

 1

Flight Computer Board for
IlliniSat-2

Design Document

Team 23 – Adam Newhouse and Dillon Hammond

ECE 445 Design Document – Spring 2020

TA: Chi Zhang

 2

Contents
1 Introduction .. 4

1.1 Background ... 4

1.2 Objective ... 4

1.3 Visual Aid ... 5

1.4 High Level Requirements .. 6

2 Design .. 7

2.1 Block Diagram ... 7

2.2 Physical Design .. 8

2.3 Schematic Design .. 9

2.4 Power Consumption ... 9

2.5 Software Design .. 9

2.5.1 Cross Compiling Toolchain .. 9

2.5.2 Das U-Boot .. 10

2.5.3 Linux Kernel and Modules ... 10

2.5.4 Device Trees .. 10

2.5.5 Root Filesystem ... 10

2.6 Requirements and Verification ... 11

2.6.1 Micro USB .. 11

2.6.2 Debug Connector .. 11

2.6.3 Reset Supervisor ... 11

2.6.4 Flash Storage ... 13

2.6.5 Micro SD Card Slot .. 14

2.6.6 Flight Computer .. 15

2.6.7 Real-Time Clock (RTC) ... 16

2.6.8 RTC Battery Backup ... 17

2.6.9 Interfaces .. 18

2.6.10 6-Axis Inertial Measurement Unit (IMU) .. 18

2.6.11 3-Axis Magnetometer ... 19

2.6.12 Temperature Sensor ... 20

2.6.13 Backbone Connector ... 20

2.6.14 Status LEDs .. 21

2.7 Tolerance Analysis... 22

3 Project Differences .. 24

 3

3.1 Overview ... 24

3.2 Analysis ... 25

4 Cost and Schedule ... 26

4.1 Labor ... 26

4.2 Bill of Materials ... 26

4.3 Cost Analysis ... 26

4.4 Schedule .. 27

5 Safety and Ethics ... 28

6 References .. 29

7 Appendix ... 30

7.1 Full Board Schematic ... 30

 4

1 Introduction

1.1 Background
This project was originally proposed by Alex Ghosh for the CubeSat team. The Illinisat-2 is a scalable

CubeSat satellite bus developed at the University of Illinois. The problem statement was to design a

carrier board that both mounts the flight computer and interfaces with other components of the

satellite, including the power system, payload, and radio connections. The carrier must be built to flight

electronic specifications using high reliability parts, leaded construction to prevent tin whiskering, and

conformally coated. The board must also conform exactly to the Illinisat-2 mechanical component

outline in order to properly fit in the satellite. Developing CubeSat busses is an active area of

commercial investment and by providing a system with a Linux based microcontroller for ease of

software development, providing Attitude Determination and Control Systems (ADCS) capability as

described, reliable storage, and providing multiple methods of payload communication, our design will

be attractive to investors.

1.2 Objective
The original solution utilized a commercially available MitySOM module from CriticalLink as the primary

flight computer. This module was then mated via a SODIMM connector to a complex carrier board that

included flash storage, interface drivers, and connectors. The payload connections (five RS422, one

RS485, two USB-UART, and one UART) [1] were designed specifically for the original mission that this

bus was intended to be used for: Lower Atmosphere/Ionosphere Coupling Experiment (LAICE). Designing

for the LAICE mission was an understandable first step, however the use case for the IlliniSat-2 flight

board was quickly extended past the LAICE missions. As a result, the original design was not flexible

enough to be conveniently used in later missions.

Our new solution removes the need for an expensive computer module and reduces the complexity of

the carrier board, leading to an inexpensive and passive two-layer BIB. This redesign is focused on

correcting design decisions and oversights made in the original project, as well as extending it for better

performance in a wider array of CubeSat missions, and reducing the overall cost and size of not only the

flight computer board but the IlliniSat-2 bus as a whole.

We will integrate communication to a wide range of payloads on the same board as the flight computer

including specific hardware for (ADCS) that the original solution neglected to specifically address,

despite it being a critical component of most CubeSat operations. This is important because at a

minimum, ADCS operation requires what is known as “detumbling” which is the initial process after

satellite launch that puts the vehicle in an initial known orientation. This can be accomplished with the

IMU and magnetometer that we provide.

