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1. INTRODUCTION 

1.1 Problem and Solution Overview. 

The system objective is for the light patterns to change based on the music detected and 
on the user's chosen settings. For example, when used in a party and a strong music is detected, 
the lights are supposed to react to the "mood" of the music, showing strong synchronized beats, 
with fast changing, enthusiastic color patterns. When in personal use, such as when the user is 
playing jazz music, the lights change to a colder, background color to reflect the genre of the 
music, creating a more immersive atmosphere. So if the rhythm, genre and change of pace of the 
music is accurately reflected and the user’s preferences are met, the system is considered 
successful. 

Lights and music are two features that are very powerful in providing entertainment. For 
example, party hosts often provide rock music and warm-color lighting to improve the 
atmosphere. Also, musicians would sometimes relate a piece of classical or jazz music to a 
specific color. The problem is the colors and the music itself are often separated. A system 
providing synchronous lighting to the music would be an interesting solution for individuals who 
frequently listen to music and want a matching atmospheric lighting. This will also extend to 
people who host home parties and are looking for a way to make it more exciting or for people 
who desire to feel more immersed when listening to any kind of music. The key point is that 
people will be able to create a synchronous ambience combining both music and lights. 

 

1.2 Visual Aid 



 

Fig.1 High-Level Schematic 

 

1.3 High-level requirements list 

1.3.1. ​Latency. 

We will need to control the amount of time that the system will take since the 
input is given until the output appears. The expected latency will be from 2 to 4 seconds. 

1.3.2. Accuracy. 

The system will need to accurately reflect at least 75% of the music detected. See 
section 1.4 for more information. 

1.3.3. Lasting. 

The system will need to last for at least 3 hours without charging. 

 



1.4 Expected input given the output. 

This table gives a general overview of having a music song being played from a type of genre, what the 
output will be. 

Input (Type of music) Output (RGB color range, LED frequency) 

Techno RGB(0,0,0)-RGB(0,255,255); 2 Hz-2.4 Hz 

Rap RGB(0,0,0)-RGB(0,155,155);1.5 Hz-1.90 Hz 

Hip-Hop RGB(0,155,155)-RGB(255,255,255);1.33Hz-1.7 Hz 

Reggae RGB(0,155,155)-RGB(255,255,255);1.5 Hz-2 Hz 

Jazz RGB(0,0,0)-RGB(255,255,255);2 Hz-2.10 Hz 

Reggaeton RGB(0,155,155)-RGB(255,255,255);1.7 Hz-2 Hz 

Pop RGB(0,0,0)-RGB(255,255,255);2 Hz-2.4 Hz 

Rock RGB(0,155,155)-RGB(255,255,255);2 Hz-2.4 Hz 

Classic Music  RGB(0,0,0)-RGB(255,255,255);1 Hz-1.4 Hz 

Metal Rock RGB(0,155,155)-RGB(255,255,255);2.4 Hz-3.2 Hz 

Punk RGB(0,155,155)-RGB(255,255,255);2.4 Hz-3.2 Hz 

Dubstep RGB(0,0,0)-RGB(0,255,255); 2.5 Hz-4 Hz 

 

2. DESIGN 

2.1 Block Diagram 



Fig.2 Block Diagram 

 

2.2 Physical Design 

 

 

 

 

 

 

 

 

 

 

Fig.3 Physical Setup 

The microphone is installed near the music player to reduce the noise received. LED light 
bands are installed around the room and on the ceiling to create light patterns. The control, Wifi 
and user interface modules can be installed at any convenient places at will, and does not interfere 
much with the users when in use. (for example, in a crowded party) 

 

2.3. Detection Module 

The Detection Module will need to be able to read the audio signal, amplify it and 
convert it from analog to digital, preliminarily filter out the background noises, and send this new 
amplified signal to the Control Module. This needs to be active while the machine is on at all 
times, and needs to quickly identify when the song has changed. The microphone itself will need 
5V, 500mA to activate. This module contains a microphone to record the analog audio signal 
from the room where it’s installed, an amplifier to increase its strength, a digitizer to perform an 
analog-to-digital conversion, and a digital filter to preliminarily eliminate the background noises 
recorded. Recognition of the music is performed in the recognition module followed. 



Requirement Verification 

Amplifier 
1. Accepts audio signal from microphone, and 
amplifies it for processing with a 40x gain. 

(a) Receive data from the microphone 
with around 50mV voltage. 
(b) Use an oscilloscope to verify the 
amplified voltage level is around 2.0V. 

Filter 
1.Filter out background noises outside of the 
desired 50-5k Hz frequency range. 

(a) Record audio samples. 
(b) Perform a DTFT to see the filter 
outcome. 
(c) The noise spectrum should be 
attenuated to below -20 dB. 

