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1 Introduction 
1.1 Problem and Solution 
Hardware Security Modules (HSMs) are devices that have a protected keystore coupled with  crypto 
hardware that provides features such as encryption/decryption or random number generation [1]. With the 
amount of personal data that companies have to keep secure (such as credit card info, passwords, etc.) it is 
necessary for these companies to assure their customers that they keep it highly secure. HSMs provide a 
much higher level of security than the use of software encryption and for this reason are popular as a 
defense for this info. These devices allow a customer to encrypt their confidential data and store the key 
to the data in hardware. Now, attackers would have to gain access to the HSM if they wanted the keys that 
are used to decrypt the data. 
 
The problem is that these products can be very expensive and are not always simple to use for some 
purposes. For example, one of our members faced an issue while working with the Trusted Platform 
Module (TPM), a cheap and standard HSM in many personal computers, where he was not able to persist 
symmetric keys (a feature desired in the project he was working on). These devices can also be very 
costly ranging from low cost options at around $110.00 to high cost units at around $32,000 [2]. The 
problem that we are looking to solve is that of finding a low-cost, high-security option. A typical low cost 
HSM has limited key storage space and limited support, or no support, to symmetric algorithms [2]. Our 
solution to this is to fill this gap by producing a cheaper HSM that has the ability to store a large amount 
of keys, provides symmetric encryption algorithms, and has a random number generator with high 
entropy. 
 
In order to provide a more secure product at this lower price we will make sure that it fulfills the main 
requirements for FIPS 140-2 Level 3 with room for additions later to fully fulfill each requirement. In 
NIST’s documentation on FIPS 140-2 Level 3 the main features that we are implementing would be at 
least one approved algorithm/security function, the use of tamper-evident coatings or seals, and systems 
in place which make it more difficult to gain access to the modules inside as well as the zeroization of 
keys in the event that the cryptographic module is opened [3]. In this case, our approved algorithm is the 
Advanced Encryption Standard (AES). We have found that many of the higher end HSMs that are FIPS 
140-2 Level 3 or 4 certified and have higher performance are priced near $1000.00 or more and we aim to 
provide a device capable of some of their features at a fraction of the price [1]. 
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1.2 Visual Aid 

 
Figure 1. Visual Aid 

1.3 High-Level Requirements 
1. The device must be able to store at least 10,000 AES-128 keys in nonvolatile memory 
2. The device must be able to encrypt and decrypt files at least as fast as 30 kB/s 
3. The random number generator on the device can generate statistically random AES-128 keys 
4. Tamper evidence module must be able to zeroize the keystore in the event of physical  
tampering 

 
2 Design 
2.1 Block Diagram 
In order for our design to be successful our device is going to need a power supply, a random number 
generator, a tamper evidence module, and a control module (which doubles as the encryption module). 
With the parts that we have chosen our power supply will come from the USB connector which has a 
voltage rating of 30V. The voltage regulator will then supply 5V to each component and 18V to the 
Random Number Generator (RNG) circuit. The flash memory has 2GB storage which allows us to store a 
lot of 128-bit keys. The tamper evidence buttons and the conductive wire mesh sensor will alert the 
microcontroller of tampering and wipe the keys from the keystore. The RNG circuit will generate 
AES-128 bit keys on command from the microcontroller which will store them in the flash memory. 
Lastly, inside of the control module the microcontroller will route all data to each piece. Doubling as the 
encryption module, the microcontroller will also use AES encryption to encrypt or decrypt data sent in 
through the USB connector using a designated key from the keystore. 

3 



 
Figure 2. Block Diagram 

 
2.2 Power Supply 
The main source of power for our device will be through a USB power supply. The USB Connector will 
have an output of 5 volts. This supply voltage will allow us to power all of our devices and supply enough 
current for all of the components. The 3 volt lithium battery will supply power to the microcontroller, 
NAND flash memory, and the tamper evidence module circuits. This battery is included for the sole 
purpose of operating the tamper evidence module when the device is not connected by USB to ensure the 
device’s safety.  
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Figure 3. Power Supply Schematics 

 

