

Automatic Parking Meter

ECE 445 Design Document

Team 43: Elliot Salvaggio, Kishan Surti, Rutu Patel

TA: Shuai Tang

3/2/2020

1 Introduction

1.1 Problem and Solution Overview

In recent years, we have seen rapid innovation in the car industry. The push for quality

electric vehicles and self-driving capabilities for cars has been more and more apparent over the

last decade. Despite this progress that has been made in simplifying vehicles, the same has not

been made for paid metered parking, an archaic experience everyone with a car must deal with.

Overpaying for parking costs Americans over $20 Billion a year [5] and an average of 125,000

people receive a parking citation every single day in the US [6]. We believe this can be attributed

largely to the inconveniences associated with parking meters. Although in some cities one can

use a simple app to pay a meter, this does not remove the root of the problem. It can be hard to

estimate the length of stay one anticipates on being parked at a location, and might end up

underpaying, which can lead to a ticket. People also clearly overpay for parking significantly,

which adds up over time. It can be stressful knowing you have to leave your location when

you’re running low on parking time, and difficult to decide how long you believe you will be

there for. Additionally, if you’re in a rush, one might forget to pay at all. We believe we can

solve all these problems with a simple solution.

We propose a solution that is an add-on unit to existing meters in the parking lot. Users

would add their name and license plate information to the app associated with our system. Once

they park in a parking spot, the unit would detect the car moving into the parking space and take

a picture of it’s license plate. Our unit will analyze this picture, find the user’s license plate

number, and using this information, charge them for their stay automatically as the user returns

to the spot and drives away. Our solution eliminates the need for someone to worry about

whether they’ve paid for their parking, or have to figure out the length of their stay before

they’ve even gotten out of the car. With our solution, people can be relieved they no longer have

to worry about receiving a parking citation.

1

1.2 Background

We decided to do something about this problem because we have cars and often complain

about the issues that come from having to park in paid parking spots on campus. We’ve been in

situations where we forget to pay for parking and get tickets, or have to leave a meeting because

we don’t want to have to pay for an additional twenty minutes of parking that may not be

needed. We believe that with the basic technology we have today that we can come up with a

solution to fix this old broken design.

The basic problem is that most parking meters just take coins to pay for parking. We

know that on campus the MobileMeter app is the solution to this issue, and it does solve the

problem of using coins, but all the issues that come from overpaying and underpaying for

parking persist with this simple app [6]. This is why we feel like we can still do better than this

existing basic solution. In ideal conditions, someone will simply drive into a parking spot, leave

for some time, then return and drive off, and behind the scenes our product will do all the work

to keep track of their stay.

2

1.3 Visual Aid

Figure 1: Visual Aid

1.4 High-Level Requirements

● Able to detect a car entering and leaving a parking spot when it is within 5 feet of our

system.

● Able to extract a vehicle’s license plate, with exactly seven characters of precision, from

a picture taken of a parked car’s license plate.

● Able to give feedback to the user that our system has recognized the parked car's plate

number and registered their stay through a single status LED within 30 seconds.

3

2 Design

2.1 Block Diagram

There are three main parts to the design of our system. There is the PCB microcontroller

system called control unit that contains the ultrasonic sensor and LEDs, the Raspberry Pi system

that has the camera attached called OpenALPR module, Power Supply module for required

energy to run the overall system, and the Server-App-Database system that communicates with

the Raspberry Pi to keep track of user data. Figure 2 shows the block diagram of the proposed

Automatic Parking Meter.

Figure 2: Automatic Parking Meter Block Diagram

4

2.2 Physical Design

Figure 3: Physical Design

5

2.3 Power Supply

We need a power supply module which is responsible for providing power to the control unit,

and OpenALPR unit. The following are components of this system.

2.3.1 Li-ion Battery: We will have one rechargeable 5V Li-ion battery that will be used to

supply power to each component of the project; with power to the multicontroller and Raspberry

Pi 3. In particular, we plan to use USB Battery Pack for Raspberry Pi - 10000mAh - 2 * 5V

outputs [17]. We will need a 5V power supply for the Raspberry Pi 3 B, and multicontroller.

2.3.2 Voltage Regulator: We will use a voltage regulator to regulate the voltage that is sent to

different components such as Raspberry Pi 3, ultrasonic sensor, and microcontroller. Battery

provides 5V, however, we have a microcontroller which needs 2.5V - 3.6V, as well as LED that

requires 2.6V - 3.8V. Hence, for different voltage input requirements, we need a Voltage

Regulator LM1117 to power each component with correct voltage.

