

Weightb0ard Design Document

Team - Thomas Driscoll, August Gress, Kyle Patel

ECE 445 Project Proposal - Spring 2020

Group 8

TA: Dhruv Mathur

Table of Contents

Weightb0ard Design Document
1 Project Overview

1.1 Objective
1.2 Background
1.3 High Level Requirements
1.3 Visual Aid

2 Design
2.1 Block Diagram
2.2 Physical Design
2.3 Tolerance Analysis

3 Cost and Schedule
3.1.1 Manpower Cost
3.1.2 Part Cost
3.1.3 Shop Cost
3.1.4 Total Cost

4 Ethics & Safety
References

1 Project Overview

1.1 Objective

In any environment that involves cooking or food preparation, knowing the amount of

ingredients on hand is of the utmost importance. This can range from large-scale restaurants that have

massive quantities of any given food to athletes engaging in meal prep, often down to the gram. In

between these two extremes also exist the average consumer, who rely on unreliable memory and

insatiable hunger when shopping instead of their objective needs.

Our solution is an internet connected, weight-sensitive kitchen cabinet/tray that pings a grocery

list app. For items such as rice, sugar, flour, protein powder, creatine, etc., a scale could measure the

amount at home. If it falls below an ingredient-appropriate threshold, a microcontroller will send an

update to a user's phone. Simply checking the app once in the store, or while placing a large order,

allows the user to purchase the correct amount of food. It will have 7 separately sized sensors that

accurately measure ingredient amounts placed on top of it, which will be a proof-of-concept to show our

idea's scalability.

1.2 Background

Kitchen preparation is a part of everyday life for many people. From creating meals for

themselves or their families to working in a high pressure industrial kitchen that cranks out pounds and

pounds of food an hour, there is a constant need to know which ingredients are on hand.

In the pursuit of not running out of ingredients; however, there comes a tendency to overbuy

ingredients, generating food waste. Food waste is a global concern, and is the subject of many different

studies and research articles on its effects on the environment and society [1]. In addition to overbuying,

a business or individual can also forget a particular ingredient that they needed to make a recipe simply

because they didn’t know they had ran out of it. One potential solution that has been brought to market

is the Samsung Family Hub Smart Refrigerator, which has a 3 camera array on the inside of the fridge to

view its contents from wherever you are [2]. One large issue with this however, is that it is difficult to

quantify how much is left of an ingredient as the camera is mounted where you only see the outside

packaging of each ingredient. This is something our board proposes to solve by individually weighing

each ingredient.

We saw a need to create a way to simplify the lives of everyone who relies on what ingredients

they have on hand and prevent overbuying on ingredients that they didn’t need. By creating this board,

we aim to simplify the lives of those who depend on having the correct ingredients.

1.3 High Level Requirements

● Able to measure the weight of ingredients placed on pressure sensitive pads within ±10% of true

weight.

● Board will send information about the ingredients on it to an internet connected database.

● Weight (in grams) is reported in a mobile application using the data stored in that internet

connected database

1.3 Visual Aid

Figure 1: Pictorial representation of the Weightb0ard

2 Design

2.1 Block Diagram

Figure 2: Block Diagram

2.1.1 Physical Tray:

The tray will support 7 bar-type sensors that will be processing the real-world input of each

ingredient. They will be mounted in a cantilevered fashion with attached weighing platforms of varying

sizes above the tray’s center. 4 sensors are rated to measure a maximum of 100g of weight, 2 are rated

with a maximum of 500g, and 1 sensor is rated with a maximum of 5kg. Each sensor will have an

associated board on the tray, which will send weight data to the data collection microcontroller’s GPIO

pins via an I2C-like interface. The microcontroller will send a common clock signal to each breakout

board. The boards receive power from GPIO pins and provide amplified voltages as excitation inputs for

each sensor. Bar-type sensors are considerably cheaper than transducer type load cells and are still quite

accurate.

A sensor contains 4 strain gauges in a wheatstone bridge configuration [3]. The differences in

strain between the two sets of gauges (SG1 and SG2 vs. SG3 and SG4) when one end of the load cell is

bent produces an output voltage, which is amplified and converted to 24-bit digital values on the

aforementioned breakout boards. A load cell has 4 wires as seen in the diagram below. The

EXCITATION+ input corresponds to the input voltage from the breakout board’s amplifier and

EXCITATION- is grounded. The OUTPUT+ and OUTPUT- wires are inputs for the breakout board’s A/D

converter.