This solution will be a significant improvement over the original design for any user of the bus. Our flight

computer board will utilize a backbone connector to attach to a stakeholder designed bus interface

board (BIB) which provides the physical and electrical interfaces to a mission’s payloads and power

system. Having the BIB allows for convenient swap in/out of hardware. The design of the BIB is beyond

the scope of this project and is left to the end user create. However, the BIB design itself is simple

because all it is required to do is adapt from the flight computer backbone to the mission specific

physical and electrical design. This should allow compatibility with almost any bus standard and reduce

the mission development time significantly.

 5

1.3 Visual Aid
Shown in Error! Reference source not found. is a render of the completed board. The main integrated

circuit is the SiP from Octavo. The microSD card slot and real time clock battery backup are also visible.

The higher-level connection diagram for the proposed solution is show in Figure 2.

Figure 2 – System Diagram

Figure 1 - Flight Computer PCB Render

 6

1.4 High Level Requirements
• Successfully boot Linux and communicate with all the interfaces described: RS422, CAN, UART,

USB 2.0, I2C, and read and write persistent data to the eMMCs.

• The attitude determination sensors must be sensitive enough to allow for detumbling from a

maximum of 15 deg/sec to less than 5.0 deg/sec.

• The flight board must be able to support at least two radios and three scientific payloads for the

duration of a mission.

 7

2 Design

2.1 Block Diagram
The two primary components of this flight computer board are the Octavo SiP and the backbone

connector. The flight computer board contains the minimum hardware necessary for the flight board

operation (besides power) via the sensors and storage groups. Generally the SiP will communicate with

the sensors and storage to monitor flight status and record any desired data. Many interfaces are listed

as crossing from the SiP to the backbone connector. This allows the stakeholder to create their own BIB

which connects to the backbone and provides hardware using these interfaces. The uSD card, micro

USB, status LEDs, and debug connector are all used primarily for laboratory testing. The reset supervisor

is crucial in preventing system lockups in the harsh environment of low Earth orbit.

Figure 3 - Block Diagram

 8

2.2 Physical Design
The flight computer board (shown in green) is small enough to allow two side-by-side flight boards to

co-exist on a BIB designed for the dimensions of a typical CubeSat (90x90mm). The board mounts to the

BIB via four M2.5 screws and has a backbone connector on both short edges to improve physical

ruggedness. Rigid mounting is needed to survive the vibration and shock conditions of testing and

eventual launch on an orbital vehicle. The flight computer board will be a standard FR4 four-layer board

with 0.005-inch clearance and trace width. By minimizing the size of the high-density flight computer

board, manufacturing cost is reduced.

Figure 4 - Physical Design

 9

2.3 Schematic Design
The full schematic of the proposed design is shown in 7.1. Figure 5, shows the SiP connections required

for this design.

Figure 5 - SiP Connections

2.4 Power Consumption
In typical use cases, the micro SD card is not used and does not factor into our power consumption

estimate. Since datasheets are not typically available for eMMCs, we estimate about 500mW.

Device Typical Power (mW) Max Power (mW)

ISM330DLC 1.65 2.475

RM3100 0.4455 0.858

TMP112 0.0495 0.2805

TCAN332 0.0396 0.0858

Micro SD 0 330

eMMC 500 500

AM3358 990 1,500

TOTAL 1,492 2,334
Table 1 - Power Consumption

2.5 Software Design
To satisfy the first high level requirement, it is necessary for us to construct a Linux kernel image that is

capable of being booted on the AM335X, the chip underlying the Octavo OSD335-x SiP that we are using

on our board.

2.5.1 Cross Compiling Toolchain
To be able to compile many of the later steps of this process, a proper cross compiling toolchain must be

established. Texas Instruments provides their own custom Arago line of modified GCC compilers and C

libraries which were used in the original project. However, this is an old version of GCC and as a result

does not support many flags that we would like to rely on. Instead an open source tool called crosstool-

 10

NG provides an easy and scriptable interface to build a custom GCC compiler and C standard library

specifically for the intended target. This allows us to use a modern compiler and still ensure that the

compiler and libraries are appropriate for our target.

2.5.2 Das U-Boot
Das U-boot is a commonly used boot loader for embedded applications that loads and begins execution

of the Linux kernel. It must be configured and built specifically for the relevant target. The BeagleBone

Black, a popular commercial embedded board that also uses the AM335X, freely distributes a

precompiled distribution of U-boot for this target, so we will use this.

2.5.3 Linux Kernel and Modules
The original project utilized a custom build of a Linux 3.2 kernel, which was updated in 2012.