Power Supply Subsystem Requirement Verification

The Li-ion battery must be able to power the

system at 4.5-5.5V.

1. Connect a fully charged Li-ion Battery

to a constant-current test circuit.

2. Use a voltmeter across the battery to

ensure that the voltage is within

4.5V-5.5V range.

Voltage Regulator must be able to provide

2.6V-3.8V for Bi-color LED and 800mA

current. Illuminate LED with color red at ~

2.6 V ± 5%, and color green at ~3.8V ± 5%.

1. Connect a voltage regulator in

between the battery and the LED.

2. Use an oscilloscope to measure the

open-circuit voltage where we would

place the LED.

3. Ensure that the voltage and current

gets in the correct range by inserting a

6

resistor with the proper resistance

value.

2.4 Control Unit

Control Unit is responsible for managing the inputs from sensors, communicating with

OpenALPR unit and at the end giving feedback to users via Status LED.

2.4.1 Microcontroller: We plan to use an ESP32 microcontroller. ESP32 has WiFi functionality,

which we are particularly interested in for our microcontroller to interact with the database for

registered user verification [9]. We believe it should be useful in a project of our size because it

is known to be used in the Arduino Uno, which is a similar size to the multicontroller we plan to

build. Microcontroller will be responsible for taking inputs from the ultrasonic sensor, trigger the

OpenALPR unit; specifically Raspberry Pi 3 Model B, to take camera inputs, and wait for the

OpenALPR unit output through SPI (Serial Peripheral Interface). Microcontroller will then

output the user feedback with Status LED.

2.4.2 Ultrasonic Sensor: For the purpose of triggering the system, we need to detect the distance

between our system and the car entering or leaving the parking spot, for which we will use an

Ultrasonic sensor [4], since they are more reliable than IR sensors during day time due to the

influence of sunlight. The Ultrasonic sensor will measure the distance of the car to our system,

which would be set for 5 feet, [8] thereby communicating with the microcontroller to initiate the

camera input and begin processing.

2.4.3 Status LED: For the purpose of displaying to the user if our system recognizes the car

parked or not, we will use a bi-color standard Green and Red LED, that consumes 20mA current

and 2.6-3.8 V Voltage. The input to the LED is from the microcontroller regarding the

OpenALPR unit.

7

Control Unit Subsystem Requirement Verification

● Must be able to take ultrasonic sensor

input when any car is within 5 feets.

1. Program the microcontroller with

Arduino code putting ultrasonic

threshold range at about ~5 feets ±

5%.

2. Connect the microcontroller to the

laptop using USB, and have the code

check if the sensor detects an object

within 5 feets ± 5%.

3. Take any object of about size 5*5 feet

and bring it close to the ultrasonic

sensor in the range of 5 feets ± 5%.

4. Confirm by printing some output if the

sensor was able to detect the object

successfully.

● Must be able to communicate with the

Raspberry Pi Model 3 at speed greater

than 1.5 Mbps.

1. Connect microcontroller to the

Raspberry Pi Model 3 using USB.

2. Send random data from the

microcontroller to the Pi using the

USB bridge and start recording time.

3. Ensure that the data received on the Pi

matches the data that was sent from

the microcontroller within range of

speed.

● Must be able to communicate with the

database from the WiFi module in less

than 20 seconds.

1. Send any dummy data input to the

server, via WiFi module to store into

the database.

8

2. Check the data in the database to see if

the data write occurred.

3. Program the microcontroller about

parsing the database for the desired

data and ensure that the dummy data is

verified in the database as expected in

the time range.

● Status LED must be properly

illuminated when instructed from the

microcontroller when biased with

specified voltages in range of 2.6 -

3.8V.

1. Repeat the verification steps from

above.

2. If verified, program microcontroller to

provide specific voltage across LED

either green or red, based on color

voltage specification.

3. Using a voltmeter ensure that the

correct LED color illuminates within

2.6 - 3.8V.

2.5 OpenALPR Module

OpenALPR (Automatic License Plate Recognition) module is considered as the main brain of

our system as we use OpenALPR open source image recognition library for extracting license

number from license plate image. This module communicates with the microcontroller for its

input and output. When the ultrasonic sensor on the multicontroller finds there is a car moving

into the spot within 5 feet of the system, we will send a signal to a Raspberry Pi 3 Model B via

microcontroller for the Pi to trigger its camera module and start computing the license plate

number [2].

