

Hardware Security Module

ECE 445 Design Document
Team 63

Frankie Papa, Calvin Fisher, Nick Schiesl
TA: Evan Widlowski

2/23/2020

1

1 Introduction
1.1 Problem and Solution
Hardware Security Modules (HSMs) are devices that have a protected keystore coupled with crypto
hardware that provides features such as encryption/decryption or random number generation [1]. With the
amount of personal data that companies have to keep secure (such as credit card info, passwords, etc.) it is
necessary for these companies to assure their customers that they keep it highly secure. HSMs provide a
much higher level of security than the use of software encryption and for this reason are popular as a
defense for this info. These devices allow a customer to encrypt their confidential data and store the key
to the data in hardware. Now, attackers would have to gain access to the HSM if they wanted the keys that
are used to decrypt the data.

The problem is that these products can be very expensive and are not always simple to use for some
purposes. For example, one of our members faced an issue while working with the Trusted Platform
Module (TPM), a cheap and standard HSM in many personal computers, where he was not able to persist
symmetric keys (a feature desired in the project he was working on). These devices can also be very
costly ranging from low cost options at around $110.00 to high cost units at around $32,000 [2]. The
problem that we are looking to solve is that of finding a low-cost, high-security option. A typical low cost
HSM has limited key storage space and limited support, or no support, to symmetric algorithms [2]. Our
solution to this is to fill this gap by producing a cheaper HSM that has the ability to store a large amount
of keys, provides symmetric encryption algorithms, and has a random number generator with high
entropy.

In order to provide a more secure product at this lower price we will make sure that it fulfills the main
requirements for FIPS 140-2 Level 3 with room for additions later to fully fulfill each requirement. In
NIST’s documentation on FIPS 140-2 Level 3 the main features that we are implementing would be at
least one approved algorithm/security function, the use of tamper-evident coatings or seals, and systems
in place which make it more difficult to gain access to the modules inside as well as the zeroization of
keys in the event that the cryptographic module is opened [3]. In this case, our approved algorithm is the
Advanced Encryption Standard (AES). We have found that many of the higher end HSMs that are FIPS
140-2 Level 3 or 4 certified and have higher performance are priced near $1000.00 or more and we aim to
provide a device capable of some of their features at a fraction of the price [1].

2

1.2 Visual Aid

Figure 1. Visual Aid

1.3 High-Level Requirements
1. The device must be able to store at least 10,000 AES-128 keys in nonvolatile memory
2. The device must be able to encrypt and decrypt files at least as fast as 30 kB/s
3. The random number generator on the device can generate statistically random AES-128 keys
4. Tamper evidence module must be able to zeroize the keystore in the event of physical
tampering

2 Design
2.1 Block Diagram
In order for our design to be successful our device is going to need a power supply, a random number
generator, a tamper evidence module, and a control module (which doubles as the encryption module).
With the parts that we have chosen our power supply will come from the USB connector which has a
voltage rating of 30V. The voltage regulator will then supply 5V to each component and 18V to the
Random Number Generator (RNG) circuit. The flash memory has 2GB storage which allows us to store a
lot of 128-bit keys. The tamper evidence buttons and the conductive wire mesh sensor will alert the
microcontroller of tampering and wipe the keys from the keystore. The RNG circuit will generate
AES-128 bit keys on command from the microcontroller which will store them in the flash memory.
Lastly, inside of the control module the microcontroller will route all data to each piece. Doubling as the
encryption module, the microcontroller will also use AES encryption to encrypt or decrypt data sent in
through the USB connector using a designated key from the keystore.

3

Figure 2. Block Diagram

2.2 Power Supply
The main source of power for our device will be through a USB power supply. The USB Connector will
have an output of 5 volts. This supply voltage will allow us to power all of our devices and supply enough
current for all of the components. The 3 volt lithium battery will supply power to the microcontroller,
NAND flash memory, and the tamper evidence module circuits. This battery is included for the sole
purpose of operating the tamper evidence module when the device is not connected by USB to ensure the
device’s safety.

