instead of just the ones we have programmed synthesis algorithms for

was a better solution to the problem.

We also considered playing sounds directly from the glove as an option instead of having them

play through the phone, but we thought that adding a speaker array to the glove would significantly add

to the bulk of it. We also thought that having it play through the phone would allow for greater flexibility

on the user’s behalf.

In regards to software, we considered several frameworks for the project, including Unity,

Koitlin, and Sencha Touch [8]. While each of these frameworks have their merits, we chose to use

Corona SDK as it listed as the best cross-platform solution (in case we wanted to scale our product later)

to stream audio. Our specific solution also took advantage of the underlying Android MediaPlayer API

but there were other audio handlers available. Our choice of the MediaPlayer API was focused on ease

of integration, as the support was native and our team had experience with the API on previous

projects.

2.2 Physical Design

Fig. 5 is what we plan for our physical representation of the glove to look like from a top down

view. Essentially, we want to have pressure-sensitive resistors in the fingers to capture the finger press

input from the user, and a box on the top of the hand that will contain all the necessary wiring and

controllers.

We modelled the size of the hand and fingers based on historic averages [9]. We also took care

to ensure that the size of our pressure-sensitive resistors would be small enough to fit within those

averages.

Fig. 6 is another view from the side, where you can see how high the box on the top of the hand

would be. We wanted to strike a balance between having it be large enough that we could fit all the

electronics we needed but not so large that it would impede a user’s ability to tap effectively.

Fig. 5 Physical Diagram (Top Down View)

Fig. 6 Physical Diagram (Side View)

2.3 Tolerance Analysis

The primary tolerances to be considered are the latency of data transfer and the repeatability of

force readings for the FSR402. We also want the sensors not to be overloaded with current in the event

that they are pressed down with too much force, which in our case would be 100N or 10kg of force.

According to the FSR Integration Guide from Interlink [10], the current limit for the FSR402 is

1mA/cm​2​ or 1.267mA for the surface area of the FSR402. If the input voltage to an FSR is 5V, then the

total resistance of measuring voltage divider circuit must be greater than 3.946kΩ at any given point.

The resistance of the FSR is approximately 250Ω at 100N, so the measurement resistor needs to be at

least 3.7kΩ to prevent accidental overload, most likely greater than 4kΩ in reality.

Fig. 7: FSR 402 V​out​ vs. Force for Various R​m​ Values & Force vs. Resistance Curves [10]

When designing our solution to optimize for latency, we chose the size of the data stream to be

1KB no matter the number of fingers that were being pressed. This was so that when we were sending

information about which fingers were being pressed, there would be less variables that could affect the

transfer latency of 50 00ms.2 ± 1

3 Comparison to Previous Design

3.1 Differences

The original solution was an IMU-based glove that would detect hand movement and turn that

into input to their software. They used this input to create different modes like “piano mode,” in which

they could detect horizontal left and right movement to simulate hands moving up and down keys.

Their design also had 5 bending resistors along the inside of each finger that could further be used as

input. In their case, they used this to create a “Guitar Mode,” where they could detect this bending and

simulate the bending of strings on a guitar. They also could detect combinations of different finger

bends and use that to create specific guitar chords. All of the audio synthesis would be accomplished

with a separate audio processing subsystem with the sound directly outputting to a speaker from that

subsystem.

In our solution we also have a glove, but we have 5 pressure-sensitive resistors at the tip of each

finger in the glove. When pressed, a sound would be played on a mobile phone (or through any audio

device connected through the phone’s audio jack) connected to the glove via Bluetooth. The sound that

plays is pre-sampled and fully programmable via a mobile app on the phone, allowing the user to mimic

any instrument’s sounds.

There are 2 key differences between our two solutions. First, our design does not require any

expensive processing or synthesis. This allows us to send output to the phone potentially much quicker

than the original design, as we don’t have as much processing overhead. Second, we have a drastically

different set of input we accept from the user. Where the original design would take into account

motion and bending movements using synthesis techniques to transform that into predefined useful

output, we streamline this by only having pressure sensors at the fingertips and allowing the user to

manually define what pre-sampled sounds they would like to play.

A trade-off between our solutions is that our user can use 5 tones at a time, even if those tones

can be in any order and can be any instrument playing any note or sound. A user of our solution doesn’t

have the entire range of tones immediately at the disposal of the user of the original group’s solution.