Each breakout board will output data at a rate of 10Hz (which it does without additional input).

There is the choice to gather sensor data at 80Hz, but sampling at that rate increases the amount of

digital conversion noise in weight readings [4]. Having precise readings is more in line with our high-level

requirements despite the higher but still subsecond settling time at 10Hz compared to 80Hz.

Figure 3 : Wiring configuration of load cell [3]

2.1.2 Physical Tray Schematic

Figure 4: Physical Tray Schematic

Below we have included some close-up figures with explanations of the schematic. Figure:

Schematic-A shows the microcontroller and how it interfaces with the ESP8266 WiFi Microcontroller.

We also show the level shift from the 5V Vcc line to the 3.3V IN on the ESP8266 to power the ESP8266.

We also show the TXD->TX and RXD->RX connections between the ESP8266 and the ATmega328P. These

are used to facilitate send (TX) and receive (RX) communication between the two microcontrollers.

Figure 5: Schematic-A

Below in Figure: Schematic-B we consider the portion of the schematic that deals with

communication between the ATmega328P microcontroller on the left side through Data Pin 1-7, and the

HX711 Amplifier Board and the TAL221/220B Load Cells. We connect the TAL221/220B load cells

through the amplifier board to boost the signal to where the ATmega328P can read the values from the

cells accurately. We must also supply a clock signal to the amplifier boards to enable synchronous

communication between itself and the ATmega328P.

Figure 6: Schematic-B

Module Requirements Verification

Physical Tray: 4x
TAL221 100g Load
Sensors, 2x TAL221
500g Load Sensors,
1x TAL220B 5kg
Load Sensor

1. Each sensor must be mounted in a
structurally stable manner such that they
can hold plastic containers, a mounted
platform, and 100g/500g/5kg of an
ingredient.
2. Sensors must provide stable readings
within 90% accuracy.

1.
a. Mount a sensor with a platform

onto the tray base such that the
platform is parallel to the base.

b. Place maximum weight rated for
each sensor on their respective
platforms (reword)

c. Remove weight, inspect and
make platform level upon
removal.

2.
a. i. Place 50g of dry ingredients on

platforms supported by TAL221
100g sensors.
ii. Place 250g of dry ingredients
on platforms supported by
TAL221 500g sensors.
iii. Place 1kg of dry ingredients on
the platform supported by the
TAL220B 5kg sensor.

b. Confirm that weight readings
from each sensor are within 90%
accuracy by printing them to the
microprocessor’s serial monitor.

Physical Tray: 7x
HX711 Breakout
Boards for Load
Sensors

1. Breakout boards must be able to
interface with I/O ports on the data
collection microcontroller.

1. a. Connect load sensors wires to
breakout boards and connect
DAT (data) and SCK (slave clock)
wires to GPIOs of
microprocessor.
b. Connect VCC and VDD outputs on
microprocessor to corresponding
pins on breakout board.
c. Confirm that a floating point
value outputs to the
microprocessor’s serial monitor
for each breakout board.

2.1.3 PCB:

Our PCB will consist of 3 main entities: I/O ports, the microcontroller (ATmega328P), and the

Wi-Fi adapter (ESP8266). The seven I/O ports, one for each sensor, will connect the data path of the

sensors to the microcontroller. One I/O port will be used for a common input clock for all sensor

breakout boards. The microcontroller will handle processing the weights in real time, sensor calibration,

and any other circuit controls necessary. If the microcontroller detects a significant weight change, it will

send a HTTP message via the Wi-Fi adapter (which is sending and receiving at 2.4 GHz) to our remote

database. This ensures that the board and the user can communicate via any common Internet

connection.

Module Requirements Verification

PCB:
Microprocessor
(ATmega328P)

1. Must have Vcc output from
microcontroller be 5V ± 0.3V.
2. Must be able to send digital sensor
readings to Wi-Fi Microchip via SPI (serial
port).

1.
a. Use a DMM to probe the output

of Vcc and confirm that VCC is
within acceptable range.

2.
a. Send test data sequence of 7

arbitrary floating point values to
the Wi-Fi microchip from the
microprocessor, ensure data is
not changed.

PCB: Wi-Fi
Microchip
(ESP8266)

1. Latency of transmission of sensor data
array to MySQL DB must be no greater
than 30 seconds.
2. Must store API Key (approx. 100
characters) and volatile weight values (7
floats) in microchip’s flash memory.