4

Figure 3. Power Supply Schematics

Requirements Verifications

1. USB Supplies 5 volts
2. 3V battery powers the tamper evidence

module, micro controller, and NAND
flash

1. Measure the voltage output of the USB
connector with a multimeter to make sure
its output is 5 volts.

2. Measure the positive terminal of the
battery with a multimeter to make sure it
is supplying 3V. Next, probe the power
pins of the microcontroller and the NAND
flash to test if they are receiving 3 volts
and if they are powered on. Then test the
tamper evidence module using a
multimeter to make sure it has the correct
voltage inputs and outputs.

5

2.3 Control Module
The control module in our HSM doubles as the encryption module as it will be taking in all the data from
the USB connector and performing the designated operations (encrypt, decrypt, store key, or generate
random key) and executing the code to encrypt or decrypt data. This is all headed by the STM32F730R8
microcontroller that we chose which will be the main base of operations. Each individual module will
connect here and we will have software programmed onto it to deal with the incoming data and do
whatever the data demands. Figure 4 below shows the flow of operation from the perspective of the
software on the microcontroller. Additionally, the control module, in the case of a signal for
encryption/decryption, will use Cipher Block Chaining (CBC) AES which is a more complex version of
AES which uses the previous block of ciphertext to change the next block of plaintext prior to the AES
algorithm. Figures 5 and 6 show diagrams of the CBC AES algorithm. In the case of decryption we use
inverses of the functions shown in figure 5 and the algorithm is done in reverse order in order to undo our
encryption; we are capable of doing this because it is a symmetric encryption algorithm. We decided that
the encryption and decryption algorithms must be able to run at speeds of at least 30 kB/s. This number is
based on the lower bounds of CBC-AES when tested by a group who published a crypto library with
multiple algorithms implemented [4].

6

Figure 4. Microcontroller Software Flow Chart

7

Figure 5. AES Algorithm [5]

Figure 6. CBC mode Encryption [6]

8

Figure 7. Control Module Schematic

Requirements Verifications

1. Must be able to store at least 10,000
AES-128 keys in nonvolatile memory

2. Must be able to do the
encryption/decryption operations at a
speed of at least 30 kB/s

3. Must be able to input and output data to
and from the USB connector

1. Create a C script which will first load
10,000 AES-128 keys onto the device
through the USB and then compare the
keys loaded to those on the device to
confirm it properly stored all 10,000 keys.

2. Write a C script which will encrypt a
1MB file and times the amount of time it
takes from data transmission to the device
until the ciphertext is transmitted back.
Then calculate the rate in kB/s.

3. Send data to microcontroller from a
computer where the two are connected by
a USB and load data into flash memory
and then load it back to the computer and
compare the two

9

2.4 RNG Module
The HRNG or Hardware Random Number Generator is essential for this encryption device. We are
hypothetically creating a hardware security device for the market, so security is top priority. The HRNG
will be a big step up from the PRNG or pseudo random number generator that most programs use. In a
PRNG a “seed” is passed through a black box algorithm which spits out a “random” number. Obtaining
the seed used makes the random number obsolete. In our case, obtaining a seed means obtaining the
AES-128 bit key for an experienced hacker. Our HRNG will not use a seed and will instead use digitized
transistor noise to generate random bits.

In our HRNG a reverse biased or negative voltage applied transistor will generate noise. This noise will
then be amplified by 2 more resistors. The noise is then “digitized” by a Schmitt Trigger Inverter. We
now have a readable output of statistically random bits. Statistically random means that our bit stream
does not produce any recognizable patterns or regularities, but is still not truly random.

