

University of Illinois at
Urbana-Champaign

Door Access Tracker
ECE 445 Design Document

Team #41
TA: Chi Zhang

February 27, 2020

Patrick Connelly (prc2) - Wifi Card and Microcontroller Programming
Ben Wasicki (wasicki2) - Cloud Server and App Development
John Scholl (johnts2) - Circuit Design and App Development

Table of Contents

1. Introduction 3
1.1 Objective: 3
1.2 Background: 3
1.3 Visual Aid: 4
1.4 High Level Requirements: 5

2. Design 6
2.1 Block Diagram 6
2.2 Physical Design 7
2.3 Subsystems 8

2.3.1 Magnetic Sensor 8
2.3.2 Debouncers 8
2.3.3 Doorbell Enable Switch 9
2.3.4 Speaker 9
2.3.5 Test Button 9
2.3.6 Communication and Processing System 10
2.3.7 Battery Array 11
2.3.8 Cloud Server 12
2.3.9 Android Application 14

2.4 Tolerance Analysis 16
2.4.1 Circuit Schematic 16
2.4.2 Calculations 16

3. Cost and Schedule 18
3.1 Cost Analysis 18
3.2 Schedule 19

4. Discussion of Ethics and Safety 21

5. Citations 22

1

1. Introduction

1.1 Objective :

Many areas of day-to-day life involve the opening and closing of a door. We believe that
better information on the state of a door can improve one’s quality of life. For example,
one could monitor a door as a security measure, such as a front door, a liquor closet, or
a medicine cabinet. Alternatively, some doors may also have a tendency of getting stuck
open. In this case, knowing that the door was not closed properly may be good
information to have. In addition, knowing when the mailbox has been accessed could be
time saving, especially for someone who has mobility problems because they would not
need to check the mailbox unnecessarily.

Our proposed solution is the Door Access Tracker. This tracker would consist of a
sensor to detect the state of a door, a microcontroller, a wifi card, a cloud server, and an
android app. This would be a portable device that would be adhered to a door. The
primary functionality involves the user getting an update on their phone via an
application when the state of the door is changed. In order to make this product more
versatile, we would allow for different configurations on when to send notifications. For
example, a consumer may want to know the instant a medicine cabinet or liquor cabinet
is opened; however, they may only care about a door’s state if it were to be left open for
a specific amount of time before being closed.

1.2 Background:
There are many situations in which the monitoring of a door or cabinet may be useful.
From a security perspective, knowing when an area is accessed could be extremely
useful information, especially for knowing when something has been tampered with.
From a convenience perspective, putting this device on something such as a mailbox
would let someone know when they should go to check for mail. Finally, from an
energy-savings perspective, this product could let a person know when a door or window
is left ajar, leading to heat loss in the winter and air conditioning loss in the summer. A
key issue that needs to be addressed as well is that a user may want a different
notification or set of notifications for different situations. For example, they may want to
know immediately when a door state is changed, they may only want to know when a
door is opened, or they may only want to know if a door is left open for a certain amount
of time.

2

There are some products on the market that attempt to achieve the same functionality as
our project. Our design would not only be cheaper than available products, but it would
also have additional functionality [6]. The application we propose would be more
configurable than currently available alternatives; giving the user the option to select
when, why, and how they are notified. Our solution is also stand-alone and does not
require any subscriptions or any hub device [5].

1.3 Visual Aid:

Fig. 1. Door Access Tracker High Level Visual Aid

3

1.4 High Level Requirements:
The following are the three most important qualities our project must exhibit in order to be
successful:

● The door sensor sends a high (3.3V) signal when the door is open and a low (0V) signal
when the door is closed. This signal will be sensed by the Communication and
Processing System. When the Communication and Processing System senses a change
in the signal from the sensor, it will send a packet to the Cloud Server. The body of this
packet would be 0x00 if the signal goes from 0V to 3.3V and 0x01 if the signal goes from
3.33V to 0V.

