
Music Detecting Light System
Team 72 -

Francis Mui: Costs, Schedule, Ethics

Ran Wang: Block Diagram, R&V Table

Alfredo Sanchez: High-Level, Software

ECE 445 Design Document- Spring 2020

TA: Ruhao Xia

1. INTRODUCTION

1.1 Problem and Solution Overview.

The system objective is for the light patterns to change based on the music detected and
on the user's chosen settings. For example, when used in a party and a strong music is detected,
the lights are supposed to react to the "mood" of the music, showing strong synchronized beats,
with fast changing, enthusiastic color patterns. When in personal use, such as when the user is
playing jazz music, the lights change to a colder, background color to reflect the genre of the
music, creating a more immersive atmosphere. So if the rhythm, genre and change of pace of the
music is accurately reflected and the user’s preferences are met, the system is considered
successful.

Lights and music are two features that are very powerful in providing entertainment. For
example, party hosts often provide rock music and warm-color lighting to improve the
atmosphere. Also, musicians would sometimes relate a piece of classical or jazz music to a
specific color. The problem is the colors and the music itself are often separated. A system
providing synchronous lighting to the music would be an interesting solution for individuals who
frequently listen to music and want a matching atmospheric lighting. This will also extend to
people who host home parties and are looking for a way to make it more exciting or for people
who desire to feel more immersed when listening to any kind of music. The key point is that
people will be able to create a synchronous ambience combining both music and lights.

1.2 Visual Aid

Fig.1 High-Level Schematic

1.3 High-level requirements list

1.3.1. ​Latency.

We will need to control the amount of time that the system will take since the
input is given until the output appears. The expected latency will be from 2 to 4 seconds.

1.3.2. Accuracy.

The system will need to accurately reflect at least 75% of the music detected. See
section 1.4 for more information.

1.3.3. Lasting.

The system will need to last for at least 3 hours without charging.

1.4 Expected input given the output.

This table gives a general overview of having a music song being played from a type of genre, what the
output will be.

Input (Type of music) Output (RGB color range, LED frequency)

Techno RGB(0,0,0)-RGB(0,255,255); 2 Hz-2.4 Hz

Rap RGB(0,0,0)-RGB(0,155,155);1.5 Hz-1.90 Hz

Hip-Hop RGB(0,155,155)-RGB(255,255,255);1.33Hz-1.7 Hz

Reggae RGB(0,155,155)-RGB(255,255,255);1.5 Hz-2 Hz

Jazz RGB(0,0,0)-RGB(255,255,255);2 Hz-2.10 Hz

Reggaeton RGB(0,155,155)-RGB(255,255,255);1.7 Hz-2 Hz

Pop RGB(0,0,0)-RGB(255,255,255);2 Hz-2.4 Hz

Rock RGB(0,155,155)-RGB(255,255,255);2 Hz-2.4 Hz

Classic Music RGB(0,0,0)-RGB(255,255,255);1 Hz-1.4 Hz

Metal Rock RGB(0,155,155)-RGB(255,255,255);2.4 Hz-3.2 Hz

Punk RGB(0,155,155)-RGB(255,255,255);2.4 Hz-3.2 Hz

Dubstep RGB(0,0,0)-RGB(0,255,255); 2.5 Hz-4 Hz

2. DESIGN

2.1 Block Diagram

Fig.2 Block Diagram

2.2 Physical Design

Fig.3 Physical Setup

The microphone is installed near the music player to reduce the noise received. LED light
bands are installed around the room and on the ceiling to create light patterns. The control, Wifi
and user interface modules can be installed at any convenient places at will, and does not interfere
much with the users when in use. (for example, in a crowded party)

2.3. Detection Module

The Detection Module will need to be able to read the audio signal, amplify it and
convert it from analog to digital, preliminarily filter out the background noises, and send this new
amplified signal to the Control Module. This needs to be active while the machine is on at all
times, and needs to quickly identify when the song has changed. The microphone itself will need
5V, 500mA to activate. This module contains a microphone to record the analog audio signal
from the room where it’s installed, an amplifier to increase its strength, a digitizer to perform an
analog-to-digital conversion, and a digital filter to preliminarily eliminate the background noises
recorded. Recognition of the music is performed in the recognition module followed.

Requirement Verification

Amplifier
1. Accepts audio signal from microphone, and
amplifies it for processing with a 40x gain.

(a) Receive data from the microphone
with around 50mV voltage.
(b) Use an oscilloscope to verify the
amplified voltage level is around 2.0V.

Filter
1.Filter out background noises outside of the
desired 50-5k Hz frequency range.

(a) Record audio samples.
(b) Perform a DTFT to see the filter
outcome.
(c) The noise spectrum should be
attenuated to below -20 dB.

Microphone
1.​ ​Steady continuous performance at working
conditions of 5V and 500mA.
2. Record sound signals of 30dB with an SNR of
at most 15dB..

