
Plug and Play Modular Keyboard

Design Document
1. Introduction

1.1. Contributors: Daniel Chen, Fangqi Han, Christian Held

1.2. Problem and Solution Overview:

The modern job-oriented citizen needs to have technology that lets them
meet their goals in a timely manner. In their office, they have the space
and comfort to use a full size keyboard effectively. On the go, however,
they do not have this luxury. Additionally, left-handed typists find the
position of the numpad on keyboards to be awkward. The usual solution
to this difficulty is to either buy additional, smaller keyboards for travel or
cumbersome keyboard extensions at home. That means one will need
multiple keyboards that all provide the same function, but may not have
the best configuration for every situation.

With those issues in mind, we think our approach to the keyboard
will help those who find themselves travelling or working in tight quarters
alleviate the problem of having to sacrifice function for comfort. Our
product solves a user's problem by allowing them to maximize their work
pace by changing the size and function of their keyboard according to
their needs.

Our answer to this situation is to make a keyboard with detachable
modules. This will allow users to conform to their working environment
while still providing them with maximum utility. Users can simply add or
remove modules to the keyboard by plugging or unplugging
TRRS(Tip/Ring/Ring/Sleeve) connectors between modules. The keyboard
will have adaptable firmware that allows the user to still have the most of
the functionality available even with a condensed size keyboard.

1.3. Visual Aid

Figure 1. Physical Visual Aid

Connections between each physical component in the image above are achieved
with 3.5 mm (TRRS) cables. The main keyboard includes the 61 standard keys.
The Tenkey pad features the 4 arrow keys, Delete, Insert, Home, End, Page Up,
and Page Down.

 Key

1
Key

2
Key

3
Key

4
Key

5
Key

6
Key

7
Key

8
Key

9
Key
10

Key
11

Key
12

Key
13

Key
14

Layer 1 ` 1 2 3 4 5 6 7 8 9 0 - = ⌫

Layer 2 ~ ! @ # $ % ^ & * () _ +
Figure 2. Example Keyboard Layer

Figure 2 provides a keyboard layer example. Layer 1 will be used by default.
Holding or pressing a key defined by the firmware (e.g. SHIFT or FN) will cause
the keyboard to activate another layer mapped with different symbols (e.g. Layer
2), from which new characters will be typed. When the active layer does not
cover a certain key (e.g. Layer 2 and Key 14 in the example), the keypress function
will fall through to the previous layer and send key codes from that layer instead (e.g.
BACKSPACE in Layer 1 for Key 14).

1.4. High-level requirements list:

1.4.i. The Main Keyboard is fully implemented with 61 keys that are recognized
correctly as their individual keys with each press and release.

1.4.ii. Auxiliary Modules also correctly read each keypress/keyrelease when
connected to the main keyboard, with at least 10 usable keys on each
module.

1.4.iii. The keyboard can send the character on the correct layer of a key to the
computer between keypress and keyrelease.

1.4.iv. User-determined keypress signals can be assigned to at least 20
programmable keys.

2. Design

2.1. Block Diagram:

Figure 3. Hardware Block Diagram

An external USB powers the main microcontroller that is the operational key
piece. This main component will be the condensed keyboard with most of the
functionality without modules. The other modules will draw power from the main
component and give I2C data through a wired connection. When connected the

microcontroller will communicate through the I/O extenders on each module. The
firmware on the microcontroller will be able to process key presses from all
modules, but the main limitation will be USB data feed back to the computer.

2.2. Schematic:

Figure 4. Provided Schematic for Teensy 2.0++ 1

1 PJRC

Figure 5. Kicad schematic.

Figure 6 shows the first steps of designing the keyboard PCB. The main
challenge tackled in this figure is the routing for the processing chip
(AT90USB1286). The chip needs USB for both power and communication, a
clock generation system, and capacitors for voltage stabilization (Atmel). Teensy
provides a picture of their schematic, included as figure 3), and the difficulty was
attaching the right amount of keys and TRRS connections (a 3.5 mm connection
with four channels: Tip, two Rings and one Shield). The key matrix (example on
the lower right of the figure) is located within the Kicad hierarchical sheet. Most of
the pins of the AT90USB1286 are I/O pins and are used to create the key matrix.
Six of the I/O pins are dedicated to the I2C signals from the modules (it should be

noted that the numpad connections are split between two TRRS connectors
because it should be able to connect to both sides of the main board).