Unfortunately this kernel version is old enough that it did not directly support some of the hardware

utilized on the bus: both RS485 support and USB-UART support had to be manually patched in and the

method of manually configuring pin muxing in the kernel was very difficult. For this new project we

intend to target Linux 4.14 which is a Long-Term Support (LTS) kernel until 2024. It also has several

AM335X specific patches included by Texas Instruments. The process of building the kernel requires

initially manually selecting the set of compile time options. Most kernel options will be unrelated to our

project and should bed disabled to save build time and space. The kernel is then compiled into a zImage

with the tool chain created from crosstool-NG. Any external kernel modules that we need will also be

built here in a separate command.

2.5.4 Device Trees
Device trees are the modern Linux kernel’s way of specifying interfaces to internal and external

hardware. Texas Instruments has already patched the default device trees necessary for building an

AM335X kernel. We will have to add in additional device trees that specify the pin mapping of our

custom board design. These are then built externally to the kernel into a single binary file.

2.5.5 Root Filesystem
Once the kernel is properly configured, the user space root filesystem can be set up. Here we will utilize

crosstool-NG to compile any libraries and programs that we intend to always have on the system.

Another open source tool, Build Root, makes it very easy to choose packages to build into the root

filesystem and it leverages the crosstool-NG toolchain to compile these packages from source. The

resulting root filesystem is loaded by the kernel on boot.

 11

2.6 Requirements and Verification

2.6.1 Micro USB
The Micro USB connector is provided to allow easy powering of the flight board when no BIB is

connected, as well as debugging over USB.

Requirement Verification

1. The Micro USB interface can power the
flight board by providing 4.3 v – 5.8 v at 1
A.

2. The flight computer can communicate with
USB devices via the Micro USB connector.

1.
a. Configure a power supply with a Micro

USB connector to provide between 4.3 v
– 5.8 v at 1 A.

b. The board should become powered and
the status LEDs will light up.

2.
a. Attach an ethernet to micro USB

adapter to the Micro USB connector.
b. Power on the board with 5 v at 1 A.
c. While running, the Linux system will

display the new network interface after
running the command `ip a`

2.6.2 Debug Connector
The debug connector provides a simple UART interface to the flight computer. Typically, this used as a

serial console for Linux.

Requirement Verification

1. The debug connector shall provide a serial
interface at a minimum of 115.2 kbaud.

1.
a. Connect a visible and controllable UART

interface to the debug connector.
b. Configure the interface to run at 115.2

kbaud.
c. Power on the board with 5 v at 1 A.
d. After powering the board, a Linux shell

prompt will be displayed.

2.6.3 Reset Supervisor
The reset supervisor acts as a watchdog for the flight computer. If the flight computer ceases to

message the reset supervisor or if the voltage supplied to the reset supervisor drops below a threshold,

it resets the flight computer.

Figure 6 - STWD100 Watchdog Circuit [7]

 12

Requirement Verification

1. In event of a software lockup, the reset
supervisor will reset the flight computer
within 60 seconds.

2. In event of a single event upset (SEU), the
reset supervisor will reset the flight
computer within 100 uS.

1.
a. Connect a visible and controllable UART

interface to the debug connector.
b. Power on the board with 5 v at 1 A.
c. Run the provided Linux program which

will enable the reset supervisor but not
ping it.

d. Within 60 seconds, observe on the
debug interface that the Linux system
reboots and displays a prompt again.

2.
a. Attach oscilloscope probes to the reset

supervisor I/O line and ground and
configure for a one-shot change.

b. Attach oscilloscope probes to the power
line and ground and configure for a one-
shot change.

c. Power on the board with 5 v at 1 A.
d. Reconfigure the power supply to

provide 4 v at 1 A.
e. Observe that the flight computer is no

longer responsive.
f. Measure the time between power

dropping to 4 v and the reset line
changing on the oscilloscope. This
should be within 100 us.

g. Reconfigure the power supply to
provide 5 v at 1 A.

h. Observe that the flight computer boots
normally and provides a prompt.

 13

2.6.4 Flash Storage
Non-volatile storage is critical for IlliniSat-2 CubeSat operations as nearly all missions require storing

data for extended periods of times (at least days, if not years) which is either eventually transmitted to

the ground or is used for in-flight operations of the satellite. Given that the data stored is critical to

science missions and satellite operations, it is important to provide redundancy in case of an in-flight

data storage failure.

Requirement Verification

1. At least 32 GB of non-volatile flash storage
is available to the flight computer.

2. The non-volatile flash storage shall provide
a sustained write speed of at least 1 MB /
s.

3. The non-volatile flash storage shall provide
a sustained read speed of at least 1 MB /
s.

1.
a. Connect a visible and controllable UART

interface to the debug connector.
b. Power on the board with 5 v at 1 A.
c. Run `lsblk -f`.
d. Verify that at least one eMMC device

appears and lists at least 32 GB of
storage.