1. (a) Connect microphone to the required
voltage and current.
 (b) Record audio signal for at least 3
hours, and verify the audio’s continuously
recorded.
2. (a) Record audio signal with the desired
intensity.
 (b) Use a function generator to verify
the SNR to be within acceptable levels.

Analog-Digital Converter
1. Process signals at 2.0V level to 10-bit digital
output.

(a) Send a signal with varying amplitude
in the 0-2.0V range and varying frequency
of 50-5k Hz.
(b) Verify a conforming digital output to
the original signal’s shape.

2.4 Control Module

The Control Module needs to be able to read the signal acquired from the Detection
Module and convert it into a signal which accurately conveys the genre, chord progression,
frequency and strong beats. It then needs to use these parameters to pick out the appropriate light
patterns, either from the preset list or from one obtained from the User Interface, and send it to
the Wifi Module. We intend to use either a microcontroller of, if we need a more powerful chip, a
raspberry pi. Much like the Detection Module, this needs to be active at all times to identify the
song, but will only need to send outputs to the Wifi Module when the light is turned on. Both of
which require the Power Module to provide approximately 5V of power, +/- 0.5V.

This module is the part that is in charge of recognizing the music, receiving user
commands from the user interface, and controlling the light module accordingly. After the
microprocessor receives the audio signal, it performs the adaptive noise cancellation, audio
fingerprinting algorithm and pitch detection to recognize the music’s genre, frequency and strong
beats. After the recognition, it loads the matching preset light pattern, along with potential user

commands to change preferred patterns (explained later), and sends control signal to the Wifi
module.

Requirement Verification

Raspberry Pi Microcontroller
1. Communicate with the user interface app with
less than 500ms latency.

(a) Connect PC to microcontroller through
USB.
(b) Send commands through the PC app,
receive feedback.
(c) Verify the latency is within the
acceptable level.

2.5 Wifi Module

The Wifi Module will need to receive the signal from the Control Module and
immediately send the signal to the light Module. This will only activate when we need the lights
to turn on, and otherwise will block inputs. This needs to be powered by the Power Module with
anywhere between 1.8 and 5 V. This module is added to enable remote connection between the
control module and light module. Since wiring the lights directly with the control module can
pose a lot of problems when physically setting up the system, remote controlling will allow more
flexibility. We will also need to add another small controlling system, in which we will use a
microchip in order to obtain the array of bits calculated or obtain from the raspberry pi. It would
be a microcontroller embedded into the light module that will receive the data from the wifi
module and send it to the light as an output.

With multiple ESP8266 Wifi chips, the synchronization is realized through visiting the
NTP server on the Raspberry Pi microcontroller in the control module, and can achieve a
synchronization within 50 milliseconds.

Requirement Verification

Microcontroller
1. Embedded at the LED side. Receive data and
control lights with less than 200ms latency.

(a) Send command from control module.
(b) Verify the Wifi module’s reception.
(c) Lights perform tasks with acceptable
latency.

2.6 Light Module

The Light Module will need to receive the signal from the Wifi Module and output the
signal as varying lights. They will only turn on when they receive inputs from the Wifi Module

This needs to be powered by the Power Module with 12 V at 0.6 A per meter of LEDs. Multicolor
LED light bands to be set up around the room and perform the desired task: a lighting that
matches the music being played. Receives digital control signals through the Wifi module and
changes the colors accordingly.

Requirement Verification

Multicolor LED light band
1. Steady output of multicolor light with 12V +/-
5%, 1.5A +/- 3% input power for at least 3 hours.
2. Temperature should be below 125 degrees
Celsius.

1. (a) Connect to the desired power and
control signals.
 (b) Observe and verify steady
brightness and color changing for at least
three hours.
2. (a) During operation, verify with a
thermometer that the temperature of the
light is below 125 degrees Celsius.

2.7 User Interface

The User Interface needs to have sliders/buttons that determine how active a person
would want their lights to be, from whether they want the colors to change dramatically for party
settings to changing gradually for personal settings or for concerts. This would also have options
to place emphasis on certain colors or brightness. This would come with presets for party and
personal use, and this signal would be outputted to the Control Module to determine what color
patterns would be most appropriate. The personal computer is connected to the control module
through a USB port. There will be an implementation of a laptop app for the user to choose their
preferred light colors and patterns, to switch between personal mode (for music appreciation, etc.;
gradual change, colder colors) and party mode (for enthusiastic music played in a party;
emphasizes strong beat effects), and to customize other settings such as brightness and favorite
color is necessary.

2.8 Power Module

The Power Module needs to be able to power the Detection, Control, Wifi, and Light
Module. This will need to provide power for at least 3 hours so that the system can stay on during
an entire concert or the majority of a party.​ ​It contains a rechargeable battery that draws power
from the wall outlet, and a power distribution unit to power the other modules from the battery.
Since the system is designed to allow for convenient movement and installment for the user when
looking for entertainment, a central power module would be preferable than plugging modules in
the outlet separately.

Requirement Verification

Linear Rectifier
1. Convert wall outlet AC voltage to a steady DC
voltage.