● The hardware will be able to last at least 6 months before the batteries must be
replaced.

● The back-end server can send the Android application an update based on the
information it receives from the system controller and the current configuration set.

4

2. Design

2.1 Block Diagram

Fig. 2. Door Access Tracker Block Diagram

5

2.2 Physical Design

Fig. 3. Door Access Tracker Physical Design. Measurements are in inches.

6

2.3 Subsystems

2.3.1 Magnetic Sensor
We will use the PMC-1001THY reed switch for our sensor. The Magnetic Sensor will be
connected to a data pin from the Communication and Processing System on one side and a
debouncer on the other side. It will be used to determine the state of the door.

Requirements Verification

1. The voltage across the reed switch
will be 0 - 0.1 when the magnet is at
least 100mm away.

2. The voltage across the reed switch

will be 3 - 3.6V when the magnet is
less than or equal to 10mm

1.
A. Hook switch up to 3.3V source and

ground with magnet at a distance
greater than or equal to 100mm.

B. Measure the voltage across the switch
to see if it is between 0V and 0.1V.

2.

A. Hook switch up to 3.3V source and
ground with magnet at a distance less
than or equal to 10mm.

B. Measure the voltage across the switch
to see if it is between 3V and 3.6V.

2.3.2 Debouncers
Two debounce circuits will stabilize physical inputs- one for the magnetic sensor, and one for the
test button. These will ensure that erroneous values are not read when the program starts and
looks for active flags.

Requirements Verification

For each circuit, the output must not change
more than once within a 20ms time span that
begins when the input has changed

1. Hook up the output of the circuit to an
oscilloscope.

2. Set the oscilloscope to pause on a
rising/falling edge, and change the
input (door open/close or button
press)

3. Set the scale to 20ms, and place the
first edge at the left edge of the
display. If there is only one edge
within that time span, the debounce
circuit works as intended.

7

2.3.3 Doorbell Enable Switch
This SPST switch is used for enabling the speaker to produce sound upon opening the door.

Requirements Verification

Voltage drop across the the switch is 0 - 0.1V
when the switch is closed and 3 - 3.6V when
the switch is open.

1. Hook switch up to 3.3V source and
ground.

2. Measure voltage across switch when
open and closed.

2.3.4 Speaker
This PKM22EPPH2001-B0 piezo buzzer is used for creating a doorbell chime and debugging.
When the the doorbell switch is enabled, the speaker will produce sound upon opening the door.
Additionally, pressing the test button will produce one of two unique tone sequences, depending
on whether or not the controller can successfully connect to the server (regardless of the
doorbell switch state).

Requirements Verification

1. Speaker does not produce sound when
voltage supplied is between 0V - 0.1V

2. Speaker produces an audible tone
when supplied with a 3 - 3.6V voltage

Connect speaker to 3.3V source and
ground, then listen to see if tone is produced

2.3.5 Test Button
This is a push-button used for testing the controller’s ability to communicate with the server. It
will cause sound to be produced on the speaker.

Requirements Verification

Voltage drop across the the button is 0 - 0.1V
when the button is pressed and 3 - 3.6V when
the button is not pressed.

1. Hook button up to 3.3V source and
ground.

2. Measure voltage across button when
pressed and not pressed

8

2.3.6 Communication and Processing System
We will use the ESP8266 ESP-12E NodeMCU development module to handle all input
processing and communication with the server. This allows for a simple design, as the onboard
microcontroller has enough resources to process both WiFi communications and our sensor
input, which removes the need for a separate microcontroller. Some of the primary features of
the module include:

● 4MB of flash memory. This will be used for storing the program to read from the sensor
and sending data to the server.

● USB input. This will allow us to easily flash programs onto the board for rapid software
testing. The software will be written in the Arduino language.

● Voltage regulator. Tolerating up to 10V, this will allow us to safely use our 6V battery
array to provide a 3.3V, 600mA output to the board components. All peripherals will
connect to the 3.3V output ports on the module for power.