Requirements Verifications 

1. USB Supplies 5 volts  
2. 3V battery powers the tamper evidence 

module, micro controller, and NAND 
flash 

1. Measure the voltage output of the USB 
connector with a multimeter to make sure 
its output is 5 volts. 

2. Measure the positive terminal of the 
battery with a multimeter to make sure it 
is supplying 3V. Next, probe the power 
pins of the microcontroller and the NAND 
flash to test if they are receiving 3 volts 
and if they are powered on. Then test the 
tamper evidence module using a 
multimeter to make sure it has the correct 
voltage inputs and outputs.  
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2.3 Control Module 
The control module in our HSM doubles as the encryption module as it will be taking in all the data from 
the USB connector and performing the designated operations (encrypt, decrypt, store key, or generate 
random key) and executing the code to encrypt or decrypt data. This is all headed by the STM32F730R8 
microcontroller that we chose which will be the main base of operations. Each individual module will 
connect here and we will have software programmed onto it to deal with the incoming data and do 
whatever the data demands. Figure 4 below shows the flow of operation from the perspective of the 
software on the microcontroller. Additionally, the control module, in the case of a signal for 
encryption/decryption, will use Cipher Block Chaining (CBC) AES which is a more complex version of 
AES which uses the previous block of ciphertext to change the next block of plaintext prior to the AES 
algorithm. Figures 5 and 6 show diagrams of the CBC AES algorithm. In the case of decryption we use 
inverses of the functions shown in figure 5 and the algorithm is done in reverse order in order to undo our 
encryption; we are capable of doing this because it is a symmetric encryption algorithm. We decided that 
the encryption and decryption algorithms must be able to run at speeds of at least 30 kB/s. This number is 
based on the lower bounds of CBC-AES when tested by a group who published a crypto library with 
multiple algorithms implemented [4]. 
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Figure 4. Microcontroller Software Flow Chart 
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Figure 5. AES Algorithm [5] 

 
 

 
Figure 6. CBC mode Encryption [6] 
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Figure 7. Control Module Schematic 

 
 

Requirements Verifications 

1. Must be able to store at least 10,000 
AES-128 keys in nonvolatile memory 

2. Must be able to do the 
encryption/decryption operations at a 
speed of at least 30 kB/s 

3. Must be able to input and output data to 
and from the USB connector 

1. Create a C script which will first load 
10,000 AES-128 keys onto the device 
through the USB and then compare the 
keys loaded to those on the device to 
confirm it properly stored all 10,000 keys. 

2. Write a C script which will encrypt a 
1MB file and times the amount of time it 
takes from data transmission to the device 
until the ciphertext is transmitted back. 
Then calculate the rate in kB/s. 

3. Send data to microcontroller from a 
computer where the two are connected by 
a USB and load data into flash memory 
and then load it back to the computer and 
compare the two 
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2.4 RNG Module 
The HRNG or Hardware Random Number Generator is essential for this encryption device. We are 
hypothetically creating a hardware security device for the market, so security is top priority. The HRNG 
will be a big step up from the PRNG or pseudo random number generator that most programs use. In a 
PRNG a “seed” is passed through a black box algorithm which spits out a “random” number. Obtaining 
the seed used makes the random number obsolete. In our case, obtaining a seed means obtaining the 
AES-128 bit key for an experienced hacker. Our HRNG will not use a seed and will instead use digitized 
transistor noise to generate random bits. 
 
In our HRNG a reverse biased or negative voltage applied transistor will generate noise. This noise will 
then be amplified by 2 more resistors. The noise is then “digitized” by a Schmitt Trigger Inverter. We 
now have a readable output of statistically random bits. Statistically random means that our bit stream 
does not produce any recognizable patterns or regularities, but is still not truly random. 
 

 
Figure 8. HRNG Schematic 
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Requirements Verifications 

1. Produces a statistically random bit output 1. We will use an arduino to probe our 
random number generator for 128 bits and 
feed a file with these bits into the 
Dieharder Test Suite which uses the 
diehard tests the statistical randomness of 
a random number generator 

2. We will purchase extra LEDs that can be 
placed in series with resistors on the Shift 
Register (74HC164) to see real time 
random bits being generated and fed at 
clock speed, these random “states” can be 
tested for statistical randomness 

 
 
2.5 Tamper Evidence Module 
The tamper evidence module is what helps us to comply with most of the standards of FIPS 140-2 levels 
2 and 3. Our module will zeroize the keybase in two different scenarios: when the casing has been 
removed or when an attacker is drilling into the case. In the scenario where the casing is being removed 
one or more of the pressure sensing buttons will be undone and the alert signal will become an open 
circuit. The microcontroller will be periodically polling this signal, as seen in figure 9, and when it inputs 
low the microcontroller will zeroize the keybase. In the case of drilling we have a circuit that detects the 
change in voltage drop across a nichrome wire. We are choosing to use nichrome 60 series wire because 
this is used as a resistance wire and will be useful in detecting the effects of a drill touching it. This will 
be wrapped around our epoxy covered circuit as a first line of defense against these types of attacks. The 
microcontroller will similarly poll the alert signal from the circuit and when an alert is sent it will also 
zeroize the keystore. 