(a) Connect rectifier to a load.
(b) Power the circuit from the wall outlet.
(c) Use an oscilloscope to verify the output of
the rectifier is 120V DC within 3% tolerance.

Dropout positive voltage regulator.
Low Quiescent Current LDO
1. Vout = 12 V ± 1 V at 100 µA

15 V DC to 12 V DC
Switch-Mode Regulators
1. Verification Process for Item 1:
(a) Attach 33 k ohm resistor as load
(b) Attach oscilloscope across load
(c) Supply regulator with 12 V DC
(d) Ensure output voltage remains between 11
V and 13 V

Li-ion Battery
1. Main: Provides steady output of 15V +/- 3%,
900mA +/- 2% for at least 3 hours without
charging.
2. Secondary: Provides steady output of 15V +/-
3%, 1.5A +/- 1.5% for at least 3 hours without
charging.

1. (a) Fully charge the battery.
(b) Disconnect from charger.
(c) Connect to circuit.
(d) Test to verify a stable 15 V, 900mA
output within tolerance for 3 hours.
2. Follow the same procedure as in (1).

Li-ion Charger
1. Steady charging output of 4.2V +/- 5% and
500mA +/- 3%.
2. Stable working temperature below 125 degrees
Celsius.

1. (a) Discharge battery.
 (b) Connect to charger with an input of
7V.
 (c) Verify the charging voltage, current
levels are within the designated levels.
2. (a) During charging, use a thermometer
to measure and verify the charger’s
temperature.

2.9 Schematics

Fig.4 Detection Module Schematic

Fig.5 Power Module Schematic

 Fig.6 Simple Wifi Module Schematic

2.10 Software

● Changing from Analog to Digital.

As everyone knows sound is a vibration that propagates as a waveform based on pressure
and that moves itself through a medium such as air or water. When the vibration reaches out ears,
it moves three little bones (known as malleus, incus and stapes) that transmits the vibration to
some other cells located in the inner ear. Furthermore, those cells produce electrical impulses that
are transmitted to our brain through the auditory nerve of the ear.

The procedure is commonly imitated by most recording devices, they convert sound as a
waveform into an electronic signal. In a microphone, the first electric component that is found is
transferred as a continuous analog signal, which in the digital world will be useless, so it has to be
changed into a discrete signal which is easier to be processed digitally. This procedure will be
done by capturing digital values that will represent the signal amplitude.

Conversion implicates quantization of the entrance quantification that will introduce
some error. As matter of fact, instead of a simple conversion we will use an analog-to-digital
converter that is a device that converts an analog signal into a digital signal. The analog-to-digital
converter divides the signal in tiny pieces and converts those pieces using a process known as
sampling.

Nyquist-Shannon Theorem​ ​establishes a sufficient condition for a ​sample rate​ that
permits a discrete sequence of samples to capture all the information from a continuous-time
signal of finite ​bandwidth​. In particular, if we want to capture all the frequencies the human being
ear can hear, we must sample the signal at a frequency doubling the humans hearing range.
Humans ear can detect frequencies between 20 Hz to 20000 Hz. As a result, most of the time
recorded audio normally has a sample rate of 44100 Hz, that will be frequency sample rate that
will be used in the project.

● Recording and capturing sound.

https://en.wikipedia.org/wiki/Sample_rate
https://en.wikipedia.org/wiki/Bandwidth_(signal_processing)

Recording an audio signal should not be very difficult, we will use a Raspberry Pi,
because it will be powerful enough to handle a microphone, capture the sound and implement the
whole algorithm afterwards. We will use a USB microphone that is compatible with the
Raspberry Pi we will be using. Here is an example of the code using python of this part:

import​ ​pyaudio

import​ ​wave

form_1 = pyaudio.paInt16 ​# 16-bit resolution

chans = ​1​ ​# 1 channel

samp_rate = ​44100​ ​# 44.1kHz sampling rate

chunk = ​4096​ ​# 2^12 samples for buffer

record_secs = ​30​ ​# seconds to record

dev_index = ​2​ ​# where the device is (in index) (use
p.get_device_info_by_index

wav_output_filename = ​'test1.wav'​ ​# name of .wav file

audio = pyaudio.PyAudio() ​# create pyaudio instantiation

create pyaudio stream

stream = audio.open(​format​ = form_1,rate = samp_rate,channels =
chans, \

 input_device_index = dev_index,​input​ = ​True​, \

 frames_per_buffer=chunk)

print​(​"recording"​)

frames = []

loop through stream and append audio chunks to frame array

for​ ii ​in​ ​range​(​0​,​int​((samp_rate/chunk)*record_secs)):

 data = stream.read(chunk)

 frames.append(data)

print​(​"finished recording"​)

stop the stream, close it, and terminate the pyaudio instantiation

stream.stop_stream()

stream.close()

audio.terminate()

save the audio frames as .wav file

wavefile = wave.open(wav_output_filename,​'wb'​)

wavefile.setnchannels(chans)

wavefile.setsampwidth(audio.get_sample_size(form_1))

wavefile.setframerate(samp_rate)

wavefile.writeframes(b​''​.join(frames))

wavefile.close()

● Filtering the signal to isolate from noise.