While transmitting, the ESP8266 WiFi chip uses between 120mA and 170mA, depending on
transmission power. Receiving will use between 50mA and 56mA. When not in use, the
ESP8266 will go into “deep-sleep mode”, where only the RTC is powered, drawing 20μA and
allowing our device to operate for many months at a time.

Requirements Verification

1. Must be able to communicate over
IEEE 802.11b/g/n at a 1 Kbps data
rate

2. Must be able to recover from
deep-sleep and run software given a
high sensor input

3. Must send and receive a packet upon
pushing the test button

4. Must play a given unique tone on the
speaker when the doorbell switch is
enabled and the door is opened

1.
a. Flash the network credentials

and a test program to the
board through the USB port
with the “Flash” button

b. Press the test button. The Wifi
chip will send 1 Mb of data to
the server, which will time the
transfer.

c. Check the server test logs and
ensure the transfer time was
under 1 second.

2.
a. Load a program such that the

speaker will create a tone
when register A is high

b. Have register A set as high at
the start of the program and
low when deep-sleep is
entered

c. Activate the sensor and listen
for a tone

3.

9

a. Load a program such that a
tone is played on the speaker
when a packet is successfully
received

b. Press the test button
c. Listen for a tone on the

speaker
4.

a. Load a program that requires a
high input from the doorbell
switch and the door sensor to
activate the speaker

b. Toggle the doorbell enable
switch on

c. Activate the door sensor and
listen for the unique tone

2.3.7 Battery Array
The battery array contributes to the first and second high level requirements. It is responsible for
providing power to the communication and processing system, which in-turn powers all
peripherals. It consists of four 1.5V AA Alkaline batteries connected in series, producing a total
of 6V. This is connected directly to the Vin and GND inputs on the communication and
processing system.

Fig. 4. Battery Array connected to inputs on communication and processing system

Requirements Verification

Provides at least 3V and no more than 10V Use a voltmeter to ensure that the battery
system remains within this range

10

2.3.8 Cloud Server
The cloud server contributes to the third high level requirement. It contains most of the
computations and memory that will be needed. As such, it will take requests from the user via
the android application and from the control module, be able to set configurations, store history,
and send updates to the android application based on the set configurations. This will be run as
a pod in a kubernetes cluster with a service and ingress to connect it to the outside. The
benefits of running this on a cluster are persistent volumes, easy scalability, and self-healing.

*The Following are steps that must be repeated for many of the below tests. They are presented
here to avoid repetition:

● Step 1 : Ensure that the Kubernetes cluster is running with both the server Pod’s Ingress
and Service, and the test program Pod’s Ingress and Service configured correctly.

● Step 2 : Start the Pod using the verbose=true argument specified in the pod yaml file.

Requirements Verification

1. Server is able to receive state change
from at least 1 control module

2. Server will be able to complete
registration of a specific application
with a specific serial number.

3. Server will be able to send updates to
at least 1 application after a state
change is received from a
control-module.

4. Server will be able to use
configurations specified by an
application to deliver updates to said
application as set by configurations.

5. Server will keep a history of door state
changes with corresponding
timestamps based on the number

1.
A. Do Step 1 .
B. Do Step 2 .
C. Start the test pod with the - -test1=true

argument specified in the pod yaml.
D. Check the logs of the server Pod to

see if they have the following output:
“<Timestamp> : test1-serial-number : open”
“<Timestamp> : test1-serial-number : closed”

2.

A. Do Step 1 .
B. Do Step 2 .
C. Start the test pod with the - -test2=true

argument specified in the pod yaml.
D. Check the logs of the server Pod to

see if they have the following output:
“<Timestamp> : test2-serial-number : <IP>”

3.

A. Do Step 1 .
B. Do Step 2 .
C. Start the test pod with the - -test3=true

argument specified in the pod yaml.
D. Check the logs of the test Pod to see

if they have the following output:
“<Timestamp> : test3-serial-number : open”

11

specified by the application and will
send state changes to an application
by request.