2.
a. Connect a visible and controllable UART

interface to the debug connector.
b. Power on the board with 5 v at 1 A.
c. Use `mount` to mount the eMMC.
d. Run `dd if=/dev/zero of=<file on eMMC>

bs=8k count=100k`.
e. Observe that the previous command

lists a write speed of at least 1 MB/s
3.

a. Perform the previous write speed
verification first.

b. Run `sync`
c. Run `dd if=<file on eMMC> of=/dev/null

bs=8k count=100k`.

Figure 7 - eMMC Schematic

 14

d. Observe that the previous command
lists a read speed of at least 1 MB/s.

2.6.5 Micro SD Card Slot
The micro SD card slot can be used for easily extracting information during debugging as well as flashing

the Linux image and root filesystem to the flight computer.

Requirement Verification

1. The flight computer can be flashed from
the micro SD card.

2. The flight computer can read or write data
arbitrarily to the micro SD card.

1.
a. Set the boot config to boot from the

micro SD card rather than the internal
flash.

b. Connect a visible and controllable UART
interface to the debug connector.

c. Power on the board with 5 v at 1 A.
d. From the presented U-boot prompt,

boot the Linux kernel on the micro SD
card.

e. From Linux, copy the following items to
the internal flash.

i. MLO
ii. U-boot image

iii. U-boot environment variables
iv. zImage (Linux kernel)
v. Device tree binary blob

vi. Root filesystem
f. Reboot the system
g. Use U-boot to boot from the internal

flash.
h. Verify that the system boots and

reaches a Linux prompt.
2.

Figure 8 - Micro SD Card Schematic

 15

a. Set the boot config boot from the
internal flash.

b. Insert a micro SD card.
c. Connect a visible and controllable UART

interface to the debug connector.
d. Power on the board with 5 v at 1 A.
e. Use `lsblk -f` to verify that the micro SD

card is listed as a block device.
f. Use `mkfs` to create a filesystem on the

micro SD card.
g. Use `mount` to mount the filesystem
h. Run `dd if=/dev/zero of=<file on eMMC>

bs=8k count=100k` and observer that
the command succeeds.

i. Run `sync`.
j. Run `dd if=<file on eMMC> of=/dev/null

bs=8k count=100k` and observer that
the command succeeds.

2.6.6 Flight Computer
The flight computer controls the operations of the satellite including communication via radio,

interfacing with payloads, and collecting science data. It must be capable of utilizing all the desired

interfaces for this board. For simplicity of programming, this chip will run Linux. Refer to 2.3 for the

schematic.

Requirement Verification

1. The flight computer shall be capable of
booting a Linux operating system.

2. The flight computer shall be capable of
communicating over all interfaces
specified in 2.6.9.

3. The flight computer shall provide
hardware floating point calculation
capability.

1. Verified with the Micro SD card’s first
verification procedure, 2.6.5.

2.
a. Connect a visible and controllable UART

interface to the debug connector.
b. Power on the board with 5 v at 1 A.
c. RS422

i. Connect a device with at least
one known command and
response.

ii. Communication will utilize the
Linux built-in serial driver.

iii. Send the known command.
iv. Verify that the intended

response is received.
d. CAN

i. Connect two devices each with
at least one known command
and response.

ii. Communication will utilize the
Linux built-in CAN driver.

 16

iii. Send the known command to
the first device.

iv. Verify that the intended
response is received.

v. Send the known command to
the second device.

vi. Verify that the intended
response is received.

e. UART
i. Verified with the Debug

Connector procedure, 2.6.2.
f. USB 2.0

i. Verified with the Micro USB
procedure, 2.6.1.

g. I2C
i. Connect each of the devices

specified in the block diagram as
on the same I2C bus.

ii. Communication will utilize the
Linux built-in I2C driver.

iii. For each device.
1. Send the command(s) to

generate data.
2. Receive this data and

verify that it is correct.
3. Observe that the data sheet for the AM335X

lists the VFPv3 Floating Point Unit.

2.6.7 Real-Time Clock (RTC)
Keeping accurate time in orbit is very important for attitude determination and control. A time error of

just one second can lead to a positional error of over 8 km. Relatively precise positional data is used to

Figure 9 - Real Time Clock Schematic

 17

propagate and predict our current orbital position for attitude control. However, the clock can be

calibrated in orbit to cancel out any accumulated drift.