Next step will be isolating noise in order to get a clear signal of just the sound of the

music, in order to that we will use the Least Mean Squares Filter (LMS) algorithm which is an

adaptive filter commonly used to minimize the ambient noise. Adaptive systems are used to

identify systems, predict, cancel noise, cancel eco and equalize a sound adaptively. Our objective

in this case will be constructing the adaptive system to cancel background noise from the audio

recorded. Block diagram of the adaptive filter would be:

Fig. 7 Adaptive Filter

Where s[n] is the audio signal without the background noise; r[n] the background noise

captured when recording the audio signal s[n]; d[n] = s[n]+r[n] is the recorded audio with the

background noise, which we want to cancel; x[n]= 𝑟̃[n] is the noise, correlated with r[n], which

we need to adaptate the system to estimate r[n]; w[n] are the M+1 coefficients of the adaptive

filter of the adaptive filter for the n time; y[n]= = 𝑟̂[n] is the estimated noise; and e[n] =

d[n]-𝑟̂[n]= 𝑠̂[n] is the error of the adaptive system and the estimated signal of audio without

background noise.

We can use as a background noise signal a predefined one of people talking or just some

kind of noise that might be similar for the background noise of each ambient. We will also use

M=10 and 𝜇=0.0121 as parameters for the adaptive filter. In order to implement the algorithm, we

will use the following matlab code, which will be easy to convert into python code by using

libermate library.

The algorithm will be:

We will get both the d_n signal that will be the recorded sound and the background sound

signal, that will be called as x_n:

[d_n,fs]=audioread('PDS_P8_LE2_G2_d_n.wav');

[x_n,fs]=audioread('PDS_P8_LE2_G2_x_n.wav');

To begin with, we will build the signals that we will introduce all of them initialized to

zero with the desired length, we will create a new_x signal that will be equivalent to the updated x

signal, which is updated in the first step of each iteration.

x_updated =zeros(M+1,1);

The next variable that we will create would be the W matrix, which will have M+1 rows

and the length of x_n as columns, for that, we will get the length of x_n and initialize the matrix

to zeros as we said before.

N=length(x_n);

w=zeros(M+1,N);

We will also create a variable y_n, it will be calculated in the second step of each

iteration, which will be the one that is subtracted from the d_n signal in each iteration to obtain

the e_n error signal. Both signals e_n and y_n will be vectors of N zeros.

y_n=zeros(N,1);

e_n=zeros(N,1);

Once we have created all the variables that we will use, we will develop the algorithm, in

order to that, as we have introduced before, we will follow the steps described below:1)

x_updated will be updated with the the sample that is received every time. 2) We will calculate

the output sample with y_n=w_n(transpouse)*x_n. 3) We will calculate the error signal that as we

have said before it will be the subtraction of d_n minus y_n and that signal after the subtraction

and after all the iteration, would be the clean music audio. 4) We will update the coefficients of

the filter following the approximation of the gradient with the formula:

w(n+1)=w(n)+M+1+2*𝜇*e_n+x_n.

for ​ n = 1:1:N

j=0;

for ​i = n:-1:(n-M)

if ​ i >= 1

% Step 1.(Updated x)

x_updated(M+1-j) = x_n(i);

else

% % Step 1.(Updated x)

x_updated(M+1-j) = 0;

end

j = j+1;

end

%Step 2.(We will calculate the output signal

y_n)

y_n(n)= w(:,n)'*x_updated;

%Step 3. (We will calculate the signal error

e_n)

e_n(n)= d_n(n)-y_n(n);

% Step 4. (We will update w)

w(:,n+1)= w(:,n) + 2*mu*e_n(n)*x_updated;

end

We will obtain in the error signal e_n a similar signal to a clean audio, we will not get the

perfect clean music audio, but at least we will remove most of the background sound and the

noise left will be enough for classifying the music sound recorded.

● Time and frequency domain.

What we got from the program will be a wav file, which in other words is a bytes matrix
in time domain. The domain signal in time domain represents the change in amplitude over time.

As ​Jean-Baptiste Joseph Fourier discovered, it is possible to represent any signal in the
time domain by simply giving the set of frequencies, amplitude and phases corresponding to each
sinusoid that composes the signal. The representation is known as frequency domain and in a
way, the frequency domain acts as a type of fingerprint or signature for the time domain signal,
providing a static representation of a dynamic signal.

Fig.8 Time Domain vs Frequency Domain[1]

Analyzing a signal in frequency domain simplifies things immensely. In digital signal
processing it is commonly used because engineers can study the spectrum, which is the
representation of the signal in the frequency domain, and determine the frequencies that are
present and those that are missing. Also it is easier to filter, increase or decrease some
frequencies, or recognize the exact tone of the frequencies, which is what we are looking in this
project.