3.2 Analysis

3.2.1 Software

A major component of our solution will be running on a mobile device (assume a Google Pixel

3a) and we were planning on using the Android MediaPlayer API to deal with device drivers. The original

group’s corresponding component had a program called SuperCollider running on a PC to handle audio

input streams. Our solution has several obvious improvements. Using a mobile device enhances usability

for a variety of environments and we use a native Android API. This has direct access to the device

drivers, minimizing our audio latency. In general, comparisons between user space (SuperCollider) and

kernel space (the device drivers accessed by MediaPlayer API) are very situation dependent and labeling

a quantitative value to them is not something most people do. However, it is generally accepted

knowledge that the code executed in kernel space is several times faster than its user-space

counterpart.

3.2.2 Bluetooth vs. WiFi

In the original solution, the previous group proposed using a Wifi module that ran at a minimum

of 115 kbps. Our solution using Bluetooth protocols instead, enabling much faster data transfer. While

the exact speed varies based on the distance and exact nature of the server and client, Bluetooth gives a

maximum speed of 3 Mbps [11]. Further, we are sending much less data than the original group. The

only information we care to send are boolean values of “Pressed” or “Not Pressed” via our bluetooth

connection for each finger. The original group necessitated tracking the spatial position of each finger

and the glove as a whole, a much more complex task . We estimate that our data packet content would

never exceed 10 bytes:

(size(boolean) * 10) = (1 byte * 10) = 10 bytes

 Based on storing several dozens of floating point values, 10 flex sensors and probably additional

information, we estimate that their data packets would be between around 600 bytes at minimum:

(size(float) * (3D coordinates) *(estimated unique coordinates) = (4 * 3 * 50) = 600 bytes

Therefore, with faster speed and less data to be transfered, the risk of latency is much lower in

our design and the overall performance for the user is improved.

3.2.3 Flex Resistor vs. Force Resistor

Something that we considered in our design also was the accuracy of the main interface unit,

the force-sensitive resistor at the tips of the fingers. The flex resistor that was used in the previous

design to control some potential inputs, the ​TSP-L-0012-103-3%-RH​, has worse accuracy in terms of

expected measured resistance at specific bending angles when compared to our FSR 402 force resistor.

Their flex resistor had an accuracy of around per part [12] where our force resistor has a part to0%± 2

part accuracy of or per part [10]. This means that the pressing force requirement for the%± 6 %± 2

resistor will be much more consistent across all fingers vs. the flex resistor’s bending requirement. Our

solution will improve the user experience as it means that the user will feel more reassured that when

they press their finger inside the glove the correct sound will play.

4 Cost and Schedule

4.1 Manpower Cost

The average salary of a 2017-2018 ECE Illinois Computer Engineering Grad (as our group is

composed of) was $92,430 [13]. Working 52, 40 hour weeks (for a total of 2,080 hours a year), this

breaks down to $44.43 per hour. This is what we will assume for our fixed hourly working rate. We also

are going to assume we would have the normal amount of time usually available at this point of the

semester available to us again, so a total of 10 weeks to work at ~10 hours per week. Once again, this

equation will neglect any time we would be spending with ad agencies marketing our product, or any

other outside work to get it to market. Therefore, our cost for manpower will be:

.5 umber of Group Members ixed Hourly Cost of Hours per Week of Weeks ost 2 × N × F × # × # = C

.5 44.43 0 0 $33, 22.502 × 3 × $ × 1 × 1 = 3

As shown above, we calculate the manpower cost to be $33,322.50 for this prototype.

4.2 Part Cost

Below we have a list of all of the parts required to make our board, broken down into bulk and

prototype pricing.

Part Cost (bulk) Cost (prototype)

FSR 402 $4.0299 * 5=$20.15 $7.576 * 5=$37.88

ATMega328P $3.16 * 1 = $3.16 $4.30 * 1 = $4.30

HC-05 $6.15 * 1 = $6.15 $10.52 * 1 = $10.52

Sparkfun TOL-15312 $5.95 * 1 = $5.95 $5.95 * 1 = $5.95

LP2985-50DBVR $0.50 * 1 = $0.50 $0.50

Corona SDK $0.00 $0.00

Android MediaPlayer API $0.00 $0.00

Wireshark $0.00 $0.00

JUnit $0.00 $0.00

Final Part Cost $35.91 $58.65

4.3 Shop Cost

We estimate the shop hourly rate to be $30 per hour. We have a somewhat complex design, as

we must design a safe layer between the user’s finger and the force resistor to prevent any harm (while

still being pliable enough that the force from finger presses will still be read). We also must affix a box to

the top of the glove to house the electronics and make it rigid enough to withstand repeated vibrations

and movement. Due to all this, we estimate our total shop hours to be 50-60 hours. We will take the

high side of this estimate for our shop cost.

otal Hours ixed Hourly Cost 0 x $30 $1800T × F = 6 =

4.4 Total Cost

We calculate the total cost including manpower, shop labor, and parts to be $35,151.96 accounting for

bulk parts and $35,187.87 for the prototype.