1.
a. Place an ingredient of known

weight on a load sensor.
b. Confirm stable reading value in

serial terminal, begin timing.
c. Confirm that the value read in a

terminal appears in the MySQL
DB within 30 seconds.

2.
a. Print API Key and weight change

values to serial monitor
specifically for ESP8266.

2.1.4 Linux Server:

The server will be a droplet operating a Linux environment that runs the MySQL database and

the SpringBoot Java API. The droplet will be hosted on DigitalOcean with a 1 GB RAM and 25 GB of SSD

memory. The choice for DigitalOcean is based on the designer’s belief in open-source software and the

low-cost. Further, the web hosting service is easily scalable and, if we were to take our prototype to

production, our server needs would be easily met.

To make the server secure and follow HTTPS protocol, we decided it would be necessary to use

and purchase a domain address. The domain name itself is trivial as it will be used solely for

machine-to-machine interaction. After checking availability and looking ahead to the future, we

purchased thomas-driscoll.com. The domain and the droplet will be connected via a SSL certificate.

Module Requirement Verification

Server 1. Domain name thomas-driscoll.com is
pingable from any remote address
2. An admin can SSH into a command line

1. From any remote address, the
command ‘ping thomas-driscoll.com’
should return an acknowledgement
2. From command line (or Git bash), a
user with appropriate credentials can SSH
into terminal. Simple command of ‘ls’ is
prove enough of access

2.1.5 MySQL Database:

The MySQL database will be used to store the weights of the tray as they change and store any

user data. As the weight changes on the board, the database will be updated to reflect the new

associated weight for each sensor. When the user makes a request for the current weight, the database

will interact with the middleware (written in SpringBoot Java) to send the weights and other pertinent

information to the user.

We decided that our database only required three tables: User, Weights, and User_Definitions.

The User table allows for multiple users to exist in our system, thus ensuring scalability. The username

and API_key (stored on the board and a unique identifier for the board) uniquely each user/board

pairing. This insures scalability as multiple users and can exist and each user can have multiple devices

with a unique set-up for each. The Weights table holds weights received from the PCB (uniquely

identified by the API_key) with an associated timestamp on when it was received. Finally, the

User_Definitions table holds the threshold weights the user chooses to set for each pad. This was

included as future product owners may want to measure user preferences for better quality control in

future products.

Figure 7: UML Diagram showing relationships between MySQL tables

Module Requirements Verification

Server: MySQL DB 1. Database supports a table for each
sensor
2. Database only accepts input from a
recognized user
3. Database inserts data correctly from
.json file with timestamp

1. From command line, run the command
to run a SQL shell. In that shell, the
command ‘SHOW TABLES’ should return
all relevant tables
2. Develop and run two unit tests. One
for a user with proper authentication (i.e.
the API key associated with the board)
and one without. The verified user case
should return an acknowledgement and
the unverified user should return a
failure.
3. Develop and run a unit test with some
data (doesn’t have to change). This
should send the data (with a timestamp
as its key) into a test table. This will verify
that the data has been inserted at a
particular time successfully

2.1.6 SpringBoot Java API:

The SpringBoot Java API will handle incoming requests to post or get data from the database,

authenticating the requests to ensure data security. The middleware will operate by sending and

receiving GET/POST operations following standard HTTP methods. There are four functions we have

determined necessary for the operation of our back-end.

The first is an authentication function that checks if the request is from a valid source and

formatted correctly. If it is not, the API returns the appropriate error as indicated in the flowchart below.

Otherwise, the function parses whether the request is from the user or from the PCB. If the request is

from the PCB, it calls the POST function handler /weights. This inserts the new weight info into the

database and returns a HTTP 200 code, indicating a successful operation.

If the request is from the user, there are two possible functions: /all or /thresholds. The /all

function occurs in response to a GET request and returns the latest weights in the Weight table as well

as the last threshold weights provided by the user. The /thresholds function handles POST requests from

the user and inserts or updates the user generated threshold weights. It returns a HTTP 200 code,

indicating a successful operation.