2.3. I/O Expander

2.3.i. These components on the exterior modules are the hub for power and
data transfer on the modules. They receive power from the main
keyboard and power the key matrix, whose data is sent back to the I/O
extender. It interprets the data and returns data back to the central
keyboard via I2C connection. Our current chip is the MCP23018 extender.

Requirement Verification

Have a polling speed that can
interpret key presses and send an
I2C signal to the microcontroller
within 10 ms .

Give a unit step signal to both the
I/O expander and oscilloscope.
Verify that the response signal
from the expander is within 10 ms.

2.4. Microcontroller

2.4.i. The microcontroller receives power from the computer and disperses it
through the connected systems. This power is sent through the matrix
that contains all the keyboard switches, as well as to the external
components through the I/O extenders. The I/O extenders will send back
data they receive, which is organized and sent to the computer as typing
inputs. The firmware for interpreting the key matrix inputs is on the
microcontroller.

Requirements Verification

1. Have a polling speed that
allows a complete scan of
the keyboard in around
100 ms.

1. Give a unit step signal to
both the controller and
oscilloscope. Verify that
the response signal from
the expander is within 100
ms.

2. Each key should be able to
be read (assuming the
module is attached).

2. Run the previous test
additionally on all rows and
columns in unit tests.

3. Be able to run the
firmware.

3. Give an I2C signal
(provided from I/O
expander) and verify it
responds within 100 ms.

2.5. Key Switch Array

2.5.i. The input for our keyboard are mechanical key-switches, which when
pressed shorts a connection and completes a circuit. When these
switches are combined into a matrix and hooked up to a microcontroller,
the firmware on the microcontroller can match these completed circuits to
which keys were pressed and communicate what keys were pressed to
the computer. As the main component that interacts with the user, this is
one of the most important components and provides most of the usability
and with its specific configuration will do much of the organizing for the
microcontroller.

Requirements Verification

1. No signal crossings
between the switches.

1. Continuity tests will be run
for each path the switches
are located around.

2. “n” Key Rollover (NKRO).
This means that the user
can press as many keys as
they can and there should
be no failure to
communicate which keys
are pressed (though other
bottlenecks might cause
issues) (Trybus).

2. A full verification of every
combination of key presses
to prove NKRO would be
very laborious and
unuseful. Due to this
constraint, about 15
random iterations of 6 keys
will be tested to see if they
produce the desired
signals at the
AT90USB1286 chip. The
number 6 was chosen due
to the limits of USB data
transfering (Bates et al).

2.6. Connectors

2.6.i. The wiring between the main hub keyboard and the modules will be a
TRRS cable. This is commonly known as a 3.5 mm jack. The TRRS
version has four separate wires associated with it. The four things
transferred will be 5V power, ground, SDA, and SCL (the latter two are
part of the I2C protocol and are the only lines that return from the
modules to the main hub) (I2C Info).

Requirements Verification

Maintain a voltage above 4.2 volts
(lowest allowable voltage for a
high signal for the
AT90USB1286). The MCP23018
I/O extender indicates that the
most it could potentially draw
would be 400mA (Microchip
Technology). So in addition to
assuming exactly 5 volts from the
USB connection at most the
resistance of the wire could be 1
Ohm.

Place the wire in series with a
known resistor value. Apply DC 5
volts to the series and measure
the current with an oscilloscope.
Then modulate the 5 volts at
100kHz (speed of the I2C
connection) and verify that the
impedance does not exceed 1
ohm.

2.7. Firmware

2.7.i. The firmware is software coded within the microcontroller that will detect
and scan the switch array for pressed and released keys, and send out
the corresponding data through the USB connection. Active keyboard
layers, which are usually activated by pressing “fn” keys, are mapped to
by the firmware with each keypress and will affect the key code outputs
based on the keyboard layout.