Requirement Verification

1. The RTC shall not drift by more than 1
second / day when running on backup
battery power.

2. The RTC shall communicate with the flight
computer over I2C.

1.
a. Connect a visible and controllable UART

interface to the debug connector.
b. Power on the board with 5 v at 1 A.
c. Use `hwclock -r` to show the current

RTC time and record it externally.
d. Wait 24 hours.
e. Use `hwclock -r` and compare the

results to the previous attempt. If the
difference is less than one second, the
RTC meets requirements.

2. Verified in the flight computer I2C test, 2.6.6.

2.6.8 RTC Battery Backup
A good CubeSat can keep accurate time even when fully powered off. The backup battery should

rechargeable which means it never needs to be replaced. This is important because some missions must

wait more than a year to get launched. The selected RTC IC typically draws 2.0uA of current in standby

mode. With the 17mAh battery selected in this design, the expected battery life is 350 days. Any time

the satellite is powered on, this battery is automatically recharged.

Figure 10 - RTC Battery Charging Circuit

Requirement Verification

1. The RTC’s backup battery shall be
rechargeable.

1. Verify that the battery is chargeable from the
manufacturer datasheet.

 18

2.6.9 Interfaces

Having a wide range of interfaces allows the flight computer to communicate with a variety of on-board

hardware and off board payloads. At a minimum, this project should provide the same number of

interfaces as the original project (four RS422 and one UART).

Requirement Verification

1. There shall be at least four RS422
interfaces to the flight computer.

2. There shall be at least two CAN busses
interfaced to the flight computer.

3. There shall be at least one UART interface
to the flight computer.

4. There shall be at least one USB 2.0
interface to the flight computer.

5. There shall be at least two I2C busses
interfaced to the flight computer.

1. Refer to full board schematic 7.1.
2. Refer to full board schematic 7.1.
3. Refer to full board schematic 7.1.
4. Refer to full board schematic 7.1.
5. Refer to full board schematic 7.1.

2.6.10 6-Axis Inertial Measurement Unit (IMU)
Since every CubeSat should have basic attitude determination, an IMU should be included in the flight

board instead of attached externally as in the original design.

Figure 11 - CAN and RS422 Interface Schematic

Figure 12 - USB Interface Schematic

 19

Figure 13 - 6-axis IMU Schematic

Requirement Verification

1. The IMU shall provide a resolution of at
least 50 milli-degrees / s of angular rate
with a full scale of at least +/- 30 degrees /
s.

2. The IMU shall sample at a minimum of 100
Hz.

3. The IMU shall communicate with the flight
computer over I2C.

1. Verify that these specifications are achievable
with the manufacturer’s data sheet.

2. Verify that these specifications are achievable
with the manufacturer’s data sheet.

3. Verified in the flight computer I2C test, 2.6.6.

2.6.11 3-Axis Magnetometer
The magnetometer uses inductive coil pickups to measure magnetic fields with no temperature-based

drift. This is important for an active ADCS algorithm as it can sense Earth’s natural magnetic field (~50

uT) and then perform attitude adjustments with this information.

Figure 14 - Magnetometer Schematic

 20

Requirement Verification

1. The magnetometer shall provide a
resolution of at least 50 nT with a full scale
of at least 100 uT.

2. The magnetometer shall sample at a
minimum of 100 Hz.

3. The magnetometer shall communicate
with the flight computer over I2C.

1. Verify that these specifications are achievable
with the manufacturer’s data sheet.

2. Verify that these specifications are achievable
with the manufacturer’s data sheet.

3. Verified in the flight computer I2C test, 2.6.6.

2.6.12 Temperature Sensor
The AM335x (the processor we will use) includes an onboard die temperature sensor, but due to silicon

errata it does not function correctly. A local digital temperature sensor was added to replace the built in

one.

Requirement Verification

1. The temperature sensor shall have an
accuracy of +/- 1 deg Celsius on the local
sensor.

2. The temperature sensor shall have a
resolution of at least 1 deg Celsius on the
local sensor.

3. The temperature sensor shall
communicate with the flight computer
over I2C.

1. Verify that these specifications are achievable
with the manufacturer’s data sheet.

2. Verify that these specifications are achievable
with the manufacturer’s data sheet.

3. Verified in the flight computer I2C test, 2.6.6.

2.6.13 Backbone Connector
The backbone connector is used to connect the flight board that this project is designing to a

stakeholder’s BIB.