Microphone 
1.​ ​Steady continuous performance at working 
conditions of 5V and 500mA. 
2. Record sound signals of 30dB with an SNR of 
at most 15dB.. 

1. (a) Connect microphone to the required 
voltage and current. 
    (b) Record audio signal for at least 3 
hours, and verify the audio’s continuously 
recorded. 
2. (a) Record audio signal with the desired 
intensity. 
    (b) Use a function generator to verify 
the SNR to be within acceptable levels. 

Analog-Digital Converter 
1. Process signals at 2.0V level to 10-bit digital 
output. 

(a) Send a signal with varying amplitude 
in the 0-2.0V range and varying frequency 
of 50-5k Hz. 
(b) Verify a conforming digital output to 
the original signal’s shape. 

 

2.4 Control Module 

The Control Module needs to be able to read the signal acquired from the Detection 
Module and convert it into a signal which accurately conveys the genre, chord progression, 
frequency and strong beats. It then needs to use these parameters to pick out the appropriate light 
patterns, either from the preset list or from one obtained from the User Interface, and send it to 
the Wifi Module. We intend to use either a microcontroller of, if we need a more powerful chip, a 
raspberry pi. Much like the Detection Module, this needs to be active at all times to identify the 
song, but will only need to send outputs to the Wifi Module when the light is turned on. Both of 
which require the Power Module to provide approximately 5V of power, +/- 0.5V. 

This module is the part that is in charge of recognizing the music, receiving user 
commands from the user interface, and controlling the light module accordingly. After the 
microprocessor receives the audio signal, it performs the adaptive noise cancellation, audio 
fingerprinting algorithm and pitch detection to recognize the music’s genre, frequency and strong 
beats. After the recognition, it loads the matching preset light pattern, along with potential user 



commands to change preferred patterns (explained later), and sends control signal to the Wifi 
module.  

Requirement Verification 

Raspberry Pi Microcontroller 
1. Communicate with the user interface app with 
less than 500ms latency. 

(a) Connect PC to microcontroller through 
USB. 
(b) Send commands through the PC app, 
receive feedback. 
(c) Verify the latency is within the 
acceptable level. 

 

2.5 Wifi Module 

The Wifi Module will need to receive the signal from the Control Module and 
immediately send the signal to the light Module. This will only activate when we need the lights 
to turn on, and otherwise will block inputs. This needs to be powered by the Power Module with 
anywhere between 1.8 and 5 V. This module is added to enable remote connection between the 
control module and light module. Since wiring the lights directly with the control module can 
pose a lot of problems when physically setting up the system, remote controlling will allow more 
flexibility. We will also need to add another small controlling system, in which we will use a 
microchip in order to obtain the array of bits calculated or obtain from the raspberry pi. It would 
be a microcontroller embedded into the light module that will receive the data from the wifi 
module and send it to the light as an output. 

With multiple ESP8266 Wifi chips, the synchronization is realized through visiting the 
NTP server on the Raspberry Pi microcontroller in the control module, and can achieve a 
synchronization within 50 milliseconds. 

 

Requirement Verification 

Microcontroller 
1. Embedded at the LED side. Receive data and 
control lights with less than 200ms latency. 

(a) Send command from control module. 
(b) Verify the Wifi module’s reception. 
(c) Lights perform tasks with acceptable 
latency. 

 

2.6 Light Module 

The Light Module will need to receive the signal from the Wifi Module and output the 
signal as varying lights. They will only turn on when they receive inputs from the Wifi Module 



This needs to be powered by the Power Module with 12 V at 0.6 A per meter of LEDs. Multicolor 
LED light bands to be set up around the room and perform the desired task: a lighting that 
matches the music being played. Receives digital control signals through the Wifi module and 
changes the colors accordingly. 

Requirement Verification 

Multicolor LED light band 
1. Steady output of multicolor light with 12V +/- 
5%, 1.5A +/- 3%  input power for at least 3 hours. 
2. Temperature should  be below 125 degrees 
Celsius. 

1. (a) Connect to the desired power and 
control signals. 
    (b) Observe and verify steady 
brightness and color changing for at least 
three hours. 
2. (a) During operation, verify with a 
thermometer that the temperature of the 
light is below 125 degrees Celsius. 

 

2.7 User Interface 

The User Interface needs to have sliders/buttons that determine how active a person 
would want their lights to be, from whether they want the colors to change dramatically for party 
settings to changing gradually for personal settings or for concerts. This would also have options 
to place emphasis on certain colors or brightness. This would come with presets for party and 
personal use, and this signal would be outputted to the Control Module to determine what color 
patterns would be most appropriate. The personal computer is connected to the control module 
through a USB port. There will be an implementation of a laptop app for the user to choose their 
preferred light colors and patterns, to switch between personal mode (for music appreciation, etc.; 
gradual change, colder colors) and party mode (for enthusiastic music played in a party; 
emphasizes strong beat effects), and to customize other settings such as brightness and favorite 
color is necessary. 