Figure 8: Flow Diagram for SpringBoot Java API

Module Requirements Verifications

Server: SpringBoot
Java Middleware

1. Accepts GET request for latest weight
measurement and returns an HTTP 200
header with JSON data to user-facing
application
2. Accepts POST request for latest weight
measurement and returns an HTTP 200
ACK to Wi-Fi chip on tray
3.
4. Checks that request is from a valid
point (i.e. API key or user)
5. >80% unit test coverage for every HTTP
method

0. To make sure each function works
independently of any internet access,
write a mock database with hard-coded
data.
1. Write unit tests for GET request that
returns mock data in JSON format with
200 header. Return 400 error otherwise.
2. Write unit tests for POST request that
returns HTTP 200 ACK. Return 400 error
otherwise.
3. Write unit test for POST request that
returns HTTP 200 ACK. Return 400 error
otherwise.
4. Write unit test to mock API_keys.
Write another unit test to test with a
valid user. Return 200 ACK on either case,
400 error otherwise.
5. We define 80% unit tests as covering
all possible paths where a function could
go that we can think of. We say 80% as it
is impossible to consider every possible
case.

2.1.7 User Phone:

The user phone block indicates an app allowing users to remotely view the weights on their

Weightb0ard at any given time. In order to interact with the board, each user will load an app onto their

phone. Upon opening the app, the user’s phone will automatically make a request to the Linux server,

where our middleware will direct the appropriate operations to perform. Our plan is to write this

front-end in React Native to allow cross-platform support and fast development time.

Figure 9: Minimal mock-up for the front-end

Module Requirements Verification

Phone: React
Native Front-End

1. Users should be able to view weight
information from all sensors in readable
format
2. Application should successfully show
user if any readings are below
user-defined thresholds for each
ingredient by changing label to red
3. Application allows customizable labels
for each sensor

0. Write a mock API response(s) that will
be used for each verification test
1. Write unit test to mock API response
and JavaScript weight variables received
it
2. Write unit test with mock API response
for weights below user-threshold.
Successfully demonstrate threshold
variables CSS style changes to red

4. >80% unit test coverage for every
React component

3. Write unit test for a mock user that
returns customized labels.
4. We define 80% unit tests as covering
all possible paths where a function could
go that we can think of. We say 80% as it
is impossible to consider every possible
case.

2.1.7 Other Design Considerations

We considered adding LEDs to the board as a way to tell at a glance how much you have of an

ingredient, or as a way to know when to get more. We decided against this however, as when in the

physical presence of the board it is easy to pick up the ingredient off of it and judge whether or not to

get more. This also does not contradict our critique of the Samsung Smart Fridge, as cameras are still

unable to look into non-clear containers to judge remaining ingredients. Further, if precise

measurements are required, the user would have the app handy anyway.

2.2 Physical Design

Fig. 2 is what our physical design is going to look like for this project from the top down view.

Our choices are such that each progressively larger sized sensor has a larger footprint on the board for

measuring ingredients. This choice was made so that our board had space to accommodate the larger,

heavier ingredients on the large pressure sensors, and the smaller, less massive ones weren’t given an

unnecessarily large space on the board. The 4 smallest sensors will be the same size, as will the 2

medium-sized sensors. Each load cell (weight sensor) will be mounted from the edge of the pad, with a

platform centered at the other end of the pad, such that the rubber center of the cell can bend to

produce sensor outputs.

Fig. 3 is what our physical design is going to look like for this project from the side view

perspective. We also wanted to design the board such that there was a moderately sized cavity

underneath to house the PCB and wires that came off of the pressure sensors.

Figure 10: Physical Diagram (Top Down View)

Figure 11: Physical Diagram (Side View)

2.3 Tolerance Analysis

The critical block that poses the most challenging requirement is the physical tray’s sensor array. The

type of sensor we’re using is susceptible to small amounts of creep, an inevitable issue on the molecular

level [6] where stable readings change slowly over time, specifically at a rate of ±0.05% every 3 minutes

for the TAL221 load cell [7] (the S and M cells), and ±0.1% every 3 minutes for the TAL220B [8] [load cell

(the L cell). In order to provide readings within an error of 10%, we do not want to continuously have the

sensor powered on for longer than 10 / 0.05 * 3 = 600 minutes for the TAL221, and 300 minutes from

the TAL220B. A possible solution is to use a low-power mode for the HX711 breakout boards for when

weights aren’t modified for long periods of time between readings.

