

Guitar Learning and Feedback Tool

ECE 445 Design Document

Dillon McNulty, Kyle Gibbs, and Oumar Soumare
Group 62

TA: Jonathan Hoff
February 25, 2020

Table of Contents

Introduction 3
1.1 Objective 3
1.2 Background 3
1.3 High-Level Requirements 4

Design 5
2.1 Block Diagram 5
2.2 Physical Design 6
2.3 Subsystem Descriptions 7

2.3.1: User Interface 7
2.3.2: Power Supply 9
2.3.3: Control System 9

2.4 Requirements & Verifications 10
2.4.1 High-Level Requirements 10
2.4.2 User Interface Verification 11
2.4.3 Power Supply Verification 12
2.4.4 Control System Verification 12

2.5 Tolerance Analysis 13

Cost and Schedule 13
3.1 Cost Analysis 13
3.2 Schedule 14

Ethics and Safety 15

References 17

2

Introduction

1.1 Objective

Many people have had the desire to learn how to play the guitar at some point in their lives. For

some, the large amount of time and effort required to even master the basics can serve as a

barrier to entry to the musical world. The guitar is an incredibly popular example of one of

these instruments. While there are some popular pieces of technology already in existence to

help you get started like Yousician [1], Fret Zealot [2], Fender Play [3], and Jamstik [4], there are

several issues with these systems that we believe can be fixed.

Our project looks to address that problem. By synthesizing sheet music into a

measure-by-measure breakdown, the user will be able to practice individual measures or

sections at a time and receive instant feedback on their performance. This system will greatly

accelerate the learning process, as users can receive detailed information on where they are

playing well and where they are struggling to perform. By repeatedly practicing difficult

sections, they will build the muscle memory and comfort needed to play a guitar well.

1.2 Background

While systems like Yousician [1], Fret Zealot [2], Fender Play [3], and Jamstik [4] have proven to

be successful with some people, we believe these products have some faults and would not be

as beneficial to the learning process as our proposed system. Fret Zealot [3] is only available on

your phone and has the lights atop the fretboard itself, underneath the strings. When the LEDs

are situated this way, the user has to crane their neck over the guitar to see where to put their

fingers. By placing the LEDs on the side of the fretboard where they are easily visible (see ​Figure

1​ below), they will learn to play the correct strings by learning to feel where individual strings

are in accordance with the lights rather than just placing their fingers wherever it lights up. In

Yousician [1] and Fender Play’s [3] case, they require a connection to a PC, Tablet, or

Smartphone app (including a paid subscription) and record the user’s input via a microphone to

determine accuracy. Additionally, most information that could be found for Fender Play [3] was

locked behind a paywall until a subscription is activated. This is a problem because not only are

they expensive applications, but are not as accurate as having a hardlined connection to a

computer. By developing a more reliable system with a one-time purchase, we find this to be

superior to what Yousician and Fender play can offer.

3

While Jamstik [4] offers more of a full-package, it is $180 out of the box and is a proprietary

section of a guitar with only 7 frets to play on - not an actual guitar whatsoever. Just from the

video it looks very uncomfortable as there is nowhere to rest your elbow and cannot be nearly

as comfortable as an electric guitar like the method we’ve designed uses. In addition, a broken

string on a Jamstik would require a professional replacement due to the unique design.

The other issue with current systems that arise with both of these platforms is the lack of

sectional playback. In all of the systems I described, each song can only be played in its entirety

when the user wishes to practice. By having a simple LCD user interface displaying the current

measure of the song, the user can focus on the experience of playing the guitar itself rather

than trying to react to notes flying across their small phone screen. By allowing variation of

tempo and measure length sequences, the user can immediately progress to more difficult

versions of the song that they are playing. An approach similar to the game ‘Simon’ [5] where

the lights display the sequences and the user plays them back would be best, as they are

developing the habit of playing sequences of notes instead of reacting to lights coming up as

quickly as possible.

1.3 High-Level Requirements

I. System is able to detect correct notes played by the user with >90% accuracy and able

to compile detection into a feedback metric detailing correct/incorrect notes for each

measure and the entire song.

II. Must be able to fetch song data and convert to an LED sequence with <30sec delay to

allow the user to play the song.

III. System must allow the user to incrementally increase the difficulty by changing the

tempo of the notes to be played (from 40 - 160BPM), and the amount of measures to

play in a given sequence.

4

Design

2.1 Block Diagram

Figure 1: Block diagram for guitar learning and feedback tool. Shows how components will

interact with each other and the types of connections between them.

5

2.2 Physical Design

Figure 2: Design explaining the physical appearance of the tool. The 12 LEDs on the side of the

fretboard will emit one of six different colors, to indicate the string to be played for that fret.