2.5.1 Raspberry Pi 3 Model B: We will use a Raspberry Pi 3 to run computer vision algorithms

on the picture captured by its attached camera. The attached Raspberry Pi Camera Module V2

9

will be triggered to take a picture by input from the control unit i.e microcontroller. Once the

picture is stored on the RP3, we will run OpenALPR (Automatic License Plate Recognition)

algorithms on the image to extract the car’s license numbers. We will use the built in WiFi

module of the Raspberry Pi 3 to send the extracted plate number to a database/server, where it

will check if a user with such license number has registered through the mobile app. The

Raspberry Pi would further communicate the information received from the database to the

microcontroller.

2.5.2 Raspberry Pi Camera Module V2: We will attach a 8 MP Raspberry Pi Camera Module

V2 to our Raspberry Pi 3 B that will take a picture of the car's license plate when it is notified by

the microcontroller in the control unit. The camera will be attached on the front side of our

system .

OpenALPR Module Subsystem Requirement Verification

● Must be able to take microcontroller

input to trigger the Raspberry Pi

Camera Module V2.

1. Connect the Raspberry Pi 3 along with

the Camera Module V2 to any laptop.

2. Confirm that Raspberry Pi 3 triggers

the Camera Module V2, after

keypress. [13]

3. Confirm the camera takes a picture in

any picture formats stored on the

laptop.

● Camera Module V2 must be able to

take a clear picture when notified by

the Raspberry Pi 3 that is good enough

quality of an image that it can be

properly analyzed by the OpenALPR

system.

1. Connect the Raspberry Pi 3 along with

the Camera Module V2 to any laptop

using a USB cable.

2. Run the Raspberry Pi script for taking

a picture via camera module.

10

 3. Confirm the camera takes a picture of

good quality stored on the laptop.

● Must be able to perform OpenALPR

accurately extracting the license

number from the license image,

precision of character by character.

1. Visually confirm the output from the

OpenALPR algorithm returns the

same number as you can visually see

on the license plate.

2.6 Mobile Application: We will utilize a mobile application associated with our parking meter.

This will give a more detailed feedback to the user, and they will be able to see the duration they

have been parked in a spot, how much they would get charged accordingly, other car information

details, and also the user’s QR code that can be used for scanning purposes. The QR code will

provide as an alternative if the Camera Module cannot detect the vehicle’s license plate for some

reason, and the user will be able to scan this to secure their parking spot and begin their time

parked. In addition, we will have the user register their information within the application prior

to parking, this is necessary for license plate recognition to be associated with an existing

account.

Mobile Application Requirement Verification

● Users can register their information in

the application and can be updated in

the database.

1. Using the log-in page of the

application, create a new user and

refresh the database immediately after.

2. Check if the database has now

changed to reflect the addition of a

new user.

2.7 Server/Database: In order to have users register their information within our mobile

application, we must have some sort of database that can retain this information, and can be

11

easily accessible with our app. We have chosen to use Firebase for our backend, this will

integrate nicely and we can access it quickly and efficiently.

Server/Database Requirement Verification

● We are able to retain information in

the database, and make efficient

access within one second to it when

checking if an account exists under a

license plate.

1. Program the code to perform a read

and write to the database

2. Measure the latency of both the read

and write using a network capture and

ensure that it is under one second.

● We are able to create new users in the

database from the mobile application.

1. Parse the database to see if its been

updated with new user data when

registered from the app.

12

2.8 Schematics

Figure 4: Circuit Diagram

Figure 5: Detailed ESP32-WROOM-32D schematic

13

Figure 6: Detailed Raspberry Pi 3 B and Raspberry Pi Camera Module V2

2.9 Tolerance Analysis

A critical component of our project that will pose the biggest challenge is our Control

Unit block. There are several requirements that this block must pass in order for our design to be

successful: 1) The microcontroller needs to be supplied with approximately 3.3V. 2) The

ultrasonic sensor must be able to detect a large object at a distance of 5 feet away. 3) The LED

will have to display red or green depending on the status of the plate registration.