● Discrete Fourier Transform (DFT).

Therefore, we need to find a way to convert our signal from time domain to frequency
domain. The next step would be using the discrete Fourier Transform (DFT). DFT is a

mathematical method to perform Fourier Analysis on a discrete sample of the signal. DFT
converts a finite list of equidistant samples of a function into the list of the coefficients of a finite
combination of complex sinusoids, ordered by their frequencies, considering whether the
sinusoids had been sampled in the same proportion.

One of the most popular numeric algorithms for the calculation of DFT is the Fast Fourier
transform (FFT). A variation of the FFT Cooley-Tukey algorithm is the most utilized one. The
algorithm is based on the divide-and-conquer algorithm, it recursively divides the DFT in
multiple and little DFTs. While using the evaluation of a DFT directly requires O(N^2)
operations, with the Cooley-Tukey FFT it is computed in O(nlog(n)) operations, making the
algorithm faster and simpler. Here is an example of a DFT function in code using python using
the NumPy library:

def​ ​FFT_vectorized ​(x):

 ​"""A vectorized, non-recursive version of the
Cooley-Tukey FFT"""

 x ​= ​ np ​. ​asarray(x, dtype ​= ​float ​)

 N ​= ​ x ​. ​shape[​0 ​]

 ​if​ np ​. ​log2(N) ​% ​ ​1 ​ ​> ​ ​0 ​:

 ​raise​ ​ValueError​(​"size of x must be a power of 2" ​)

 ​# N_min here is equivalent to the stopping condition
above,

 ​# and should be a power of 2

 N_min ​= ​ ​min ​(N, ​32 ​)

 ​# Perform an O[N^2] DFT on all length-N_min sub-problems
at once

 n ​= ​ np ​. ​arange(N_min)

 k ​= ​ n[:, ​None​]

 M ​= ​ np ​. ​exp(​-2 ​j ​* ​ np ​. ​pi ​* ​ n ​* ​ k ​/ ​ N_min)

 X ​= ​ np ​. ​dot(M, x ​. ​reshape((N_min, ​-1 ​)))

 ​# build-up each level of the recursive calculation all
at once

 ​while​ X ​. ​shape[​0 ​] ​< ​ N:

 X_even ​= ​ X[:, :X ​. ​shape[​1 ​] ​/ ​ ​2 ​]

 X_odd ​= ​ X[:, X ​. ​shape[​1 ​] ​/ ​ ​2 ​:]

 factor ​= ​ np ​. ​exp(​-1 ​j ​* ​ np ​. ​pi ​* ​ np ​. ​arange(X ​. ​shape[​0 ​])

 ​/ ​ X ​. ​shape[​0 ​])[:, ​None​]

 X ​= ​ np ​. ​vstack([X_even ​+ ​ factor ​* ​ X_odd,

 X_even ​- ​ factor ​* ​ X_odd])

 ​return​ X ​. ​ravel()

● Music Recognition: Fingerprints in a Song.

A side effect of FFT is that we lose a lot of information about synchronization (although
theoretically this can be avoided, the overhead performance is huge) for a 3-minute song, we can
see all the frequencies and their magnitudes, but we do not know when those frequencies and
magnitudes appeared in the song. We will need to identify when each frequency appears.

That is the reason why we should introduce a sliding window and a fragmentation of the
data so then we will transform each piece of information. The size of each fragment could be
defined in a lot of ways. For example, if we want to record the stereo sound, with samples of 16
bits, using 44100 Hz, one second of the sound will be of 44100samples*2bytes*2canals ≈ 176
kB. If we choose 4kB for each segment size, we will have 44 pieces of data to analyze for each
second of a song, that will be enough for a detailed analysis.

Once we have the information about the frequency of the signal, we can start making the
digital footprint of the song and classify them in their genre. In this case we will have to use time
and frequency domain information to extract features such as Spectral Rolloff, Spectral Flux,

Time Domain Zero Crossing, Mel-Frequency Cepstral Coefficients, Analysis and Texture
Window or Rhythmic Content Features.

The features that we will use are those used to represent timbral texture and are based on
standard features proposed for music-speech discrimination and speech reocgnition.[2]

The first feature to be calculated will be the Spectral Centroid, which is defined as the
center of gravity of the magnitude spectrum of the DFT calculated before. The formula that we
will use will be:

t t[n] / t[n]C = ∑
N

n=1
M * n ∑

N

n=1
M

Where in this case Mt[n] is the magnitude of the DFT at frame t and frequency n. The
Spectral Centroid is a measure of spectral shape and higher centroid esteems correspond to
“brighter” textures with more high frequencies.