4.5 Schedule of Work

Week... Kyle Patel August Gress Thomas Driscoll

Week 1 Finish Design Doc,
prepare slides for
design review
specifically for block
diagram

Finish design doc,
Prepare slides for
design review
(specifically the
schematic and
descriptions of parts)

Finish Design Doc

Week 2 Do design and
participate in peer
reviews

Do design review and
design peer review

Set up initial
framework for
user-facing portion of
app

Week 3 Implement/debug
microcontroller code
for collection of sensor
data.

Begin doing research
on what we
refinements we need
to make to our design
doc

Set up mock Bluetooth
device. Test physical
connection using
Arduino Uno

Week 4 Complete additional
debugging of sensor
data collection by this
time

Make those changes to
the design doc to make
the final report easier

Write unit tests for API,
finish mock Bluetooth
testing

Week 5 Research any other
parts we would need to
design a PCB

Research any other
parts we would need to
design a PCB

Continue front-end
dev, finish unit tests

Week 6 Assist with any issues in
mock PCB design,
ensure design
completion

Make a mock PCB for
the project to make
sure we had all parts
we needed

Work with August on
board/mobile app
integration

Week 7 Start thinking about
formatting for the final
report, reach out to
ECE Editorial Services

Start thinking about
formatting for the final
report, reach out to
ECE Editorial Services

Write unit tests for
front-end dev

Week 8 Test speed of
connection and debug
any latency issues

Ask any followup
questions with course
staff before beginning
final design paper

Test speed of
connection and debug
any latency issues

Week 9 Work on preliminary
tasks for final design

Work on final design
paperwork

Final tweaks for
server/API/front-end

paperwork

Week 10 Work on final design
paperwork

Clean up any remaining
tasks on the final
paper, check
formatting

Work on final design
paperwork

Week 11 Turn in final design
paperwork

Turn in final design
paperwork

Turn in final design
paperwork and do final
presentation

5 Ethics & Safety

The ethical or safety issues with our project pertain to the physical gloves themselves, the

microcontroller and Wi-Fi chips.

Citing the IEEE Code of Ethics #1 [14], we will work to ensure that the construction of our gloves

is structurally sound such that a user will not be concerned with electrical hazards such as exposed wires

or static shock, or any harm from burning ICs or plastic. Further, a likely source of potential harm would

be liquids spilling on the glove, ruining the circuity and causing an electrical hazard to form near the

user’s hands. To prevent this, all circuits in our glove will have a protective layer on the top of them that

prevents any spillage into the sensitive electronics underneath.

An additional source of safety concern is the user-facing application, specifically in regards to

the ACM Code of Ethics 2.9 [15]. While we expect the user of our prototype to load the application from

source code provided by the designers, bad actors could potentially hijack the Bluetooth connection in

the app itself to download malware onto a user’s phone [16]. These concerns, while valid, are an

extremely low risk as our application will not be downloaded outside of the authors knowledge for the

duration of the project. Further, we will be whitelisting the gloves such that the app will reject any

interaction that is not associated with that Bluetooth identifier (BD_ADDR).

Finally, regarding regulatory standards, since we are creating a receive-only device, we are

exempt from type approval [17]. If we were to take the product to market, we would need to test at an

accredited testing house, followed by an application for Part 15 certification [17]. However, since we are

not, we do not need to address those issues at this time. Our understanding is that this would be a

relatively simple process that would require time and money to pay for accreditation, neither of which

are available to us.

References

[1] Rock, L. and Rock, L., 2020. ​Music Lessons Doncaster, Melbourne | Guitar, Singing & Piano - Invest In

Learning Guitar: How Much Does It All Cost?​. [online] Music Lessons Doncaster, Melbourne | Guitar,

Singing & Piano. Available at:

<https://www.leadersofrock.com/posts/2015/7/27/invest-in-learning-guitar-how-much-does-it-all-cost>

[Accessed 3 April 2020].