In order to fulfill our first requirement, we will need to use some sort of level shifter

because our power supply input will be about 5V. There are two ways to approach this solution:

a voltage divider or a linear voltage regulator. A voltage divider is a simple circuit that aids in

reducing a voltage source by adding resistors. The formula for calculating this is below [7]:

Here, if we substitute 3.3V for Vout, 5V for Vin, and 1kΩ resistor for R1, we get that our second

resistor will be about twice the value of R1. The circuit would then look like this [7]:

14

Figure 7: Circuit diagram of the voltage divider

However, this method is not quite reliable, and typically works for slow signals. With this in

mind, we have decided to take the approach of the linear voltage regulator.

The linear voltage level converter is more ideal for signals with a higher baud rate, which

will work in our favor. The schematic for this converter is shown below [18]. This regulator

requires the use of two 10μF capacitors for the input and output for stability. It has up to 800 mA

capability, and our microcontroller requires at least 500 mA so it will be able to power it well.

There are heat-sinking factors that we need to be aware of, but as long as we supply a steady 5V,

our dissipated heat is only 0.85 W, so no heat-sink would be required.

Figure 8: Circuit diagram for linear voltage regulator

Our second requirement is that the ultrasonic sensor should be able to detect a large

object at a range of 5 feet. A problem that can arise is when a person may be walking in front of

the parking meter and accidentally triggers it. To accomplish our requirement and combat this

issue, we will program the ultrasonic sensor to only detect an object within 5 to 7 feet for several

consistent cycles. During some testing, we found that this was an optimal distance to check for a

vehicle. This will pick up the car when it is entering the spot and will then signal to our

Raspberry Pi module to capture an image of the license plate. The sensor’s maximum limit for

15

distance checking is roughly 4 meters, with the ranging accuracy reaching to about ±3 mm.

Below is the timing diagram for the HC-SR04 Ultrasonic Sensor [27]:

Figure 9: Timing Diagram for Ultrasonic Sensor

In order to begin range detection, we will first need to send a 10μS pulse. This will then

send a cycle of 8 bursts of ultrasound at 40 kHz, which raises the echo signal. This echo signal

will return towards the sensor itself, letting it know whether it detected an object.

The last requirement that must be satisfied in our Control Unit block is that the LED must

display either green or red, while operating at a voltage of 2.1 V for green and 2.0 V for red. It

requires at least 20 mA of forward current to be operational, as shown in the below diagrams

[28]. This can be accomplished easily, as our input power supply will be 5V, so we need to add

the proper resistor value before the LED in order to obtain that ideal voltage needed.

Figure 10: LED color relative to Current

16

3 Cost and Schedule

3.1 Cost Analysis

3.1.1 Labor Cost

We are a team of three, all Computer Engineering students. The average starting salary for an

Illinois Undergraduate Computer Engineering graduate was $96,518 in 2016. This comes out

$96,518/52 weeks = $1,856.11 per week. $1,856.11/40 hours = $46.40/hour. There are about 10

week left of the semester. If we all plan to work 15 hours a week on the project, that puts the

total labor cost to (46.40*15*8*3*2.5) = $41,760.

3.1.2 Parts Cost

Part Name Qty. Part Description Cost

Raspberry Pi 3 Model B 1 Computer Vision processing
device

$35.00

Raspberry Pi Camera Module V2 1 Take license plate picture $28.20

Espressif ESP32-WROOM 32D 1 Microcontroller $4.50

Digikey 3.3 V 800 mA Regulator -
LD1117-3.3

1 Brings voltage from 5V power
source down to 3.3V for ESP32

$0.55

Digikey Ultrasonic Sensor - HC-SR04 1 Sense an approaching car $3.95

Digikey Bi-Color LED 1 Depending on the input voltage
displays Red or Green LED

$0.55

Adafruit USB Battery Pack for Raspberry
Pi - 10000mAh - 2 x 5V outputs

1 To power overall system $39.95

Total: $112.07

17

3.2 Schedule

Week Elliot Kishan Rutu Team Goal

2/24 Work on Design
Document

Work on Design
Document

Initiate PCB design
in KiCad from
planned circuit
schematic/Work on
design document

Complete Design
Document

3/2 Buy project parts Create test cases
and check circuit
schematic prone
of bugs

Make initial
conversation with
ECE shop to put
our system in box

Create PCB design
and correct
schematics if
needed

3/9 Program
microcontroller

Test design Finalize PCB for
Early bird PCB
order

Finalize PCB
design, order parts
and send in design

3/16 Work on WiFi
module of the
microcontroller to
send query request
to database