 

2.8 Power Module 

The Power Module needs to be able to power the Detection, Control, Wifi, and Light 
Module. This will need to provide power for at least 3 hours so that the system can stay on during 
an entire concert or the majority of a party.​ ​It contains a rechargeable battery that draws power 
from the wall outlet, and a power distribution unit to power the other modules from the battery. 
Since the system is designed to allow for convenient movement and installment for the user when 
looking for entertainment, a central power module would be preferable than plugging  modules in 
the outlet separately. 

Requirement Verification 



Linear Rectifier 
1. Convert wall outlet AC voltage to a steady DC 
voltage. 

(a) Connect rectifier to a load. 
(b) Power the circuit from the wall outlet. 
(c) Use an oscilloscope to verify the output of 
the rectifier is 120V DC within 3% tolerance. 

Dropout positive voltage regulator. 
Low Quiescent Current LDO 
1. Vout = 12 V ± 1 V at 100 µA 

15 V DC to 12 V DC  
Switch-Mode Regulators 
1. Verification Process for Item 1:  
(a) Attach 33 k ohm resistor as load  
(b) Attach oscilloscope across load  
(c) Supply regulator with 12 V DC  
(d) Ensure output voltage remains between 11 
V and 13 V 

Li-ion Battery 
1. Main: Provides steady output of 15V +/- 3%, 
900mA +/- 2% for at least 3 hours without 
charging. 
2. Secondary: Provides steady output of 15V +/- 
3%, 1.5A +/- 1.5% for at least 3 hours without 
charging. 

1. (a) Fully charge the battery. 
(b) Disconnect from charger. 
(c) Connect to circuit. 
(d) Test to verify a stable 15 V, 900mA 
output within tolerance for 3 hours. 
2. Follow the same procedure as in (1). 

Li-ion Charger 
1. Steady charging output of 4.2V +/- 5% and 
500mA +/- 3%. 
2. Stable working temperature below 125 degrees 
Celsius. 

1. (a) Discharge battery. 
    (b) Connect to charger with an input of 
7V. 
    (c) Verify the charging voltage, current 
levels are within the designated levels. 
2. (a) During charging, use a thermometer 
to measure and verify the charger’s 
temperature. 

 

2.9 Schematics 

 

Fig.4 Detection Module Schematic 



 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Power Module Schematic 

 

 

        Fig.6 Simple Wifi Module Schematic 



 

 

 

2.10  Software 

● Changing from Analog to Digital. 

As everyone knows sound is a vibration that propagates as a waveform based on pressure 
and that moves itself through a medium such as air or water. When the vibration reaches out ears, 
it moves three little bones (known as malleus, incus and stapes) that transmits the vibration to 
some other cells located in the inner ear. Furthermore, those cells produce electrical impulses that 
are transmitted to our brain through the auditory nerve of the ear. 

The procedure is commonly imitated by most recording devices, they convert sound as a 
waveform into an electronic signal. In a microphone, the first electric component that is found is 
transferred as a continuous analog signal, which in the digital world will be useless, so it has to be 
changed into a discrete signal which is easier to be processed digitally. This procedure will be 
done by capturing digital values that will represent the signal amplitude. 

Conversion implicates quantization of  the entrance quantification that will introduce 
some error. As matter of fact, instead of a simple conversion we will use an analog-to-digital 
converter that is a device that converts an analog signal into a digital signal. The analog-to-digital 
converter divides the signal in tiny pieces and converts those pieces using a process known as 
sampling. 

Nyquist-Shannon Theorem​ ​establishes a sufficient condition for a ​sample rate​ that 
permits a discrete sequence of samples to capture all the information from a continuous-time 
signal of finite ​bandwidth​. In particular, if we want to capture all the frequencies the human being 
ear can hear, we must sample the signal at a frequency doubling the humans hearing range. 
Humans ear can detect frequencies between 20 Hz to 20000 Hz. As a result, most of the time 
recorded audio normally has a sample rate of 44100 Hz, that will be frequency sample rate that 
will be used in the project. 

 

 

 

● Recording and capturing sound. 

https://en.wikipedia.org/wiki/Sample_rate
https://en.wikipedia.org/wiki/Bandwidth_(signal_processing)


Recording an audio signal should not be very difficult, we will use a Raspberry Pi, 
because it will be powerful enough to handle a microphone, capture the sound and implement the 
whole algorithm afterwards. We will use a USB microphone that is compatible with the 
Raspberry Pi we will be using. Here is an example of the code using python of this part: 

import​ ​pyaudio 

import​ ​wave 

form_1 = pyaudio.paInt16 ​# 16-bit resolution 

chans = ​1​ ​# 1 channel 

samp_rate = ​44100​ ​# 44.1kHz sampling rate 

chunk = ​4096​ ​# 2^12 samples for buffer 

record_secs = ​30​ ​# seconds to record 

dev_index = ​2​ ​# where the device is (in index) (use 
p.get_device_info_by_index 

wav_output_filename = ​'test1.wav'​ ​# name of .wav file 

 

audio = pyaudio.PyAudio() ​# create pyaudio instantiation 

 