Figure 15 - Temperature Sensor

 21

Requirement Verification

1. Any interface (2.6.9) not already used for
flight board hardware shall be available
through the backbone connector.

2. The backbone connector shall provide an
interface for the BIB to power the flight
board.

1. Refer to full board schematic 7.1.
2. Refer to full board schematic 7.1

2.6.14 Status LEDs
These are user programmable for conveying any desired information, primarily during testing.

Requirement Verification

1. The flight computer shall be able to
individually control the status LEDs.

1.
a. Connect a visible and controllable UART

interface to the debug connector.
b. Power on the board with 5 v at 1 A.
c. Controlling the LEDs will utilize the built

in Linux GPIO driver.
d. Using `echo`, individually set the state of

each of the four GPIO pins to on and
then off. Observe that each LED lights up
when its corresponding GPIO pin is
enabled.

Figure 16 - Status LED Schematic

 22

2.7 Tolerance Analysis
One of the most important aspect of our project is the built-in sensor suite for inertial measurement.

This is composed of a low noise magnetometer and a compact combination accelerometer and

gyroscope sensor. Between the two chips, there are nine axes of sensitivity. These sensors inform the

higher-level control algorithms what the vehicle is physically doing in orbit.

One of the first operations a satellite will attempt after deployment is damp its rotation rates. This

allows the solar panels to be more efficient and makes ground communication more reliable. The

primary attitude control method that is available on almost every nano satellite are magnetorquers.

These work by creating a magnetic moment orthogonal to the Earth’s magnetic field leading to a torque.

This method only works in non-equatorial orbits because it depends on a varying magnetic field over a

single orbit.

To determine what magnetic moment commands must be sent to the three axis magnetorquer it is

necessary to measure the ambient magnetic field from the body frame of the satellite. While

detumbling, it is also important to measure and the vehicle’s angular rate to ensure the detumbling

process is functioning. Measuring angular rate is also important for precise pointing algorithms used

after detumbling is complete.

The magnetometer we have selected is the PNI Corp. RM3100 which employs a novel induction pickup

system to measure magnetic fields. Compared to typical magneto-resistive or hall effect sensors, the

RM3100 delivers significantly higher sensitivity and lower noise.

Sensitivity Field Range Noise Sampling
Rate (3-axis)

13 nT ±1100 µT 15 nT 147 Hz
Table 2 – RM3100 Specifications

The specific detumbling algorithm used is called B-Dot control. This simple algorithm is based on

premise that the measured field is sinusoidal in nature and the average of sinusoid is zero. Throughout

an orbit, the vehicle will sample the magnetic field and then take the time derivative of the measured

field in all three axes. This derivative is then multiplied by a constant factor and is then fed as a magnetic

moment command to the three axis magnetorquer. This process takes place periodically when the

magnetorquers are disabled as they would interfere with the field reading if they were enabled. This is

shown in Equation 1, where 𝑀𝑖 is the magnetic moment, and 𝑘𝑖 is a derivative gain. Conveniently, the

derivative of the field is always orthogonal to the field itself, so the magnetic moment is guaranteed to

provide a torque.

𝑀𝑖 = −𝑘𝑖�̇�𝑖

Equation 1 – B-Dot Control Law

Our required minimum rotation rate is ±5.0 degrees per second and our maximum rotation rate is ±15

degrees per second. To ensure stability, the sample rate must be chosen so that we do not travel too far

between samples. A sample rate of 1 Hz has been selected because it satisfies this requirement and

allows for activating the magnetorquer between samples.

 23

At a tumble rate of 5 degrees per second, we will have traveled 5 degrees between samples. This

corresponds to a magnetometer reading difference of 801.91 nT. Since the sensitivity of the

magnetometer is 13 nT, we can expect a change in readings of about 61.69 counts. Therefore, with the

magnetometer we have selected, detumbling to less than or equal to 5.0 degrees per second is possible.

It should be noted that when the measured sinusoid reaches a local maxima or minima, the derivative is

zero and therefore, the magnetorquer is off. For the purposes of this analysis, we have assumed the

measured field derivative is halfway between the maximum and zero.

 24

3 Project Differences

3.1 Overview
The original project’s stated goal was to build a “scalable CubeSat satellite bus” [2]. However, by the

project proposal, the high-level requirements had been simplified to the following (emphasis mine) [1]:

• Develop a board that has only the necessary peripherals for the MitySOM

• Develop a board that has the correct physical characteristics for items such as connectors and

IC’s

• Develop a board that will function in space

Of note is that the original team decided to restrict their work and innovation to supporting specifically

the MitySOM. The original team also did not greatly exceed their performance requirements (a selection

is shown) [1]:

• The C&DH Carrier Board shall provide all necessary electrical connections between the daughter

board and the power board, necessary for the processor to function properly.