Implement
database for
registered user

Implement
openALPR
algorithm to work
with Pi

Start working on
software
applications
(microcontroller
and mobile
application
backend)

3/23 Continue working
on data transmission
protocols

Continue working
on data
transmission
protocols

Continue working
on data
transmission
protocols

Continue working
on software
applications

3/30 Debug control
component

Implement the
Mobile
Application

Create front end
design of Mobile
Application

Connect software
applications to PCB
design (if we have
received PCB by
now)

4/6 Debug control
component

Continue with
mobile application

Test end to end
flow of the system

Begin debugging
overall design,
creating test cases

4/13 Create ways to test
overall design

Test mobile app Fix any bugs or
errors and finalize
product

Finalize and fix
bugs/flaw in
design, continue

18

testing

4/20 Prepare for demo Prepare for demo Prepare for demo Final touches on
design, prepare for
demo, start up final
report for project

4/27 Work on final paper Work on final
paper

Work on final
paper

Work on and finish
up final report for
project

4 Discussion of Ethics and Safety

One of the few concerns regarding our project will be the power supply. The parking

meter should theoretically be placed outside and should be able to endure various weather

conditions, including rain. We must ensure that our power supply is covered properly so that rain

or snow cannot enter. This could potentially cause a hazard to the user if they are touching the

parking meter and it has been exposed to water leakage in some manner. This applies to the

IEEE Code of Ethics #1 [1]. We must make sure that our finished design complies with an IP65

rating, which means that it will be “dust tight” and protects against water that is shot from a

nozzle.

Another ethical issue that can arise is keeping a user’s personal information safe and

secure. We will only ask for their license plate, phone number, and full name. We will not

disclose any of this information, and our system will not retain any of this information for our

benefit, nor will we keep track of a user’s location. We will only display accurate information on

our parking meter and within the mobile application. This aligns with the IEEE Code of Ethics

#3 [1]. We want to ensure that a user who is using our application can trust us with their data.

19

5 Citations:

[1] IEEE, “IEEE Code of Ethics,” IEEE Policies, Section 7, no. 8, June 2019. [Online].

Available: https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed Mar. 1,

2020].

[2] Openalpr, “Camera Configuration.” Camera Configuration - Openalpr 2.7.102

Documentation. [Online]. Available: doc.openalpr.com/camera_placement.html. [Accessed Mar.

1, 2020].

[3] Atascadero Municipal Code, 9-4.117 Parking Design Standards. [Online], Available:

qcode.us/codes/atascadero/view.php?topic=9-4-9_4_117. [Accessed Mar. 1, 2020].

[4] Pendergast, Robert L., et al. “Complete Guide for Ultrasonic Sensor HC-SR04 with

Arduino,” Random Nerd Tutorials, 2 Apr. 2019. [Online]. Available:

randomnerdtutorials.com/complete-guide-for-ultrasonic-sensor-hc-sr04/. [Accessed Mar. 1,

2020].

[5] Inrix, “Searching for Parking Costs Americans $73 Billion a Year.” PR Newswire: Press

Release Distribution, Targeting, Monitoring and Marketing, 26 June 2018, [Online]. Available:

www.prnewswire.com/news-releases/searching-for-parking-costs-americans-73-billion-a-year-3

00486543.html. [Accessed Mar. 1, 2020].

[6] Davis Law Firm, “Traffic Ticket Statistics.” Davis Law Firm, 1 Oct. 2019, [Online].

Available: jeffdavislawfirm.com/traffic-ticket-statistics/. [Accessed Mar. 1, 2020].

[7] Connolly, David. “How to Level Shift 5V to 3.3V.” Random Nerd Tutorials, 2 Apr. 2019.

[Online]. Available: randomnerdtutorials.com/how-to-level-shift-5v-to-3-3v/. [Accessed Mar. 1,

2020].

20

[8] Fuchs. “Ultrasonic Sensors Knowledge (Part 4): Influences on Measurement Accuracy.”

Pepperl+Fuchs, 20 July 2018. [Online]. Available: www.pepperl-fuchs.com/usa/en/25518.htm.

[Accessed Mar. 1, 2020]

[9] Explore Embedded. “Overview of ESP32 Features. What Do They Practically Mean?”

Tutorials, 17 December 2016. [Online]. Available:

www.exploreembedded.com/wiki/Overview_of_ESP32_features._What_do_they_practically_m

ean%3F. [Accessed Mar. 1, 2020]

21