# create pyaudio stream 

stream = audio.open(​format​ = form_1,rate = samp_rate,channels = 
chans, \ 

                    input_device_index = dev_index,​input​ = ​True​, \ 

                    frames_per_buffer=chunk) 

print​(​"recording"​) 

frames = [] 

 

# loop through stream and append audio chunks to frame array 

for​ ii ​in​ ​range​(​0​,​int​((samp_rate/chunk)*record_secs)): 



    data = stream.read(chunk) 

    frames.append(data) 

 

print​(​"finished recording"​) 

 

# stop the stream, close it, and terminate the pyaudio instantiation 

stream.stop_stream() 

stream.close() 

audio.terminate() 

 

# save the audio frames as .wav file 

wavefile = wave.open(wav_output_filename,​'wb'​) 

wavefile.setnchannels(chans) 

wavefile.setsampwidth(audio.get_sample_size(form_1)) 

wavefile.setframerate(samp_rate) 

wavefile.writeframes(b​''​.join(frames)) 

wavefile.close() 

 

 

● Filtering the signal to isolate from noise. 

Next step will be isolating noise in order to get a clear signal of just the sound of the 

music, in order to that we will use the Least Mean Squares Filter (LMS) algorithm which is an 

adaptive filter commonly used to minimize the ambient noise. Adaptive systems are used to 

identify systems, predict, cancel noise, cancel eco and equalize a sound adaptively. Our objective 

in this case will be constructing the adaptive system to cancel background noise from the audio 

recorded. Block diagram of the adaptive filter would be: 

 

 



 

 

 

 

Fig. 7 Adaptive Filter 

Where s[n] is the audio signal without the background noise; r[n] the background noise 

captured when recording the audio signal s[n]; d[n] = s[n]+r[n] is the recorded audio with the 

background noise, which we want to cancel; x[n]= 𝑟̃[n] is the noise, correlated with r[n], which 

we need to adaptate the system to estimate r[n]; w[n] are the M+1 coefficients of the adaptive 

filter of the adaptive filter for the n time; y[n]= = 𝑟̂[n] is the estimated noise; and e[n] = 

d[n]-𝑟̂[n]= 𝑠̂[n] is the error of the adaptive system and the estimated signal of audio without 

background noise.  

We can use as a background noise signal a predefined one of people talking or just some 

kind of noise that might be similar for the background noise of each ambient. We will also use 

M=10 and 𝜇=0.0121 as parameters for the adaptive filter. In order to implement the algorithm, we 

will use the following matlab code, which will be easy to convert into python code by using 

libermate library. 

The algorithm will be: 

We will get both the d_n signal that will be the recorded sound and the background sound 

signal, that will be called as x_n: 

[d_n,fs]=audioread('PDS_P8_LE2_G2_d_n.wav');  

[x_n,fs]=audioread('PDS_P8_LE2_G2_x_n.wav');  

To begin with, we will build the signals that we will introduce all of them initialized to 

zero with the desired length, we will create a new_x signal that will be equivalent to the updated x 

signal, which is updated in the first step of each iteration.  

x_updated =zeros(M+1,1); 

The next variable that we will create would be the W matrix, which will have M+1 rows 

and the length of x_n as columns, for that, we will get the length of x_n and initialize the matrix 

to zeros as we said before. 

N=length(x_n); 

w=zeros(M+1,N);  

We will also create a variable y_n, it will be calculated in the second step of each 

iteration, which will be the one that is subtracted from the d_n signal in each iteration to obtain 

the e_n error signal. Both signals e_n and y_n will be vectors of N zeros. 



y_n=zeros(N,1); 

e_n=zeros(N,1);  

Once we have created all the variables that we will use, we will develop the algorithm, in 

order to that, as we have introduced before, we will follow the steps described below:1) 

x_updated will be updated with the the sample that is received every time. 2) We will calculate 

the output sample with y_n=w_n(transpouse)*x_n. 3) We will calculate the error signal that as we 

have said before it will be the subtraction of d_n minus y_n and that signal after the subtraction 

and after all the iteration, would be the clean music audio. 4) We will update the coefficients of 

the filter following the approximation of the gradient with the formula: 

w(n+1)=w(n)+M+1+2*𝜇*e_n+x_n. 

for ​ n = 1:1:N 

j=0; 

for ​i = n:-1:(n-M) 

if ​ i >= 1 

% Step 1.(Updated x) 

x_updated(M+1-j) = x_n(i); 

else  

% % Step 1.(Updated x) 

x_updated(M+1-j) = 0;  

end  

j = j+1; 

end  

%Step 2.(We will calculate the output signal 

y_n) 

y_n(n)= w(:,n)'*x_updated;  

%Step 3. (We will calculate the signal error 

e_n)  

e_n(n)= d_n(n)-y_n(n); 

% Step 4. (We will update w)  

w(:,n+1)= w(:,n) + 2*mu*e_n(n)*x_updated;  

end  

We will obtain in the error signal e_n a similar signal to a clean audio, we will not get the 

perfect clean music audio, but at least we will remove most of the background sound and the 

noise left will be enough for classifying the music sound recorded. 