• The C&DH Carrier Board shall provide all peripheral ports to communicate with other systems of

the satellite – including circuitry to support USB to UART, RS485, and RS422 transceivers.

• The C&DH Carrier Board shall provide a secondary flash memory storage with size of no less

than 1GB to supplement the NAND flash on the daughter board. The specifications of this

storage are TBD.

The types of interfaces listed here are exactly what the original team included. They did improve on the

minimum secondary flash storage requirement with one 4 GB and two 8 GB eMMCs, although the traces

were too long leading to degradation in read/write speed. Our project’s overarching focus is to innovate

and expand upon the work of the original group, while still achieving their minimum requirements.

In order to achieve the original “scalable” design goal, we found it necessary to drop the initial MitySOM

board that the group had intended to use. Opting instead for an Octavo SiP that contains the same

processor but provides us flexibility in the board design and placement process while also being

significantly cheaper to obtain.

The original design displayed tunnel vision in a focus on the three payloads and two radios that the

LAICE mission was going to require and as a result provided limited forms of serial communication. Our

design takes into the account the advantages of addressed bus communication over I2C and CAN and

having a separate BIB, meaning that we can have a very large number of payloads (and radios) subject to

power and size constraints. This provides an incredible amount of flexibility to stakeholders.

We believe that the original design made a mistake in not intentionally considering the support of ADCS

hardware. The requirements listed in the project proposal [1] included RS485 support specifically for

ADCS hardware. However, given that nearly all CubeSat missions will require basic ADCS capability, we

decided to incorporate an IMU and magnetometer directly onto our flight board, sitting on the same I2C

bus as most of the included components. As a result, we eliminated the RS485 interface, which in

practice does not limit the ease of payload interface with the system.

The external storage requirement was also easy to improve upon and we did so with an extra focus on

redundancy, providing two 32 GB eMMCs. Thirty-two GB was chosen as a number that was sufficiently

 25

big enough that the second eMMC could be used purely as a replication of the first eMMC’s data to

guard against data corruption or component failure.

However, the extreme modularity and in-house nature of our new design does create engineering

tradeoffs. Our solution now has many components that are purchased individually. With the original

design many of the components are integrated as modules which simplified purchase and assembly. By

leaving a COTS computer module (the MitySOM) we also lose out on the personal support from

companies like CriticalLink which became very valuable to users of the original design.

Creating a new, replacement design for a proven working piece of technology is always a risky endeavor.

The original design has been in place for several years and as a result has all its behavior, including

quirks, well understood and documented by the engineers using it. A new design is likely to have initial

flaws and require board revisions and careful attention to ensure that it works as intended.

3.2 Analysis
Our solution is more flexible and can support more payloads than the original solution at a fraction of

the cost. We believe solving this scalability problem for little cost is a core aspect of the improved

project.

According to our bill of materials (4.2), the cost of a single fully assembled (with leaded solder) flight

board is $266.11. The total lead time would be approximately two weeks. Contrast that with the original

solution where the MitySOM module from CriticalLink had a minimum order size of five (despite the fact

that the mission only needed one and possible a second for backup), cost $3,000 for the set of five, and

had a lead time of six weeks for a leaded solder module. Additionally, the original project still had the

carrier board (which was the focus of their design) that had to be printed and assembled for around

$3,000 for an order size of ten. This is a massive improvement in cost and lead time which is a critical

improvement for any stakeholder, particularly the cash-strapped environment of a university CubeSat

program.

 26

4 Cost and Schedule

4.1 Labor
We estimate our fixed development costs at $45/hour for 10 hours/week over 15 weeks (one of the

weeks in the semester is spring break), assuming this project would normally be completed in over an

entire semester. We then multiply by a factor of 2.5 to account for other overhead in a real engineering

organization, such as administrative costs.