Figure 8. HRNG Schematic

10

Requirements Verifications

1. Produces a statistically random bit output 1. We will use an arduino to probe our
random number generator for 128 bits and
feed a file with these bits into the
Dieharder Test Suite which uses the
diehard tests the statistical randomness of
a random number generator

2. We will purchase extra LEDs that can be
placed in series with resistors on the Shift
Register (74HC164) to see real time
random bits being generated and fed at
clock speed, these random “states” can be
tested for statistical randomness

2.5 Tamper Evidence Module
The tamper evidence module is what helps us to comply with most of the standards of FIPS 140-2 levels
2 and 3. Our module will zeroize the keybase in two different scenarios: when the casing has been
removed or when an attacker is drilling into the case. In the scenario where the casing is being removed
one or more of the pressure sensing buttons will be undone and the alert signal will become an open
circuit. The microcontroller will be periodically polling this signal, as seen in figure 9, and when it inputs
low the microcontroller will zeroize the keybase. In the case of drilling we have a circuit that detects the
change in voltage drop across a nichrome wire. We are choosing to use nichrome 60 series wire because
this is used as a resistance wire and will be useful in detecting the effects of a drill touching it. This will
be wrapped around our epoxy covered circuit as a first line of defense against these types of attacks. The
microcontroller will similarly poll the alert signal from the circuit and when an alert is sent it will also
zeroize the keystore.

Figure 9. Tamper Evidence Software

11

Figure 10. Tamper Evidence Module Schematics

Requirements Verifications

1. Zeroize the keystore when the casing is
removed

2. Zeroize the keystore when something
penetrates the case

1. Store a key in the flash memory, remove
the casing, and check the memory of the
NAND flash with our microcontroller

2. Store a key in the flash memory, drill into
the device, and check the memory of the
NAND flash with our microcontroller

2.6 Tolerance Analysis
The main components of our device which must adhere to strict guidelines would be the HRNG module
and the power supply. We suspect that our power supply must supply the desired voltages within 5%
bounds. What this means is that our power supply of 18V to the HRNG module must be within
17.1V-18.9V in order to guarantee that our module gets powered correctly. The HRNG module must also
output AES-128 keys that are judged to be statistically random. In order to assure this we will be using
the Dieharder test suite which was designed by a professor at Duke based upon George Marsaglia’s
Diehard Tests from 1995 [8]. This will take in a stream of bits or a file of bits (from our RNG) and give
us a quality value to say whether or not we are creating “statistically random” bits.

12

3 Cost and Schedule
3.1 Cost Analysis
When determining the cost for development we assume an average salary of $80,000 per person of our 3
member team. We also assume 10 hours of work per week and a 16 week timeframe for completing the
project. Using this we calculated the development cost for labor as follows.

 people 6 weeks 0 hours .5 46, 53.85year
$80000 × 1 year

52 weeks × 1 week
40 hours × 3 × 1 × 1 × 2 = $ 1 (1)

The table below details the estimated cost for parts:

Part Name Manufacturer Part # Quantity Cost/part

Microcontroller STMicroelectronics STM32F730R8T6 1 $4.96

NAND Flash Winbond W29N029VSIAA 1 $3.82

USB Connector CUI Devices UJ2-MIBH-4-SMT-TR 1 $0.87

Buttons Omron Electronics B3FS-1000P 4 $0.65

Assorted
Resistors,
Capacitors, ICs,
etc.

Digikey N/A 1 ~$10.00

PCB PCBway N/A 1 ~$5.00

Plastic Housing N/A N/A 1 ~$10.00

Lithium Battery Panasonic CR2032 1 $0.99

Total Cost - - - $35.30

Assuming that we will be making three prototypes for testing and demoing, the cost for parts will amount
to $106.89. Adding this to the cost of labor gives us a total cost of $46,260.74.

13

3.2 Schedule

Week Frankie Calvin Nick

3/2/2020 Research programming
microcontroller and
begin programming
CBC AES.

Finalize parts list and
verify HRNG design /
statistical randomness
test.

Complete tamper
evidence module design

3/9/2020 Program CBC AES and
key storage software

Begin PCB KiCAD
design and research bit
state implementation.

Order parts and begin
creating the nichrome
wire mesh resistor

3/23/2020 Design PCB with parts
being used

Assemble breadboard
circuit / test.

Test the nichrome wire
mesh resistor and
change resistor
component values if
necessary

3/30/2020 Assemble circuit and
begin testing of
software on
microcontroller

Assemble circuit on
PCB / verify voltage
regulation.