“<Timestamp> : test3-serial-number : closed”

4.

A. Do Step 1 .
B. Do Step 2 .
C. Start the test pod with the - -test4=true

argument specified in the pod yaml.
D. Wait 10 seconds then check the logs

of the test Pod to see if they have the
following output:

“Timestamp1 : test4-serial-number : open”
“Timestamp2 : test4-serial-number : closed”

E. Ensure Timestamp2 is approximately
5 seconds after Timestamp1 .

5.
A. Do Step 1 .
B. Do Step 2 .
C. Start the test pod with the - -test5=true

argument specified in the pod yaml.
D. Check the logs of the server Pod to

see if they have the following output:
“---HISTORY BEGIN---”
“<Timestamp> : test5-serial-number : open”
“<Timestamp> : test5-serial-number : closed”
“<Timestamp> : test5-serial-number : open”
“<Timestamp> : test5-serial-number : closed”
“---HISTORY END---”

12

2.3.9 Android Application
The android application contributes to the third high level requirement. It will act as an interface
for the user to register itself with a serial number of a control-module, update configurations for
different control-modules, request state change history from the cloud server, and receive
updates from the cloud server.

*The Following are steps that must be repeated for many of the below tests. They are presented
here to avoid repetition:

● Step 1 : Download and open the application on an Android device.
● Step 2 : Do the Cloud Server tests, ensuring that it is functional.
● Step 3 : Ensure that the Kubernetes cluster is running with both the server Pod’s Ingress

and Service, and the test program Pod’s Ingress and Service configured correctly.
● Step 4 : Start the Pod using the verbose=true argument specified in the pod yaml file.
● Step 5 : Go to the registration interface in the application and register the device to serial

number “test1-serial-number”
● Step 6 : Start the test pod with the --test1=true argument specified in the pod yaml file.

Requirements Verification

1. The application will have an interface
from which registration,
configurations, and history requests
can be input for communication with
the cloud server.

2. Application will be able to register
itself with the cloud server based on a
specific serial number corresponding
to a control-module.

1.
A. Do Step 1 .
B. Ensure that once the application

opens, there is an interface that
contains options for registration,
configuration input, and history
requests .

C. For each of these options, ensure that
data can be input or a button can be
pushed.

2.

A. Do Step 1 .
B. Do Step 2 .
C. Do Step 3 .
D. Do Step 4 .
E. Do Step 5 .
F. Check the logs of the server Pod to

see if they have the following output:
“<Timestamp> : test1-serial-number : <IP>”

13

3. Application will be able to notify the
user when it receives an update from
the cloud server.

4. Application will be able to retrieve and
display door state history upon user
request.

3.
A. Do Step 1 .
B. Do Step 2 .
C. Do Step 3 .
D. Do Step 4 .
E. Do Step 5 .
F. Do Step 6 .
G. Check to see if an open

push-notification was sent to the
phone followed by a closed push
notification.

4.

A. Do Step 1 .
B. Do Step 2 .
C. Do Step 3 .
D. Do Step 4 .
E. Do Step 5 .
F. Do Step 6 .
G. In the application, click on the “Door

State History” button.
H. Ensure that the following histories

appear:
“<Timestamp> : open”
“<Timestamp> : closed”

14

2.4 Tolerance Analysis
2.4.1 Circuit Schematic

Fig. 5. Door Access Tracker Circuit Schematic

2.4.2 Calculations

● When the door is closed, the WiFi chip is the primary power draw, running on about
20μA in its “deep-sleep” mode. Four 1.5V AA Alkaline batteries in series have a typical
capacity of 500mAh. Thus, with no closing or opening of the door, our device should last
approximately:

5000 h 041 days .85 yrs0.02 mA
500 mAh = 2 ≈ 1 ≈ 2

● If transmitting and receiving constantly using the maximum current draw of 170mA for
transmitting and maximum 56mA for recieving, this will be a draw of 226mA. Four 1.5V
AA Alkaline batteries in series have a typical capacity of 500mAh. Thus the worst case
battery life would be:

2.21 h226 mA
500 mAh ≈

15

● For an average use case, we will assume the door opens and then closes once every
hour, or 48 times a day for a total of 96 state changes. The average transmission current
draw is 145mA and the average receiving current draw is 53mA. If the door state is
updated, 1 transmission will need to be sent and 1 ack received. In testing by pinging
www.google.com 100 times, the average RTT was 13ms with a 23ms maximum and
there was a 0% packet loss.