Figure 6. Block Diagram of Firmware’s Main Loop

2.7.ii. The firmware periodically polls the press/release status of the available
keyboard matrix, which is scanned from the switch array and is adjustable
based on the number of modules attached. For each keypress, the active
layer where the key is pressed is stored before it is used to find the
correct keycode. For each key release, the layer stored while pressing the

same key is retrieved to determine the keycode. Active layers for each
key are stored separately. This design solves the problem where wrong
keycodes are sent because of activated layers changing between
pressing and releasing the same key. Signals will be sent through the
USB regardless of whether any keys have been pressed or released.

2.7.iii. The firmware also provides programmability, allowing users to modify
their keyboard layout to produce desired usability. Examples include
changing the function layer’s layout, having programmable keys, and
other features that would help with user productivity and customization.

Requirement Verification

1. The firmware needs to
periodically scan pressed
and released keys,
determine the active layers
to find corresponding key
codes, and then send out
signals accordingly.

1. I. Produce input signals
corresponding to pressing
and releasing each entry
(including those in a
different layer) and verify
that the firmware has sent
out all signals correctly.

II. Produce the signal of a
keypress, then after 100ms
delay send another signal
that would switch the
active layer from layer 1 to
layer 2, and finally after
another 100ms send a
keyrelease signal of the
key being pressed first.
Verify that the keycode
outputs all correspond to
the character assigned to
layer 1 and are behaving
correctly for
keypress/keyrelease.

2. The firmware needs to
periodically poll the status
of attached auxiliary
modules and adjust
scanning range
accordingly.

2. Produce signals
corresponding to a switch
array entry on an auxiliary
module with and without
sending an input indicating
that the module is
attached. Verify that the
firmware only sends out a
signal when the module is
attached, and that the

signal is correct.

3. The keyboard layout
should be customizable
through user input,
allowing the user to
change corresponding
functions of programmable
keys.

3. Assign various characters
and commands to the
programmable keys. Then
send keypress signals for
all programmable keys in
random order. Verify that
the output matches key
customizations and is in
correct order.

2.8. Tolerance Analysis:

2.8.i. According to Wyma et al, the human reaction time is about 210 ms from
stimuli to response. Our goal is to have a keystroke event last about 100
ms. This is so the host computer has enough time to process and send
the data to wherever it needs to go. The Cherry MX datasheets indicate
that the average debounce time for a keystroke is about 5 ms. Assuming
the longest pathway is from the exterior module keystroke, the path is as
follows: Keystroke, I/O extender, Microcontroller, USB signal.

We made the assumption that our I2C protocol frequency is 100kHz (I2C
INFO), based upon the lowest value that our I/O expander can produce.
This means that each 8 bit signal from the I/O expander will take
approximately 8*1/100kHz = or 0.08 ms. The microcontroller we have
preliminarily selected has a clock speed of 16MHz. This is a high enough
frequency that we can assume the time to process a signal from the I/O
expander is another round of 0.08 ms of processing time. USB 2.0
protocol indicates that the maximum speed for USB is 480Mbits/s. Again,
this is fast enough that we can add another 0.08 ms. This means that a
signal can be gathered in about 5 ms + 3*0.08ms = 5.24ms. This can be
made faster by using a higher I2C protocol.

3. Cost and Schedule

3.1. Cost Analysis:

3.1.i. Labor: (For each partner in the project)
$50/hour x 2.5 x 50 = $6250 TOTAL per person
Labor For Three Person Team = 3 * TOTAL per person = $18750

3.1.ii. Parts:

Item Description Manufacturer Part # Quantity Cost

1. Mechanical Key
Switches

KBDFans Aliaz Silent
Switches

110 80

2. Diodes ON Semiconductor 1N4148TR 101 10.10

3. Microcontroller
Chip

Atmel AT90USB1286 1 7.92

4. I/O Expander Microchip Technology MCP23018-E/SP 3 4.53

5. PCB Bay Area Circuits N/A 1 35

6. Key Caps Tai Hao N/A 116 50

7. TRRS Cables Tensility International
Corp

10-03211 3 28.80

8. TRRS Female
Ports

CUI Devices SJ-43514 4 4.24

9. USB A to USB
mini Cable

AmazonBasics IFRI 1 5.26

10. USB Mini Female
Port

Hirose Electric Co Ltd UX60-MB-5S8 1 0.99

11. Keyboard
Stabilizers

KPrepublic 104WKLRS96 11 13.30

3.1.iii. Sum of costs into a grand total

Labor + Parts = $18750 + $240.14 = $18990.14

3.2. Schedule:

Week 1 Design Main
PCB (C,D)