3 Cost and Schedule

3.1.1 Manpower Cost

The average salary of a 2017-2018 ECE Illinois Computer Engineering Grad (as our group is

comprised of) was $92,430 [9]. Working 52, 40 hour weeks (for a total of 2,080 hours a year), this breaks

down to $44.43 per hour. We will use this as our fixed hourly cost for our project. We assume working

10 hours per week, and for the remaining ~10 weeks for this class. This formula also neglects any time

working with product marketing or external partnerships. We therefore calculate our manpower cost for

this project as follows:

.5 umber of Group Members ixed Hourly Cost of Hours per Week of Weeks ost 2 × N × F × # × # = C
.5 44.43 0 0 $33, 22.502 × 3 × $ × 1 × 1 = 3

As shown above, we calculate the manpower cost to be $33,322.50 for this prototype.

3.1.2 Part Cost

Below we have a list of all of the parts required to make our board, broken down into bulk and

prototype pricing.

Part Cost (bulk) Cost (prototype)

5x TAL221 100g Load Sensors $2.80 * 5 = $14 $8.95 * 5 = $44.75

3x TAL221 500g Load Sensors $2.50 * 3 = $7.50 $9.95 * 3 = $29.85

2x TAL220B 5kg Load Sensor $1.80 * 2 = $3.60 $10.95 * 2 = $21.90

1x ESP-8266 Wi-Fi Microchip $1.40 * 1 = $1.40 $6.95 * 1 = $6.95

8x HX711 Breakout Boards $1.47 * 8 = $11.76 $9.95 * 8 = $79.60

1x ATMega328P Microprocessor $3.16 * 1 = $3.16 $4.30 * 1 = $4.30

1x TOL-15664 5V 2A AC/DC Wall Adapter $3.00 * 1 = $3.00 $10.95 * 1 = $10.95

1x Domain Name for Web Hosting $15.66/2 years $31.32/2 years

1x Remote Server Droplet $60/year $60/year

1x BOB-12009 5v to 3.3v Level Shifter $0.65 * 1 = $0.65 $2.95 * 1 = $2.95

Misc. Construction Costs (Wood, surface
finishing, screws, etc.)

$10.00 $20.00

Final Part Cost $130.73 $312.57

As shown above, we calculate the bulk cost for our board’s parts to be $70.73 and the prototype cost to

be $252.57.

3.1.3 Shop Cost
We estimate the shop hourly rate to be $30 per hour. We have a relatively simple design,

requiring only a frame to affix the sensors to along with a storage space on the underside for cabling.

Due to this, we estimate our total shop hour requirement to be 20 hours. Due to this, we say the shop

labor cost to be:

otal Hours ixed Hourly Cost 0 x $30 $600T × F = 2 =

3.1.4 Total Cost

We calculate the total cost including manpower, shop labor, and parts to be $33993.20 accounting for

bulk parts and $34175.10 for the prototype.

3.2 Schedule of Work

Week of Kyle August Thomas

2/23 Finish Design Doc Finish Design Doc,
Design PCB after
approved

Finish Design Doc

3/1 Complete Soldering
Assignment

Engage with ECE
Shop, Complete
soldering assignment

Set up server and
connect to domain
name (must be
pingable)

3/8 Finalize PCB design
for Early Bird order

Place order for
PCBWay

Set up SpringBoot
Java API and test
connection using
Arduino Uno

3/15 Program ATMEGA
and WIFI chips

Program ATMEGA
and WIFI chips on
personal testing
board

Write unit tests for
API

3/22 Work on individual
progress report, test
PCBs

Work on individual
progress report, test
completed PCBs

Work on individual
progress report,
continue front-end

dev

3/29 Work on integration
between board and
mobile application

Work on integration
between board and
mobile application

Work with August on
board/mobile app
integration

4/5 Continue bug-fixing
integration locally

Continue bug-fixing
integration locally

Write unit tests for
front-end dev

4/12 Prepare for Mock
Demo

Prepare for Mock
Demo

Prepare for Mock
Demo

4/19 Do Mock Demo, final
tweaks for boards

Do Mock Demo, any
final tweaks for board

Do Mock Demo, any
final tweaks for
server/API/front-end

4/26 Work on final design
paperwork

Work on final design
paperwork

Work on final design
paperwork

5/3 Turn in final design
paperwork and do
final presentation

Turn in final design
paperwork and do
final presentation

Turn in final design
paperwork and do
final presentation

4 Ethics & Safety

The ethical or safety issues with our project pertain to the physical tray itself, and the

microcontroller and Wi-Fi chips.