For these calculations, I will assume a 0% packet loss, an RTT of 40ms, and a
transmission time of 1ms. While the packet is actually being transmitted, the circuit will
draw 145mA, while waiting for the ACK, it will draw 53mA, and during the rest of the
time, it will be in sleep mode drawing .02mA. Four 1.5V AA Alkaline batteries in series
have a typical capacity of 500mAh.

While running, the circuit will draw an avg:

 5.3 mA40
145 mA + 40

39 × 53 mA = 5
It will do this four times per hour on avg giving us:

 for every hour 5.3 mA5 60 ms1
The amount of time in hours is given by:

 .16 s h0 × 1 h
3600s = 1

22500
The average current draw per hour is:

.0225 mA22500
55.3 mA + 22500

22499×0.02 mA = 0
This gives us:

 2222 h 25 d .53 yrs500 mAh
0.0225 mA ≈ 2 ≈ 9 ≈ 2

16

3. Cost and Schedule

3.1 Cost Analysis

We estimated the cost of our development assuming a 10 hour per week of a 16 week
schedule. Considering the average starting salary of a BE ECE, we calculated our hourly wage
to be $45 per hour [4].

6wk .5 54, 00hr
$45 · wk

10hr · 1 · 3 · 2 = $ 0

Part Number Manufacturer Description Module Price

MN1500B4Z

Duracell AA alkaline
battery x4

Control $5.21

ESP8266
ESP-12E
NodeMCU

MakerFocus Wifi card and
microcontroller

Control $9.39

PMC-1001THY PIC GmbH Reed Switch Sensor $2.00

GF-123-0054 CW Industries Slide Switch Sound $1.20

1301.9314 Schurter Inc. Button Test $0.24

Assorted
resistors,
capacitors, and
ICs

Various Various $5.00

PKM22EPPH20
01-B0

Murata
Electronics

Speaker Sound $0.73

8005 Radial Magnet
Inc.

Magnet Sensor $0.23

Total Part Cost: $24.00

 Total Development Cost: $54,024.00

17

3.2 Schedule

Week Ben Patrick John

2/17/20 Figure out high level
server overview

Design circuit and
decide on
components

Begin circuit design
and calculation.

2/24/20 Research platforms
to build server and
application on

Order parts and begin
assembling hardware
modules

Purchase prototyping
parts and begin
building test circuit.

3/2/20 Get basic kubernetes
cluster running on
google cloud and
make sure it can be
accessed outside
cluster.

Hardware module
assembly and
breadboard testing
between sensor and
controller

Finish building test
circuit for sound,
sensor, and test
module. Put in order
if more parts are
needed.

3/9/20 Write code for the
server and test that
requirements 1-3 are
working.

Submit machine shop
order, finish basic
control build, test
sending and receiving
packets

Integrate sound,
sensor, and test
module with control
module for test.

3/16 Write code for the
server and test that
requirements 4 and 5
are working.

Ensure test button
and speaker work,
controller
communicates
properly with server

Establish
communication
between control
module and cloud
server.

3/23 Server debug buffer
week.

Finish hardware
testing, finalize
design

Finalize PCB design
and send order and
make sure final
machine shop
revisions are done.

3/30 Begin app
development and get
the requirement 1
completed.

Hardware verification,
research solutions for
in-app WiFi
configuration

Finish revisions and
verifications prepare
for prototype
assembly.