6

2.3 Subsystem Descriptions

2.3.1: User Interface

I. The user interface provides the user the ability to select a song, receive instructions on

how to play it through color coded LED’s, and receive feedback on how well the user

played the song.

II. Parts Needed:

A. Knob & Buttons: The knob (​KY-040 Incremental Encoder​) [6] and buttons

(​Tactile Button System​) [7] will allow the user to select from a list of songs and

the skill level/tempo the user would like to play on. It also provides a method to

pause, rewind, or fast-forward a song.

B. LEDs: An LED (​WS2812 RGB​) [8] will be placed along each fret and will be color

coded to show which string should be played on that fret.

C. LCD Screen: The LCD screen (​20x4 Character LCD​) [9] will provide the user with a

visual queue of the currently selected song, skill level and measure.

D. Feedback GUI: The Feedback GUI will be a Python application displayed on the

user’s computer that allows them to receive feedback on how well the user

played during each measure. This feedback will be provided as a percentage of

how the user’s measure compares to the original measure.

III. Finite State Machine:

Figure 3: Our user interface will change based on the knob and button inputs.

7

IV. State Descriptions:

A. PAUSED​: Nothing is happening. The LCD displays a menu of ‘Select Song’,

‘Playback Settings’, or ‘Resume Playback’ (if a song has been picked)

B. SONG LIST​: The LCD screen displays the list of available songs which can be

scrolled through and selected for playback.

C. SETTINGS​: Once a song has been selected, the screen displays the tempo and

measure length. The user can either choose to immediately begin playing, or to

adjust each setting. This state can also be reached at any time from selecting

‘Settings’ in the PAUSED state during playback.

D. TEMPO​: The LCD displays the current tempo being played. The user can turn the

knob to adjust the tempo up or down (between 40 and 160). The user then

needs to press the confirm button for the changes to take effect.

E. LENGTH​: This is the same situation as TEMPO, except for adjusting measure

sequence length rather than tempo.

F. PLAYBACK​: The LEDs are now lighting up according to the song being played. The

LCD displays the song name, current measure, and current tempo.

G. COMPARE​: After the microcontroller completes playback, it lights up the same

sequence again to allow the user to play along. It records the notes played by the

user and compares them. After displaying the completion percentage to the

user, they can choose to either retry with the same settings, continue the

current song, or go back to the settings. (If the song is complete, a performance

metric will be generated and the user will immediately be sent back to the

settings to increase difficulty and continue).

V. Proposed Schematic

Figure 4: Proposed hardware schematic for the user interface

8

2.3.2: Power Supply

I. The power supply provides power to the LCD screen and microcontroller. This supply
incorporates a battery pack [10] with voltage regulators for the different component
requirements.

II. Parts Needed:
A. Battery Pack: A rechargeable 5V,2A battery pack that will be responsible for

powering the LCD screen and Raspberry Pi. The pack will be placed on the
backside of the guitar out of the way of the user.

B. Voltage Regulator: Might be needed to regulate the output of the battery pack
to the specified 5V needed for the raspberry Pi. Battery pack states it has one
internally already.

2.3.3: Control System

I. The control system will serve as the central point for all communication and data

transfer between components. It will convert image files to MIDI format, then MIDI to a

comprehensible format for the microcontroller to light LEDs. It will tell the

microcontroller when to begin playback, when to stop, and how correct the user’s notes

were for the duration of the playback. It is the central hub of the entire system, as it

builds the handshake between our different components so that they can communicate

with each other in a meaningful way.

II. Parts Needed:

A. Microcontroller: After a lot of research concerning different options for

microcontrollers, we’ve decided to go with the Raspberry Pi Zero [11]. Between

it’s popularity, Python compatibility, and community support, it will make the

perfect microcontroller as we will be detecting the guitar’s input with a PyAudio

library [12]. It is the cheaper version of the Raspberry Pi 3, which will be

sufficient in power and size to mount to our PCB. This will allow us to create a

synchronized ‘brain’ between the microcontroller and processor to accurately

assess the performance of the user. These inputs will then be translated to

output as instructions on the LED’s, Feedback on the GUI, and

song/measure/tempo status on the LCD screen.

B. Processor: The processor will receive input from the guitar while the user is

playing [12], and convert this input into MIDI format to compare with the

original song.

C. PNG to MIDI: This will be done with the ‘SheetVision’ repository that was found

on Github [6]. As an immediate concern was the feasibility of this step, it was

necessary to use an outside library to make this portion simpler.

D. MIDI to LED: By studying the MIDI data format [7], we can write an algorithm in

Python to match certain pieces of data to their respective notes and lengths.

9

Once this is done, we can create a mapping of these notes to their positions on

the fretboard and determine which LEDs need to be ignited. The key signature of

the original music piece will determine where the user starts to play on the

guitar, as one note can be played in multiple places.