 

● Time and frequency domain. 

What we got from the program will be a wav file, which in other words is a bytes matrix 
in time domain. The domain signal in time domain represents the change in amplitude over time. 

As ​Jean-Baptiste Joseph Fourier discovered, it is possible to represent any signal in the 
time domain by simply giving the set of frequencies, amplitude and phases corresponding to each 
sinusoid that composes the signal. The representation is known as frequency domain and in a 
way, the frequency domain acts as a type of fingerprint or signature for the time domain signal, 
providing a static representation of a dynamic signal. 

 

Fig.8 Time Domain vs Frequency Domain[1] 

Analyzing a signal in frequency domain simplifies things immensely. In digital signal 
processing it is commonly used because engineers can study the spectrum, which is the 
representation of the signal in the frequency domain, and determine the frequencies that are 
present and those that are missing. Also it is easier to filter, increase or decrease some 
frequencies, or recognize the exact tone of the frequencies, which is what we are looking in this 
project. 

 

 

● Discrete Fourier Transform (DFT). 

Therefore, we need to find a way to convert our signal from time domain to frequency 
domain. The next step would be using the discrete Fourier Transform (DFT). DFT is a 



mathematical method to perform Fourier Analysis on a discrete sample of the signal. DFT 
converts a finite list of equidistant samples of a function into the list of the coefficients of a finite 
combination of complex sinusoids, ordered by their frequencies, considering whether the 
sinusoids had been sampled in the same proportion. 

One of the most popular numeric algorithms for the calculation of DFT is the Fast Fourier 
transform (FFT). A variation of the FFT Cooley-Tukey algorithm is the most utilized one. The 
algorithm is based on the divide-and-conquer algorithm, it recursively divides the DFT in 
multiple and little DFTs. While using the evaluation of a DFT directly requires O(N^2) 
operations, with the Cooley-Tukey FFT it is computed in O(nlog(n)) operations, making the 
algorithm faster and simpler. Here is an example of a DFT function in code using python using 
the NumPy library: 

def​ ​FFT_vectorized ​(x): 

    ​"""A vectorized, non-recursive version of the 
Cooley-Tukey FFT""" 

    x ​= ​ np ​. ​asarray( x, dtype ​= ​float ​) 

    N ​= ​ x ​. ​shape[ ​0 ​] 

 

    ​if​ np ​. ​log2(N) ​% ​ ​1 ​ ​> ​ ​0 ​: 

        ​raise​ ​ValueError​( ​"size of x must be a power of 2" ​) 

 

    ​# N_min here is equivalent to the stopping condition 
above, 

    ​# and should be a power of 2 

    N_min ​= ​ ​min ​(N, ​32 ​) 

  

    ​# Perform an O[N^2] DFT on all length-N_min sub-problems 
at once 

    n ​= ​ np ​. ​arange(N_min) 

    k ​= ​ n[:, ​None​] 



    M ​= ​ np ​. ​exp( ​-2 ​j ​* ​ np ​. ​pi ​* ​ n ​* ​ k ​/ ​ N_min) 

    X ​= ​ np ​. ​dot(M, x ​. ​reshape((N_min, ​-1 ​))) 

 

    ​# build-up each level of the recursive calculation all 
at once 

    ​while​ X ​. ​shape[ ​0 ​] ​< ​ N: 

        X_even ​= ​ X[:, :X ​. ​shape[ ​1 ​] ​/ ​ ​2 ​] 

        X_odd ​= ​ X[:, X ​. ​shape[ ​1 ​] ​/ ​ ​2 ​:] 

        factor ​= ​ np ​. ​exp( ​-1 ​j ​* ​ np ​. ​pi ​* ​ np ​. ​arange(X ​. ​shape[ ​0 ​]) 

                        ​/ ​ X ​. ​shape[ ​0 ​])[:, ​None​] 

        X ​= ​ np ​. ​vstack([X_even ​+ ​ factor ​* ​ X_odd, 

                       X_even ​- ​ factor ​* ​ X_odd]) 

 

    ​return​ X ​. ​ravel() 

● Music Recognition: Fingerprints in a Song. 