 
Figure 9. Tamper Evidence Software 
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Figure 10. Tamper Evidence Module Schematics 

 

Requirements Verifications 

1. Zeroize the keystore when the casing is 
removed 

2. Zeroize the keystore when something 
penetrates the case 

1. Store a key in the flash memory, remove 
the casing, and check the memory of the 
NAND flash with our microcontroller 

2. Store a key in the flash memory, drill into 
the device, and check the memory of the 
NAND flash with our microcontroller 

 
 
2.6 Tolerance Analysis 
The main components of our device which must adhere to strict guidelines would be the HRNG module 
and the power supply. We suspect that our power supply must supply the desired voltages within 5% 
bounds. What this means is that our power supply of 18V to the HRNG module must be within 
17.1V-18.9V in order to guarantee that our module gets powered correctly. The HRNG module must also 
output AES-128 keys that are judged to be statistically random. In order to assure this we will be using 
the Dieharder test suite which was designed by a professor at Duke based upon George Marsaglia’s 
Diehard Tests from 1995 [8]. This will take in a stream of bits or a file of bits (from our RNG) and give 
us a quality value to say whether or not we are creating “statistically random” bits. 
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3 Cost and Schedule 
3.1 Cost Analysis 
When determining the cost for development we assume an average salary of $80,000 per person of our 3 
member team. We also assume 10 hours of work per week and a 16 week timeframe for completing the 
project. Using this we calculated the development cost for labor as follows.  
 

 people 6 weeks 0 hours .5 46, 53.85year 
$80000 × 1 year

52 weeks × 1 week
40 hours × 3 × 1 × 1 × 2 = $ 1 (1) 

The table below details the estimated cost for parts: 
 

Part Name Manufacturer Part # Quantity Cost/part 

Microcontroller STMicroelectronics STM32F730R8T6 1 $4.96 

NAND Flash Winbond W29N029VSIAA 1 $3.82 

USB Connector CUI Devices  UJ2-MIBH-4-SMT-TR 1 $0.87 

Buttons Omron Electronics B3FS-1000P 4 $0.65 

Assorted 
Resistors, 
Capacitors, ICs, 
etc. 

Digikey N/A 1 ~$10.00 

PCB PCBway N/A 1 ~$5.00 

Plastic Housing N/A N/A 1 ~$10.00 

Lithium Battery Panasonic CR2032 1 $0.99 

Total Cost - - - $35.30 

 
Assuming that we will be making three prototypes for testing and demoing, the cost for parts will amount 
to $106.89. Adding this to the cost of labor gives us a total cost of $46,260.74.  
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3.2 Schedule 
 

Week Frankie Calvin Nick 

3/2/2020 Research programming 
microcontroller and 
begin programming 
CBC AES. 

Finalize parts list and 
verify HRNG design / 
statistical randomness 
test. 

Complete tamper 
evidence module design 

3/9/2020 Program CBC AES and 
key storage software 

Begin PCB KiCAD 
design and research bit 
state implementation. 

Order parts and begin 
creating the nichrome 
wire mesh resistor 

3/23/2020 Design PCB with parts 
being used 

Assemble breadboard 
circuit / test. 

Test the nichrome wire 
mesh resistor and 
change resistor 
component values if 
necessary 

3/30/2020 Assemble circuit and 
begin testing of 
software on 
microcontroller 

Assemble circuit on 
PCB / verify voltage 
regulation. 

Assemble circuit on 
PCB and modify the 
resistance in the button 
detection circuit for the 
tamper evidence 
module if needed 

4/6/2020 Refine software and 
add in USB software 
capabilities 

Test and refine PCB. Refine all resistors and 
capacitors on PCB to 
achieve correct 
tolerances if necessary  

4/13/2020 Assemble prototype 
and test each piece 
together 

Assemble prototype / 
verify integration of 
modules. 

Assemble prototype 
and complete final 
testing of design 

4/20/2020 Mock demo and refine 
prototype 

Mock demo and refine 
prototype 

Mock demo and refine 
prototype 

4/27/2020 Demo and begin final 
paper 

Demo and begin final 
paper 

Demo and begin final 
paper 

5/4/2020 Final presentation Final presentation Final presentation 
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4 Ethics and Safety 
While designing our product we have to keep in mind the ethics involved in producing a HSM with 
stringent security requirements. It would be highly unethical to advertise a product that is supposed to 
fulfill FIPS 140-2 level 3 requirements, but then fails in some aspect (perhaps some other way of 
tampering with our device). It would also be unethical for us to produce a faulty product; this requires us 
to create and administer strict tests to our device in order to assure to our customers that we have a 
working product. 
 
Working in the senior design lab will require us to follow strict safety measures to prevent any injury. 
Using soldering irons or hot air can put us at risk of burning ourselves.To prevent this from happening 
will follow the correct safety precautions that were explained in our lab safety training and our soldering 
assignment. We will always power these devices off while not in use and use correct soldering techniques 
to prevent any risk of injury. Another hazard would be when we power our device with the lab power 
supplies. We will follow all safety guidelines to prevent risk of electrical shock or electrical shorts.  
 
Another safety measure we will have to take into account is our use of a lithium battery. Lithium batteries 
can fail and cause a fire or explosion that may harm us or others during demoing and testing. This can be 
caused by puncture, overcharge, overheating, short circuit, internal cell failure, and manufacturing 
deficiencies. We will work on preventing this by operating the battery under the rated voltage, current, 
and temperature. We will also be careful not to damage the battery to prevent failure.  
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