Citing the IEEE Code of Ethics #9 [10] - to avoid injuring others, their property, reputation, or

employment by false or malicious action, we will work to ensure that the construction of our tray is

structurally sound such that a user will not be concerned with electrical hazards such as exposed wires

or static shock, or any harm from burning ICs or plastic. We will also make considerations to prevent

damage to the tray’s main circuitry by contact with user ingredients. (These considerations would take

the form of a protective layer on the top of the board that prevents any spillage into the sensitive

electronics underneath)

Citing the ACM Code of Ethics 2.9 [11], the greatest source of ethical and security concerns is the

database itself. We will be allowing multiple users the ability to store or request potentially sensitive

information, specifically an email address. This could lead to bad actors stealing this data and targeting

users [12]. To avoid these concerns, we will be hosting our server on DigitalOceans, which comes with its

own security measures to prevent bad actors. Further, we will have our own authentication measures to

do our best to prevent hacking.

An additional source of safety concern is the user-facing application, specifically in regards to

the ACM Code of Ethics 2.9 [11]. While we expect the user of our prototype to load the application from

source code provided by the designers, bad actors could potentially hijack API calls in the app itself to

download malware onto a user’s phone [13]. These concerns, while possible, are an extremely low risk

as our application will not be downloaded outside of the authors knowledge for the duration of the

project. Further, we will adopt a one-origin policy to authenticate the requests, since our HTTP protocols

will only be handled by our one server.

References

[1] Schanes, K., Dobernig, K. and Gözet, B. (2018). Food waste matters - A systematic review of

household food waste practices and their policy implications. [online] Science Direct. Available at:

https://www.sciencedirect.com/science/article/pii/S0959652618303366 [Accessed 12 Feb. 2020].

[2] “Samsung Smart Refrigerator: Family Hub Touchscreen Fridge Overview,” Samsung Electronics

America. [Online]. Available: https://www.samsung.com/us/explore/family-hub-refrigerator/overview/.

[Accessed: 28-Feb-2020].

[3] “Wheatstone Bridge,” Sparkfun. [Online]. Available:

https://cdn.sparkfun.com/assets/learn_tutorials/3/8/3/Wheatstone-Bridge-02.jpg. [Accessed:

25-Feb-2020].

[4] Avia Semiconductor Ltd. “24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales” HX711

datasheet, 2012, v2.0. Available: https://cdn.sparkfun.com/assets/b/f/5/a/e/hx711F_EN.pdf [Accessed:

13-Feb-2020]

[5] N. Seidle and A. Wende, “SparkFun_HX711_Load_Cell.pdf.” Boulder, CO, 15-May-2019. [Accessed:

02-Mar-2020].

[6] S. Fiere, “What is creep and how to deal with it?,” Zemic Europe, 09-Oct-2018. [Accessed:

02-Mar-2020].

[7] HT Sensor Technology Co. Ltd. “TAL221 Miniature Load Cell” TAL221 datasheet, (n.d.) Available:

https://cdn.sparkfun.com/assets/9/9/a/f/3/TAL221.pdf [Accessed: 13-Feb-2020]

[8] HT Sensor Technology Co. Ltd. “TAL220B Miniature Load Cell” TAL220B datasheet, (n.d.) Available:

https://cdn.sparkfun.com/assets/e/5/f/5/6/TAL220B.pdf [Accessed: 13-Feb-2020]

[9] “All Campus Undergrad 2017-2018 Report,” Engineering Career Services, 31-Dec-2018. [Online].

Available:

https://ecs.engineering.illinois.edu/files/2019/03/IlliniSuccess_AnnualReport_2017-2018_FINAL.pdf.

[Accessed: 25-Feb-2020].

[10] ieee.org, "IEEE IEEE Code of Ethics", 2016. [Online]. Available:

http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 13-Feb-2020].

[11] Acm.org. (2020). The Code affirms an obligation of computing professionals to use their skills for the

benefit of society.. [online] Available at: https://www.acm.org/code-of-ethics [Accessed 13 Feb. 2020].

[12] Digital Guardian. (2020). The History of Data Breaches. [online] Available at:

https://digitalguardian.com/blog/history-data-breaches [Accessed 14 Feb. 2020].

[13] Chicago Tribune. (2020). Chicago Tribune - Widespread Android Virus Could Hide in Popular App

Updates. [online] Available at:

https://www.chicagotribune.com/news/ct-xpm-2012-04-16-sns-201204161154usnewsusnwr201204130

413androidapr16-story.html [Accessed 13 Feb. 2020].