A side effect of FFT is that we lose a lot of information about synchronization (although 
theoretically this can be avoided, the overhead performance is huge) for a 3-minute song, we can 
see all the frequencies and their magnitudes, but we do not know when those frequencies and 
magnitudes appeared in the song. We will need to identify when each frequency appears. 

That is the reason why we should introduce a sliding window and a fragmentation of the 
data so then we will transform each piece of information. The size of each fragment could be 
defined in a lot of ways. For example, if we want to record the stereo sound, with samples of 16 
bits, using 44100 Hz, one second of the sound will be of 44100samples*2bytes*2canals ≈ 176 
kB. If we choose 4kB for each segment size, we will have 44 pieces of data to analyze for each 
second of a song, that will be enough for a detailed analysis. 

Once we have the information about the frequency of the signal, we can start making the 
digital footprint of the song and classify them in their genre. In this case we will have to use time 
and frequency domain information to extract features such as Spectral Rolloff, Spectral Flux, 



Time Domain Zero Crossing, Mel-Frequency Cepstral Coefficients, Analysis and Texture 
Window or Rhythmic Content Features. 

The features that we will use are those used to represent timbral texture and are based on 
standard features proposed for music-speech discrimination and speech reocgnition.[2] 

The first feature to be calculated will be the Spectral Centroid, which is defined as the 
center of gravity of the magnitude spectrum of the DFT calculated before. The formula that we 
will use will be: 

t t[n] / t[n]C = ∑
N

n=1
M * n ∑

N

n=1
M  

Where in this case Mt[n] is the magnitude of the DFT at frame t and frequency n. The 
Spectral Centroid is a measure of spectral shape and higher centroid esteems correspond to 
“brighter” textures with more high frequencies. 

The formula explained before will be implemented in python with the library librosa[3] 
with the following code: 

spectral_centroids = librosa.feature.spectral_centroid(x, 

sr=sr)[0] 

spectral_centroids.shape 

(775,) 

# Computing the time variable for visualization 

frames = range(len(spectral_centroids)) 

t = librosa.frames_to_time(frames) 

# Normalising the spectral centroid for visualisation 

def normalize(x, axis=0): 

    return sklearn.preprocessing.minmax_scale(x, axis=axis) 

#Plotting the Spectral Centroid along the waveform 

librosa.display.waveplot(x, sr=sr, alpha=0.4) 

plt.plot(t, normalize(spectral_centroids), color='r') 



We will also calculate Spectral Rolloff, which is defined as the frequency Rt below which 
85% of the magnitude distribution is concentrated. It is another feature that measures spectral 
shape and the formula that we will use will be: 

t[n] .85 t[n].∑
Rt

n=1
M = 0 * ∑

N

n=1
M  

That in python code using the same librosa library will be: 

spectral_rolloff = librosa.feature.spectral_rolloff(x+0.01, 

sr=sr)[0] 

librosa.display.waveplot(x, sr=sr, alpha=0.4) 

plt.plot(t, normalize(spectral_rolloff), color='r') 

We will calculate the Mel-Frequency Cepstral Coefficients that are defined as the small 
set of features which concisely describe the overall shape of a spectral envelope, in other words, it 
models the characteristic of the human voice. The procedure basically consists of after taking the 
log-amplitude of the magnitude spectrum, the FFT bins are grouped and smoothed according to 
the perceptually motivated Mel-frequency scaling. Finally, in order to decorrelate the resulting 
feature vectors a discrete cosine transform is performed. Although typically 13 coefficients are 
used for speech representation, we have found that the first five coefficients provide the best 
genre classification performance. A piece of code calculating the MFCCs of an audio signal: 

mfccs = librosa.feature.mfcc(x, sr=fs) 

We can also perform feature scaling such that each coefficient dimension has zero mean 
and unit variance that will be more accurate: 

import sklearn 

mfccs = sklearn.preprocessing.scale(mfccs, axis=1) 

We will also calculate Chroma Frequencies because they are an interesting and powerful 
representation for music audio in which the entire spectrum is projected onto 12 bins representing 
the 12 distinct semitones (or chroma) of the musical octave. As in the other features, we will use 
librosa library to obtain them: 

x, sr = librosa.load('../simple_piano.wav') 

hop_length = 512 

chromagram = librosa.feature.chroma_stft(x, sr=sr, 

hop_length=hop_length) 



We will also use the time domain signal in order to calculate the Time Domain Zero 
Crossing, it will provide a measure of the noisiness of the signal and the formula that we will use 
will be: 

t sign(x[n]) ign(x[n ])|Z =  2
1 * ∑

N

n=1
| − s − 1  

Where the sign function is 1 for the positive arguments and 0 for the negative arguments 
and x[n] is the time domain signal for frame t. 

The code in python, using librosa library for the formula will be: 

zero_crossings = librosa.zero_crossings(x[n0:n1], 

pad=False) 

We will detect the beat of the song using the library librosa and using the function 
beat.beat_track, we will get in return a float number as the estimated global tempo of an audio 
and an array with the estimated beat event locations in the specific units, the default would be 
what the frame indicates. 