4/6 Continue app
development and get
requirements 2-4
completed.

PCB testing and
verification

Test assembled
prototype and debug
if necessary.

18

4/13 App debug buffer
week.

PCB final fixes,
implement
configurable WiFi if
time allows

Circuit debug buffer
week.

4/20 TA mock demo/ last
minute bugfixes

TA mock demo/ last
minute fixes

TA mock demo/ Final
fixes.

4/27 Prepare for final
presentation and
write report.

Prepare for final
presentation and
write report.

Prepare for final
presentation and
write report.

5/4 Final presentation
and turn in report.

Final presentation
and turn in report.

Final presentation
and turn in report.

19

4. Discussion of Ethics and Safety
As the developers of this project, we believe it is important that we produce a safe, reliable, and
efficient product to our user. We commit ourselves to holding a high degree of professional
conduct in accordance with both the IEEE and ACM Code of Ethics. We will avoid ethical
breaches by following all device specifications, working in our respective areas of competence,
and clearly stating proper operating procedure (ACM 2.6) [2]. At the same time, we
acknowledge that our device could be misused; therefore, we will take all necessary precautions
to prevent any harmful modes of operation.

In accordance with the ACM Code of Ethics, this project will pose no risk to the user or
community under standard operations. Given that our project monitors when a door is opened
and closed, it could pose a safety risk to the user if the data is compromised. We will ensure
that all wireless protocols are followed, and communications will be secure. The data gathered
by our sensor will be the sole property of the intended user of the device (ACM 2.9) [2]. All
software will follow accepted community standards.

Following the IEEE Code of Ethics [1], we have decided it is important to make our design as
energy efficient as possible to minimize waste. As designers, it is our responsibility to limit the
environmental impact of our device. We have implemented a circuit break when the door is
closed to ensure power is only consumed when necessary. This will limit the amount of waste
associated with battery replacements.

In addition, we will ensure there is no exposed wiring or electrical components in our design to
minimize the risk of electrical shock. Similarly we will ensure all components are operating
within their respective operating regions to reduce the risk of a short or fire hazard.

Door clearance regulations state that “ Required maneuvering clearances provide space for
opening and proceeding through doors, doorways, and gates using wheelchairs and other
mobility aids” [3]. Our product will not impede a person opening a door by blocking the door so
we are compliant here. In addition, The regulations state that a door cannot have an opening
force of more than 5 pounds of force [3]. We will be adding a magnet of negligible weight onto
the doorframe, so this will not be a source of concern. In addition, the magnet will only be strong
enough to interact with the reed switch so the magnetic force helping to keep the door closed
will also be negligible.

20

5. Citations
[1] “IEEE Code of Ethics,” IEEE . [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 12-Feb-2020].

[2] “ACM Code of Ethics and Professional Conduct,” Association for Computing Machinery .

[Online]. Available: https://www.acm.org/code-of-ethics. [Accessed: 12-Feb-2020].

[3] “Chapter 4: Entrances, Doors, and Gates, ” United States Access Board .

https://www.access-board.gov/guidelines-and-standards/buildings-and-sites/about-the-a
da-standards/guide-to-the-ada-standards/chapter-4-entrances,-doors,-and-gates
[Accessed: 27-Feb-2020].

[4] “Salary Averages,” ECE ILLINOIS . [Online]. Available:
https://ece.illinois.edu/admissions/why-ece/salary-averages.asp. [Accessed:
28-Feb-2020].

[5] “Smart Door and Windows Sensor,” Amazon . [Online]. Available:
https://www.amazon.com/Personal-Security-Automation-Doorbell-Compatible/dp/B07HM
P9LQV. [Accessed: 26-Feb-2020].

[6] “Automatic Door Safety Beam Sensor,” Amazon . [Online]. Available:
https://www.amazon.com/Automatic-Door-Safety-Beam-Sensor/dp/B01A5EAUKK.
[Accessed: 24-Feb-2020].

21