The formula explained before will be implemented in python with the library librosa[3]
with the following code:

spectral_centroids = librosa.feature.spectral_centroid(x,

sr=sr)[0]

spectral_centroids.shape

(775,)

Computing the time variable for visualization

frames = range(len(spectral_centroids))

t = librosa.frames_to_time(frames)

Normalising the spectral centroid for visualisation

def normalize(x, axis=0):

 return sklearn.preprocessing.minmax_scale(x, axis=axis)

#Plotting the Spectral Centroid along the waveform

librosa.display.waveplot(x, sr=sr, alpha=0.4)

plt.plot(t, normalize(spectral_centroids), color='r')

We will also calculate Spectral Rolloff, which is defined as the frequency Rt below which
85% of the magnitude distribution is concentrated. It is another feature that measures spectral
shape and the formula that we will use will be:

t[n] .85 t[n].∑
Rt

n=1
M = 0 * ∑

N

n=1
M

That in python code using the same librosa library will be:

spectral_rolloff = librosa.feature.spectral_rolloff(x+0.01,

sr=sr)[0]

librosa.display.waveplot(x, sr=sr, alpha=0.4)

plt.plot(t, normalize(spectral_rolloff), color='r')

We will calculate the Mel-Frequency Cepstral Coefficients that are defined as the small
set of features which concisely describe the overall shape of a spectral envelope, in other words, it
models the characteristic of the human voice. The procedure basically consists of after taking the
log-amplitude of the magnitude spectrum, the FFT bins are grouped and smoothed according to
the perceptually motivated Mel-frequency scaling. Finally, in order to decorrelate the resulting
feature vectors a discrete cosine transform is performed. Although typically 13 coefficients are
used for speech representation, we have found that the first five coefficients provide the best
genre classification performance. A piece of code calculating the MFCCs of an audio signal:

mfccs = librosa.feature.mfcc(x, sr=fs)

We can also perform feature scaling such that each coefficient dimension has zero mean
and unit variance that will be more accurate:

import sklearn

mfccs = sklearn.preprocessing.scale(mfccs, axis=1)

We will also calculate Chroma Frequencies because they are an interesting and powerful
representation for music audio in which the entire spectrum is projected onto 12 bins representing
the 12 distinct semitones (or chroma) of the musical octave. As in the other features, we will use
librosa library to obtain them:

x, sr = librosa.load('../simple_piano.wav')

hop_length = 512

chromagram = librosa.feature.chroma_stft(x, sr=sr,

hop_length=hop_length)

We will also use the time domain signal in order to calculate the Time Domain Zero
Crossing, it will provide a measure of the noisiness of the signal and the formula that we will use
will be:

t sign(x[n]) ign(x[n])|Z = 2
1 * ∑

N

n=1
| − s − 1

Where the sign function is 1 for the positive arguments and 0 for the negative arguments
and x[n] is the time domain signal for frame t.

The code in python, using librosa library for the formula will be:

zero_crossings = librosa.zero_crossings(x[n0:n1],

pad=False)

We will detect the beat of the song using the library librosa and using the function
beat.beat_track, we will get in return a float number as the estimated global tempo of an audio
and an array with the estimated beat event locations in the specific units, the default would be
what the frame indicates.

● Evaluation.

In order to evaluate the feature sets analysed before, standard statistical pattern
recognition classifiers will be trained using real world data collected from a variety of different
sources.

For classification purposes, we will use some statistical pattern recognition (SPR)
classifiers. The idea behind a SPR is to estimate the probability density function for the feature
vectors of each class. In the project we will use a existing classification algorithm to classify the
songs into different genres such as the one that is in the next github repository:
https://gist.github.com/parulnith/7f8c174e6ac099e86f0495d3d9a4c01e#file-music_genre_classifi
cation-ipynb

● Light with genres.

Once we have detected the genre of the song, we can proceed to send signals to the lights
so they turn on or off depending on the genre that has been detected. We have decided to send the
light module a matrix of bits to the light module determining the lights that have to be on or off
and what color. The data will be sent by wifi, so we will have a sender in the control part a
receptor in the light module, both connected to the same network.

Lights signals will variete depending on the detected genre. If we have detected a blues
song, we will make the lights change slower than if we detected a rock song. If we detect a jazz

https://gist.github.com/parulnith/7f8c174e6ac099e86f0495d3d9a4c01e#file-music_genre_classification-ipynb
https://gist.github.com/parulnith/7f8c174e6ac099e86f0495d3d9a4c01e#file-music_genre_classification-ipynb

song, the color of the lights will light with more warm colors, such as red, yellow or orange while
an electronic song will light with more cold colors such as blue, white or purple.

2.11 Tolerance Analysis

A critical and challenging aspect to implementing the system is the detection module.
Since the system’s purpose is to work even in relatively noisy environments such as parties,
examination of how well the detection module can perform is needed. In other words, can it
record the music being played, filter out most of the low-frequency background noises, and send
it to the control module with an acceptable accuracy?

In a living room with people talking, the noise level is usually at around 60dB. And the
rock music being played at a house party can usually be around 70-75dB. The difference is
10-15dB. Take 10dB for example. This translates into a signal-to-noise power ratio of 10. In other
words, the microphone will mostly be receiving the much louder rock music being played, instead
of people’s talking. Setting up the detection module closer to the music player can also increase
the relative intensity of the music.