● Evaluation. 

In order to evaluate the feature sets analysed before, standard statistical pattern 
recognition classifiers will be trained using real world data collected from a variety of different 
sources. 

For classification purposes, we will use some statistical pattern recognition (SPR) 
classifiers. The idea behind a SPR is to estimate the probability density function for the feature 
vectors of each class. In the project we will use a existing classification algorithm to classify the 
songs into different genres such as the one that is in the next github repository: 
https://gist.github.com/parulnith/7f8c174e6ac099e86f0495d3d9a4c01e#file-music_genre_classifi
cation-ipynb 

● Light with genres. 

Once we have detected the genre of the song, we can proceed to send signals to the lights 
so they turn on or off depending on the genre that has been detected. We have decided to send the 
light module a matrix of bits to the light module determining the lights that have to be on or off 
and what color. The data will be sent by wifi, so we will have a sender in the control part a 
receptor in the light module, both connected to the same network. 

Lights signals will variete depending on the detected genre. If we have detected a blues 
song, we will make the lights change slower than if we detected a rock song. If we detect a jazz 

https://gist.github.com/parulnith/7f8c174e6ac099e86f0495d3d9a4c01e#file-music_genre_classification-ipynb
https://gist.github.com/parulnith/7f8c174e6ac099e86f0495d3d9a4c01e#file-music_genre_classification-ipynb


song, the color of the lights will light with more warm colors, such as red, yellow or orange while 
an electronic song will light with more cold colors such as blue, white or purple. 

 

2.11 Tolerance Analysis 

A critical and challenging aspect to implementing the system is the detection module. 
Since the system’s purpose is to work even in relatively noisy environments such as parties, 
examination of how well the detection module can perform is needed. In other words, can it 
record the music being played, filter out most of the low-frequency background noises, and send 
it to the control module with an acceptable accuracy? 

In a living room with people talking, the noise level is usually at around 60dB. And the 
rock music being played at a house party can usually be around 70-75dB. The difference is 
10-15dB. Take 10dB for example. This translates into a signal-to-noise power ratio of 10. In other 
words, the microphone will mostly be receiving the much louder rock music being played, instead 
of people’s talking. Setting up the detection module closer to the music player can also increase 
the relative intensity of the music. 

The fundamental frequency range of people talking is between 50-500Hz. The 
consonants can go up to 2k-4k Hz. The harmonics can even go beyond 12k Hz.[5] Generally, the 
needed range for rock music is about 60-8k Hz, with classical from 40-12k Hz.[4] Seems like 
there is a huge overlap between the two frequency spectra, but it is worth noting that the 250-2k 
Hz (low-mids) and 2k-8k Hz (high-mids) ranges are most important in the recognition of 
instruments, and thus of music. While it still has overlap with the fundamental frequencies of 
human voice between 250-500Hz, the major part of this frequency range is not affected. With a 
band-pass filter focusing more on the 250-8k Hz frequency range, attenuating the frequency 
ranges 0-250Hz and 8k-12k Hz, and filtering out the high-frequency part of the human speech 
noises above 12k Hz, the music contained in the audio signal can be more easily recognized. 

Another important aspect comes with the powering of the light and wifi modules. To 
avoid wiring problems, we decide to use a separate power module consisting of a rechargeable 
battery and a buck switching regulator. The LED strip lights available online require a 12V, 1.5A 
power input per 5 meters. With each light unit, there needs to be a 12*1.5=18W input. The 
ESP8266 Wifi chip used needs 3.0V, 80mA power input to operate, converting to 3*0.08=0.24W. 
Considering a regulator efficiency of 80%, and the requirement of a 3-hour performance time, the 
total energy storage for the battery is (18+0.24)*3/0.8=68.4Wh. As a conclusion, a battery of size 
15V, 4.56Ah should be used. 

 

 



 

 

 

 

 

 

 

Fig.9 Buck Switching Regulator[10] 

 

3.COST AND SCHEDULE. 

3.1 Cost Analysis. 

3.1.1 Labor. 

We estimate that our fixed development costs are $40/hour and 10 hours/week for 3 
people, done over 16 weeks: 

6 weeks 2.5 48, 00 3 * $40
hour * week

10 hours * 1 *  = $ 0  

 

 

3.1.2 Parts. 

Description Manufacturer Part # Quantity Cost 

Raspberry Pi​:​a low cost, 
credit-card sized computer 
that plugs into a computer 
monitor or TV, and uses a 
standard keyboard and 
mouse.  