Design Fn PCB
(C)

Order Unit test
hardware (D)

Pick Components
(C,F)

Create Keycode
Library (F)

Week 2 Design NumPad
PCB (C,F)

Design Tenkey
PCB
(C,D)

Order PCBs (C) Order
Components (D)

Create Library for
Teensy and USB
support (F)

Week 3 Hardware unit
tests: switches,
Teensy (C,D,F)

Software unit
tests: MC is
programmable
I/O control
(C,D,F)

Order PCBs
(D)

Finish Keypress
Function and
Loop for
Keyboard Matrix
Scan (F)

Week 4 Solder Main
PCB (C)

Solder NumPad
PCB (D)

Solder Teney
PCB (F)

Design Housing
(C,D)

Add Keyboard
Layer Support (F)

Week 5 Solder Fn PCB
(D)

Test USB Data
Returned from
Microcontroller
(F)

Create Drivers
for
Programmability
(F)

Print Housing (C)

Week 6 Switch Array
Processing
(C,D)

I2C Key
Processing
(C,D,F)

Create Layout
Presets (F)

Switch Array
Scanning Test (F)

Week 7 Multikey
Processing Test
(F)

Modules
Operational Test
(D)

Full Assemble
Test (C)

4. Discussion of Ethics and Safety:

4.1. According to 1.2 of ACM code of conduct, we should design every part that could
come in contact with the user to be safe to touch and interact with. Such contact
points should not abrade the user in any way. There is an issue with the TRRS
connectors: they will have both a 5 volt connection and a ground on the cable
itself. This means that the user could potentially burn or shock themselves. The
counter-measure to this will be a resettable fuse or breaker that will stop current
above a certain threshold.

With using ACM 2.8, any firmware or drivers we utilize will be our own
construction or open source material. ACM 2.9 gives protocols for making robust
systems. We will in our keyboard choose parts that will not easily degrade. Since
there are more connections than the usual amount from a keyboard we should
take care that the user cannot easily accidentally maim the product near these
hot zones. Our design for this keyboard is intended to be touched and used
directly by humans. This means that we should adhere to ACM 3.3 by creating
designs that are ergonomic and help the user have a more efficient experience, a
crux of our background to this project.

5. Citations:

5.1. PJRC. (n.d.). Teensy Schematics. Retrieved February 22, 2020, from
https://www.pjrc.com/teensy/schematic.html

5.2. L., D., Wyma, M., J., William, E., Herron, J., T., … Reed. (2015, February 26).
Factors influencing the latency of simple reaction time. Retrieved from
https://www.frontiersin.org/articles/10.3389/fnhum.2015.00131/full

5.3. CHERRY MX SPEED SILVER. (n.d.). Retrieved from
https://www.cherrymx.de/en/mx-original/mx-speed-silver.html

5.4. I2C Info – I2C Bus, Interface and Protocol. (n.d.). Retrieved from https://i2c.info/
5.5. Bates, B. M., Dezmelyk, R., Ingman, R., & Lieb, R. et al. (n.d.). Universal Serial

Bus Hid Usage Tables (Vol. 1.12).
5.6. Atmel. (n.d.). 8-Bit Atmel Microcontroller with 64/128 Kbytes of Isp Flash and Usb

Controller.
5.7. Microchip Technology. (n.d.). MCP23018/MCP23S18 16-Bit I/O Expander with

Open-Drain Outputs.

https://www.pjrc.com/teensy/schematic.html
https://www.frontiersin.org/articles/10.3389/fnhum.2015.00131/full
https://www.cherrymx.de/en/mx-original/mx-speed-silver.html
https://i2c.info/

5.8. Trybus, M. (2013, September 2). komar's techblog. Retrieved February 27, 2020,
from http://blog.komar.be/how-to-make-a-keyboard-the-matrix/