The fundamental frequency range of people talking is between 50-500Hz. The
consonants can go up to 2k-4k Hz. The harmonics can even go beyond 12k Hz.[5] Generally, the
needed range for rock music is about 60-8k Hz, with classical from 40-12k Hz.[4] Seems like
there is a huge overlap between the two frequency spectra, but it is worth noting that the 250-2k
Hz (low-mids) and 2k-8k Hz (high-mids) ranges are most important in the recognition of
instruments, and thus of music. While it still has overlap with the fundamental frequencies of
human voice between 250-500Hz, the major part of this frequency range is not affected. With a
band-pass filter focusing more on the 250-8k Hz frequency range, attenuating the frequency
ranges 0-250Hz and 8k-12k Hz, and filtering out the high-frequency part of the human speech
noises above 12k Hz, the music contained in the audio signal can be more easily recognized.

Another important aspect comes with the powering of the light and wifi modules. To
avoid wiring problems, we decide to use a separate power module consisting of a rechargeable
battery and a buck switching regulator. The LED strip lights available online require a 12V, 1.5A
power input per 5 meters. With each light unit, there needs to be a 12*1.5=18W input. The
ESP8266 Wifi chip used needs 3.0V, 80mA power input to operate, converting to 3*0.08=0.24W.
Considering a regulator efficiency of 80%, and the requirement of a 3-hour performance time, the
total energy storage for the battery is (18+0.24)*3/0.8=68.4Wh. As a conclusion, a battery of size
15V, 4.56Ah should be used.

Fig.9 Buck Switching Regulator[10]

3.COST AND SCHEDULE.

3.1 Cost Analysis.

3.1.1 Labor.

We estimate that our fixed development costs are $40/hour and 10 hours/week for 3
people, done over 16 weeks:

6 weeks 2.5 48, 00 3 * $40
hour * week

10 hours * 1 * = $ 0

3.1.2 Parts.

Description Manufacturer Part # Quantity Cost

Raspberry Pi​:​a low cost,
credit-card sized computer
that plugs into a computer
monitor or TV, and uses a
standard keyboard and
mouse.

Premier Farnell 1 $35

USB Microphone for
Raspberry Pi​:1.5 m long
cable; Omnidirectional
response pattern; USB 2.0

MakerPortal 1 $20

(works with Raspberry Pi);
50 Hz - 16 kHz frequency
response; Microphone Size
(without windscreen): 6.5 cm
x 0.7 cm; 44.1 kHz/48kHz
USB Sample Rate Selection;

ASUS USB-N13 N300 USB
2.0 Wifi Adapter:
Secure and Consistent
connection - Powerful and
designed for blazingly fast
download, file transfer and
media streaming.
2-in-1 device for wireless
connection sharing - Enable
your WLAN adapter into a
wireless AP with design-in
software AP
PSP XLink Kai Support -
Connecting PSP gamers all
over the world
EZ WPS - Wi-Fi
configuration setting in just 2
steps with WPS hardware
push button

Asus 1 $11.95

WiFi Module - ESP8266:
802.11 b/g/n

Wi-Fi Direct (P2P), soft-AP

Integrated TCP/IP protocol
stack

Integrated TR switch, balun,
LNA, power amplifier and
matching network

Integrated PLLs, regulators,
DCXO and power
management units

+19.5dBm output power in
802.11b mode

Power down leakage current
of <10uA

1MB Flash Memory

Integrated low power 32-bit

SparkFun 1 $6.95

CPU could be used as
application processor

SDIO 1.1 / 2.0, SPI, UART

STBC, 1×1 MIMO, 2×1
MIMO

A-MPDU & A-MSDU
aggregation & 0.4ms guard
interval

Wake up and transmit
packets in < 2ms

Standby power consumption
of < 1.0mW (DTIM3)

Microcontroller
ATMEGA328P-PU

 1 $2.08

3.1.3 Sum.

3.2 Schedule.

Wee
k

Alfredo Francis Ran

3/2 Order parts for Detection and
Wifi Module

Research genre detection Order parts for the power
module, light module

3/9 Test Amplifier, Microphone Begin control module
programming

Order more parts as needed,
Submit Audit for PCB

3/16 Begin sound filter
programming, test ADC

Continue control module
programming

Test Power Module rectifier,
batteries, charger

3/23 Continue sound filter Finish control module
programming, begin setting
up PC UI

Solder Components onto
PCB

3/30 Bugfix and finish sound
filter, begin testing wifi
Antenna

Finalize and bugfix control
module programming,
continue UI

Test wifi module
microcontroller to interact
with LED

4/6 configure wifi IC Finish UI, Test control
module with detection
module inputs

Test Voltage regulator with
all modules, test Wifi IC
interface with control module