[2] Kay, L., 2020. ​Bombed By Bass: The Neighbours’ Music Turned My Flat Into A Hellhole | Laura Kay​.
[online] the Guardian. Available at:

<https://www.theguardian.com/commentisfree/2014/dec/05/noisy-neighbours-drug-taking-my-flat-hell

hole> [Accessed 3 April 2020].

[3] Shop.pimoroni.com. 2020. ​MINI.MU Glove Kit – Pimoroni Store​. [online] Available at:

<https://shop.pimoroni.com/products/mini-mu-glove-kit?variant=21240542560339> [Accessed 16 April

2020].

[4] Interlink Electronics, “FSR 400 Series Round Force Sensing Resistor,” FSR 402 Data Sheet, Oct. 26,

2010. Available: ​https://cdn.sparkfun.com/assets/8/a/1/2/0/2010-10-26-DataSheet-FSR402-Layout2.pdf

[5] K. E. Lile, “Piano Finders,” ​Piano Finders: Touchweight​. [Online]. Available:

https://www.pianofinders.com/educational/touchweight.htm. [Accessed: 16-Apr-2020].

[6] “Bluetooth,” ​Bluetooth - The Wireshark Wiki​. [Online]. Available:

https://wiki.wireshark.org/Bluetooth. [Accessed: 16-Apr-2020].

[7] “LP2985-N Micropower 150-mA Low-Noise Ultra-Low-Dropout Regulator in a SOT-23 Package

Designed for Use With Very Low ESR Output Capacitors,”

http://www.ti.com/lit/ds/symlink/lp2985-n.pdf, Dec-2016. [Online]. Available:

http://www.ti.com/lit/ds/symlink/lp2985-n.pdf. [Accessed: 23-Apr-2020].

[8] “14 Best Android Frameworks for App Development in 2019,” ​Intellectsoft Blog​, 01-Apr-2020.

[Online]. Available: https://www.intellectsoft.net/blog/best-android-frameworks/. [Accessed:

16-Apr-2020].

[9] Healthline. (2020). ​Average Hand Size: For Adults, Children, Athletes, And More​. [online] Available at:

<https://www.healthline.com/health/average-hand-size#adults> [Accessed 3 April 2020].

[10] “Interlink FSR Integration Guide, PDF.” Interlink Electronics, Westlake Village, CA. Available at:

https://cdn.sparkfun.com/assets/4/d/0/f/7/DS-9375-Force_Sensitive_Resistor_0.5in.pdf

[Accessed 16-Apr-2020]

https://cdn.sparkfun.com/assets/8/a/1/2/0/2010-10-26-DataSheet-FSR402-Layout2.pdf

[11] A. Iwaya, “Is Bluetooth Faster than Wi-Fi?,” ​How-To Geek​, 21-Jun-2014. [Online]. Available:

https://www.howtogeek.com/191546/is-bluetooth-faster-than-wi-fi/. [Accessed: 16-Apr-2020].

[12] “TSP Series ThinPot Datasheet,” ​DigiKey​. [Online]. Available:

https://www.digikey.com/en/datasheets/spectra-symbol/spectra-symbol-tsp-series-thinpot. [Accessed:

17-Apr-2020].

[13]​ “All Campus Undergrad 2017-2018 Report,” ​Engineering Career Services​, 31-Dec-2018. [Online].

Available:

https://ecs.engineering.illinois.edu/files/2019/03/IlliniSuccess_AnnualReport_2017-2018_FINAL.pdf.

[Accessed: 25-Feb-2020].

[14] ieee.org, "IEEE IEEE Code of Ethics", 2016. [Online]. Available:

http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 3 April 2020].

[15] Acm.org. (2020). ​The Code affirms an obligation of computing professionals to use their skills for the

benefit of society.​. [online] Available at: https://www.acm.org/code-of-ethics [Accessed 3 April 2020].

[16] Chicago Tribune. (2020). ​Chicago Tribune - Widespread Android Virus Could Hide in Popular App

Updates​. [online] Available at:

https://www.chicagotribune.com/news/ct-xpm-2012-04-16-sns-201204161154usnewsusnwr201204130

413androidapr16-story.html [Accessed 3 April 2020].

[17] Blueradios.com. (2020). [online] Available at:

<https://www.blueradios.com/Bluetooth_Global_Certification_Requirements.pdf> [Accessed 3 April

2020].