Assemble circuit on
PCB and modify the
resistance in the button
detection circuit for the
tamper evidence
module if needed

4/6/2020 Refine software and
add in USB software
capabilities

Test and refine PCB. Refine all resistors and
capacitors on PCB to
achieve correct
tolerances if necessary

4/13/2020 Assemble prototype
and test each piece
together

Assemble prototype /
verify integration of
modules.

Assemble prototype
and complete final
testing of design

4/20/2020 Mock demo and refine
prototype

Mock demo and refine
prototype

Mock demo and refine
prototype

4/27/2020 Demo and begin final
paper

Demo and begin final
paper

Demo and begin final
paper

5/4/2020 Final presentation Final presentation Final presentation

14

4 Ethics and Safety
While designing our product we have to keep in mind the ethics involved in producing a HSM with
stringent security requirements. It would be highly unethical to advertise a product that is supposed to
fulfill FIPS 140-2 level 3 requirements, but then fails in some aspect (perhaps some other way of
tampering with our device). It would also be unethical for us to produce a faulty product; this requires us
to create and administer strict tests to our device in order to assure to our customers that we have a
working product.

Working in the senior design lab will require us to follow strict safety measures to prevent any injury.
Using soldering irons or hot air can put us at risk of burning ourselves.To prevent this from happening
will follow the correct safety precautions that were explained in our lab safety training and our soldering
assignment. We will always power these devices off while not in use and use correct soldering techniques
to prevent any risk of injury. Another hazard would be when we power our device with the lab power
supplies. We will follow all safety guidelines to prevent risk of electrical shock or electrical shorts.

Another safety measure we will have to take into account is our use of a lithium battery. Lithium batteries
can fail and cause a fire or explosion that may harm us or others during demoing and testing. This can be
caused by puncture, overcharge, overheating, short circuit, internal cell failure, and manufacturing
deficiencies. We will work on preventing this by operating the battery under the rated voltage, current,
and temperature. We will also be careful not to damage the battery to prevent failure.

15

5 Citations
[1] J. Schlyter, “Hardware Security Modules,” internetstiftelsen.se. [Online]. Available:

https://internetstiftelsen.se/docs/hsm-20090529.pdf. [Accessed: 24-Feb-2020].
[2] S. Dickinson, “HSM Buyers' Guide - Documentation Reference Material,” OpenDNSSEC.

[Online]. Available: https://wiki.opendnssec.org/display/DOCREF/HSM Buyers' Guide.
[Accessed: 24-Feb-2020].

[3] D. L. Evans, P. J. Bond, and A. L. Bement, “FIPS PUB 140-2,” 12-Mar-2002. [Online].
Available: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf. [Accessed:
24-Feb-2020].

[4] T. Pornin, “On Performance,” BearSSL, 2018. [Online]. Available:
https://bearssl.org/speed.html. [Accessed: 27-Feb-2020].

[5] J. D. R. Arrañaga, J. A. S. Chavarin, J. J. R. Panduro, and E. C. B. Alvarez, “New S-box
calculation for Rijndael-AES based on an artificial neural network,” ReCIBE. Revista
electrónica de Computación, Informática, Biomédica y Electrónica. [Online]. Available:
https://www.redalyc.org/jatsRepo/5122/512253718012/html/index.html. [Accessed:
27-Feb-2020].

[6] “Block cipher mode of operation,” Wikipedia, 15-Feb-2020. [Online]. Available:
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation. [Accessed:
27-Feb-2020].

[7] C. Platt and A. Logue, “Really, Really Random Number Generator: Make:” Make,
01-May-2015. [Online]. Available:
https://makezine.com/projects/really-really-random-number-generator/. [Accessed:
24-Feb-2020].

[8] R. G. Brown, D. Eddelbuettel, and D. Bauer, “Dieharder: A Random Number Test Suite,”
Robert G. Brown's General Tools Page. [Online]. Available:
https://webhome.phy.duke.edu/~rgb/General/dieharder.php. [Accessed: 27-Feb-2020].

16