4/13 Test and finalize wifi
modules

Test UI interface with control
module

Finalize and bugfix UI
interface with Control
Module

4/20 Mock Demo/Finalizing Mock Demo/Finalizing Mock Demo/Finalizing

4/27 Demo Demo Demo

5/4 Prepare final presentation Prepare final presentation Prepare final report

3. ETHICS AND SAFETY

One concern is our usage of lithium ion batteries. When cell damage occurs within these batteries,
a chemical fire can occur [9]. In order to combat this, we will be taking additional fire safety training and
create a circuit within our power module to prevent the battery from either decaying below 3.0 V/cell or
exceeding 4.2 V/cell. We will ensure that the battery will not be overcharged or over discharged, and
prevent excessive heat from reaching the battery. Another issue is in charging the battery. Due to the
nature of our project, a fully featured charging suite can be used to ensure that the circuit remains stable at
all times. If costs do become a larger concern, we will use an integrated circuit solution and ensure no
shorts or instabilities occur.

The general goal of both the IEEE Code of Ethics [7] and the ACM Code of Ethics [8] is to
ensure quality without either intentionally or unintentionally causing harm. Our design does not appear to
break any laws; the device will record audio only for the purposes of creating lights, and will not invade
anyone’s privacy. The only wireless connections are made via bluetooth. This ensures little to no
possibility of invading personal privacy or interfering with other signals, as our data and information is
never collected into the internet.

Every subsystem aside from the lights and the microphone are contained within one
compartment, which receives controlled inputs that would not cause overheating or other damage to the
subsystems. The lights and microphone would be similar to ones you have at a normal home, so the
ethical implications of those would be comparable as well. Finally, the lights are LED so they don’t
require much power and create little risk.

We have attended basic safety lab training in order to learn how to use equipment while avoiding
electrical shorts, shocks, and burns.

Overall, we believe that we are following both Codes of Ethics, as we are not breaching any
regulations or standards. We will keep careful note to prevent our primary controller from overheating,
but otherwise no safety concerns or breaches of privacy arise.

REFERENCES

[1] “Teach Tough Concepts: Frequency Domain in Measurements”, National Instruments,
Aug-2018. [Online]. Available: ​http://www.ni.com/tutorial/13042/en/​. [Accessed:
22-Feb-2020].

[2] “Musical genre classification of audio signals”, IEEE Transactions on speech and audio
processing, 17-Nov-2002. [Online]. Available:
https://dspace.library.uvic.ca/bitstream/handle/1828/1344/tsap02gtzan.pdf?sequence=1​.
[Accessed: 24-Feb-2020]

[3] “LibROSA”, librosa development team,© 2013-2019. [Online]. Available:
https://librosa.github.io/librosa/​.[Accessed: 23-Feb-2020].

[4] “Different Music, Different Speakers?”, Ohmspeaker.com , 16-Sept-2014. [Online].
Available: ​https://ohmspeaker.com/news/different-music-different-speakers/​.[Accessed:
26-Feb-2020].

[5] “Facts about Speech Intelligibility”, dpamicrophones.com , 20-Jan-2016. [Online].
Available:
https://www.dpamicrophones.com/mic-university/facts-about-speech-intelligibility​.[Accesse
d: 26-Feb-2020].

[6] “Frequency Chart - The Most Important Audio Frequency Charts”,
musicproductiontips.net [Online]. Available:
https://musicproductiontips.net/wp-content/uploads/pdf/musicproductiontips.net-Frequenc
y_Chart__The_Most_Important_Audio_Frequency_Ranges-letter.pdf​ .[Accessed:
26-Feb-2020].

[7] “IEEE Code of Ethics,” ​​IEEE​​, Jun-2019. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 12-Feb-2020].

[8] “Code of Ethics,” ​​Code of Ethics​​, 22-Jun-2018. [Online]. Available:
https://www.acm.org/code-of-ethics. [Accessed: 12-Feb-2020]

[9]“Safe Practice for Lead Acid and Lithium Batteries,” University of Illinois ECE445
CourseStaff, 2016. [Online]. Available:
htps://courses.engr.illinois.edu/ece445/documents/GeneralBatterySafety.pdf. [Accessed:
26-Jan-2020].

http://www.ni.com/tutorial/13042/en/
https://dspace.library.uvic.ca/bitstream/handle/1828/1344/tsap02gtzan.pdf?sequence=1
https://librosa.github.io/librosa/
https://ohmspeaker.com/news/different-music-different-speakers/
https://www.dpamicrophones.com/mic-university/facts-about-speech-intelligibility
https://musicproductiontips.net/wp-content/uploads/pdf/musicproductiontips.net-Frequency_Chart__The_Most_Important_Audio_Frequency_Ranges-letter.pdf
https://musicproductiontips.net/wp-content/uploads/pdf/musicproductiontips.net-Frequency_Chart__The_Most_Important_Audio_Frequency_Ranges-letter.pdf

[10] “Switch Mode Power Supply”, electronics-tutorials.ws [Online]. Available:
https://www.electronics-tutorials.ws/power/switch-mode-power-supply.html​ .[Accessed:
5-Mar-2020].

https://www.electronics-tutorials.ws/power/switch-mode-power-supply.html