2 ×
$45

hour
×

10 hr

week
× 15 week × 2.5 = $33,750

Equation 2 - Estimated Cost of Labor

4.2 Bill of Materials
Item Description Cost Quantity Total Price

OSD3358-512M-ISM IC MODULE CORTEX-A8 1GHZ 512MB $52.80 1 $52.80

RM3100 3-axis magnetic sensor suite $15.50 1 $15.50

DS3231MZ+ IC RTC CLK/CALENDAR I2C 8-SOIC $7.69 1 $7.69

ISM330DLCTR INEMO INERTIAL MODULE $6.02 1 $6.02

LTC2863IDD RS422 TRANCEIVER $4.17 4 $16.68

SDINBDG4-32G eMMC 32GB $26.70 2 $53.40

TCAN332DR CAN TRANSCEIVER 1/1 8SOIC $2.01 2 $4.02

Passives Miscellaneous Passive Components $50.00 1 $50.00

PCB Assembly Automated PCB Assembly $30.00 1 $30.00

PCB 4 Layer 5mil/5mil 75x40mm $30.00 1 $30.00

 TOTAL $266.11
Table 3 - Bill of Materials

4.3 Cost Analysis
In quantities of five units at a time, we expect the total bill of materials cost to be about $266 per unit.

This estimate is based on PCBWay quotes, so it is likely cheaper than it would truly cost for a flight

qualified board. We estimate that a flight ready board would cost about $1,000 based on the more

extensive testing and higher quality PCB assembly. This is still far cheaper than the current design which

costs roughly $6,000. Our labor estimate comes to $33,750.

 27

4.4 Schedule
Week of Description Responsibility

3/15/20 Brainstorm new project ideas Both

3/22/20 Have new project idea approved Both

3/29/20 Perform in-depth research and designs to improve project Both

Write new project proposal Both

4/05/20 Begin work on design document Both

Improve explanation of project and differences Dillon

Begin work on schematics Adam

4/12/20 Finish schematic Adam

Finish design document Both

4/19/20 Present design document at review session Both

Attend peer design reviews Both

Begin work on final report Both

4/26/20 Work on final report – original project section Dillon

Work on final project – new project section Adam

5/03/20 Merge and complete final report Both
Table 4 - Work Schedule

 28

5 Safety and Ethics
The primary ethical concerns with our project involve ensuring the stakeholder has an accurate

understanding of the product we are delivering. In order to satisfy section 7.8.3 of the IEEE code of

ethics [3] and section 1.3 of the ACM code of ethics [4], we present a clear description of our project, in

particular emphasizing that our flight board on its own is not enough to create a useful CubeSat. A BIB is

necessary for a flight configuration of a CubeSat as at a minimum it provides the power to the flight

board for operation. A stakeholder would additionally likely want to purchase a radio for communication

with the ground.

There are several safety factors relevant to our flight board. The most immediate is the presence of the

backup battery for the RTC. This battery is a Manganese Lithium coin cell. It contains very little actual

Lithium and has a small capacity (around several mAh) is therefore an extremely safe choice [5].

The remaining safety factors are interactions between our flight board (and the CubeSat enclosing it)

and the surrounding environment (launch vehicle, deployer pod, International Space Station (ISS)).

NanoRacks, who sells CubeSat deploying services, provides a list of many requirements. Some of the

most relevant safety requirements are space debris, battery failure, and structural failure. Our flight

board satisfies the section 4.4.6 requirement of not producing any debris [6]. Our RTC battery, as

discussed, is very safe. Additionally, section 4.4.7.10 classifies our battery as a “Button Cell” which

means acceptance testing is not necessary [6]. To ensure that our flight board does not suffer from any

outgassing issues, we will ensure that all materials used satisfy the section 4.4.10.3 requirements [6].

Finally, no components that we utilize shall have issues passing a random vibration test as specified in

4.3.2-1 [6].

 29

6 References

[1] D. Brackmann, M. Mahowald and A. Pasricha, "Flight Computer for IlliniSat-2 - Project Proposal,"

Electrical and Computer Engineering Department, University of Illinois at Urbana-Champaign,

Urbana-Champaign, 2014.

[2] D. Brackmann, M. Mahowald and A. Pasricha, "ECE 445 Web Board - RFA," September 2014.

[Online]. Available: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=8975.

[Accessed March 2020].

[3] IEEE, "IEEE Code of Ethics," IEEE, 2020. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed 2 April 2020].

[4] ACM, "ACM Code of Ethics," ACM, 2018. [Online]. Available: https://www.acm.org/code-of-ethics.

[Accessed 2 April 2020].

[5] Panasonic, "Manganese Lithium Coin Batteries (ML series): Individual Specifications," 2014.

[6] NanoRacks, "NanoRacks CubeSat Deployer (NRCSD) Interface Definition Document (IDD)," 2018.

[7] ST, "Watchdog Timer Circuit," 2017.

 30

7 Appendix

7.1 Full Board Schematic

Figure 17 - Full Design Schematic