Premier Farnell  1 $35 

USB Microphone for 
Raspberry Pi​:1.5 m long 
cable; Omnidirectional 
response pattern; USB 2.0 

MakerPortal  1 $20 



(works with Raspberry Pi); 
50 Hz - 16 kHz frequency 
response; Microphone Size 
(without windscreen): 6.5 cm 
x 0.7 cm; 44.1 kHz/48kHz 
USB Sample Rate Selection;  

ASUS USB-N13 N300 USB 
2.0 Wifi Adapter: 
Secure and Consistent 
connection - Powerful and 
designed for blazingly fast 
download, file transfer and 
media streaming. 
2-in-1 device for wireless 
connection sharing - Enable 
your WLAN adapter into a 
wireless AP with design-in 
software AP 
PSP XLink Kai Support - 
Connecting PSP gamers all 
over the world 
EZ WPS - Wi-Fi 
configuration setting in just 2 
steps with WPS hardware 
push button 

Asus  1 $11.95 
 

WiFi Module - ESP8266: 
802.11 b/g/n 

Wi-Fi Direct (P2P), soft-AP 

Integrated TCP/IP protocol 
stack 

Integrated TR switch, balun, 
LNA, power amplifier and 
matching network 

Integrated PLLs, regulators, 
DCXO and power 
management units 

+19.5dBm output power in 
802.11b mode 

Power down leakage current 
of <10uA 

1MB Flash Memory 

Integrated low power 32-bit 

SparkFun  1 $6.95 



CPU could be used as 
application processor 

SDIO 1.1 / 2.0, SPI, UART 

STBC, 1×1 MIMO, 2×1 
MIMO 

A-MPDU & A-MSDU 
aggregation & 0.4ms guard 
interval 

Wake up and transmit 
packets in < 2ms 

Standby power consumption 
of < 1.0mW (DTIM3) 

Microcontroller 
ATMEGA328P-PU 

  1 $2.08 

 

 

3.1.3 Sum. 

3.2 Schedule. 

 

Wee
k 

Alfredo Francis Ran 

3/2 Order parts for Detection and 
Wifi Module 

Research genre detection Order parts for the power 
module, light module 

3/9 Test Amplifier, Microphone Begin control module 
programming 

Order more parts as needed, 
Submit Audit for PCB 

3/16 Begin sound filter 
programming, test ADC 

Continue control module 
programming 

Test Power Module rectifier, 
batteries, charger 

3/23 Continue sound filter Finish control module 
programming, begin setting 
up PC UI 

Solder Components onto 
PCB 

3/30 Bugfix and finish sound 
filter, begin testing wifi 
Antenna 

Finalize and bugfix control 
module programming, 
continue UI 

Test wifi module 
microcontroller to interact 
with LED 



4/6 configure wifi IC Finish UI, Test control 
module with detection 
module inputs 

Test Voltage regulator with 
all modules, test Wifi IC 
interface with control module 

4/13 Test and finalize wifi 
modules 

Test UI interface with control 
module 

Finalize and bugfix UI 
interface with Control 
Module 

4/20 Mock Demo/Finalizing Mock Demo/Finalizing Mock Demo/Finalizing 

4/27 Demo Demo Demo 

5/4 Prepare final presentation Prepare final presentation Prepare final report 

 

3. ETHICS AND SAFETY 

One concern is our usage of lithium ion batteries. When cell damage occurs within these batteries, 
a chemical fire can occur [9]. In order to combat this, we will be taking additional fire safety training and 
create a circuit within our power module to prevent the battery from either decaying below 3.0 V/cell or 
exceeding 4.2 V/cell. We will ensure that the battery will not be overcharged or over discharged, and 
prevent excessive heat from reaching the battery. Another issue is in charging the battery. Due to the 
nature of our project, a fully featured charging suite can be used to ensure that the circuit remains stable at 
all times. If costs do become a larger concern, we will use an integrated circuit solution and ensure no 
shorts or instabilities occur.  

The general goal of both the IEEE Code of Ethics [7] and the ACM Code of Ethics [8] is to 
ensure quality without either intentionally or unintentionally causing harm. Our design does not appear to 
break any laws; the device will record audio only for the purposes of creating lights, and will not invade 
anyone’s privacy. The only wireless connections are made via bluetooth. This ensures little to no 
possibility of invading personal privacy or interfering with other signals, as our data and information is 
never collected into the internet.  

Every subsystem aside from the lights and the microphone are contained within one 
compartment, which receives controlled inputs that would not cause overheating or other damage to the 
subsystems. The lights and microphone would be similar to ones you have at a normal home, so the 
ethical implications of those would be comparable as well. Finally, the lights are LED so they don’t 
require much power and create little risk.  

We have attended basic safety lab training in order to learn how to use equipment while avoiding 
electrical shorts, shocks, and burns.  



Overall, we believe that we are following both Codes of Ethics, as we are not breaching any 
regulations or standards. We will keep careful note to prevent our primary controller from overheating, 
but otherwise no safety concerns or breaches of privacy arise.  
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