E. .25” to 3.5mm Adapter: This will serve as the connection from the guitar to the

computer to determine which note is being played by the user [15].

F. Performance Analysis: After receiving the input from the microphone using the

PyAudio library [12], further analysis will be required to determine the note that

was played and if it was correct or not. A final GUI will be necessary to convey all

of this information to the user so that they can assess their performance with a

deeper understanding.

III. Overview Flowchart

Figure 5: A high-level overview of how the control system will operate as a flowchart.

The areas highlighted by the red rectangles are all software components built in Python.

2.4 Requirements & Verifications

2.4.1 High-Level Requirements

Table 1: Verification process needed to ensure proper function of whole project

Requirement Verification

1. System must provide real time and

easily interpreted instructions for

At all tempos a song will be “played” using
the LEDs while one of us will record the fret
and string of each note displayed. This will

10

playing a song through 12 visual LEDs

along the top side of the 12 lowest

frets and 6 colors per LED

corresponding to each string on the

guitar. These LEDs must match >95%

of the actual song sheet used.

then be compared with the actual song to get
an accuracy percentage.

2. System is able to detect correct notes

played by the user with >90%

accuracy and able to compile

detection into a feedback metric

detailing correct/incorrect notes for

each measure and the entire song.

To verify if notes are being detected
correctly, individual notes will be played and
the note that it is classified as will be
compared to the actual note played.

3. System must allow the user to
incrementally increase the difficulty
by changing the tempo of the notes to
be played, and the amount of
measures to play in a given sequence.

While a song is playing, the user can press
one of the buttons to pause the song, change
the tempo or current measure sequence
length for playback with the knobs, and
resume playing.

2.4.2 User Interface Verification

Table 2: Verification process to ensure the user interface block is functioning as intended

Requirement Verification

1. Must be able to pause a song at any

time with one of the buttons.

When the pause button is pressed, the LCD
screen changes from displaying the current
song’s information to the menu screen.

2. Tempo of playback can be adjusted Using the buttons and knobs, the user can
either increase or decrease the tempo of
playback to adjust difficulty.

3. Length of measure sequence can be

adjusted

Using the buttons and knobs, the user can
increase or decrease the amount of measures
to be played at a time to adjust difficulty.

4. User can choose from a list of songs While in the paused state, the user can see all
song choices on the LCD Screen as the user
scrolls. In addition, the song selected
matches the song played once the user

11

begins playing.

2.4.3 Power Supply Verification

Table 3: Verification process to ensure the power supply block is functioning as intended

Requirement Verification

1. Battery pack must be able to supply

2A +/- 0.05A at 5V +/- 0.25V to the

Raspberry Pi.

Connect the battery pack to a breadboard.
Measure output voltage using a voltmeter
and output current using an ammeter to
verify the required outputs.

2. Battery pack must be able to support

the system at full capacity for >2

hours without recharging.

Run the full system for 2 continuous hours
starting with a fully charged battery pack to
see if it still functions after the minimum time
has elapsed.

2.4.4 Control System Verification

Table 4: Verification process to ensure the control system block is functioning as intended.

Requirement Verification

1. Must be able to fetch song data and

convert to an LED sequence with

< 30sec delay to allow the user to play

the song.

Send output signal when song data is being
fetched and use an oscilloscope to measure
the time it takes for the processing to finish.

2. Ability to convert a sheet music image

file of singular notes into a MIDI file

with 95% accuracy.

Write a script to convert the MIDI file to their
actual note names, and check it against the
sheet music.

3. MIDI file can be converted to LED

array with 100% accuracy.

We can compare the output of the script
from the previous verification to the lights
emitting from the fretboard to determine
accuracy.

4. A note being played on the guitar can

be detected by the processor with

>90% accuracy to determine if the

user played the correct note.

Strum one note at a time on the guitar, look
at the output of the processor’s detected
note, and compare with the played note.

12

2.5 Tolerance Analysis

The differences in frequencies from adjacent notes on a string can be very large or very small,

depending on what octave we are playing. For the 12 frets we will be using, there is a minimum

difference of 4.9Hz (E string fret 1 → E string fret 2) to 34.92Hz (e string fret 11 → e string fret

12). Because of this, we will need a ​maximum error of 2Hz in either direction​ to be able to

determine the correct note being played by the guitar. For a minimum frequency of 82.41Hz,

this means we can have a valid range if the note detected is from 80.41Hz - 84.41Hz, or a

maximum error of:

 = 2.43% error 10082.41
|84.41 − 82.41|

*

from the processor in order to be confident that our processor is getting the right note from the

guitar.

Cost and Schedule

3.1 Cost Analysis

Our costs of labor are estimated to be $40/hour, 15 hours/week for three people, over the next

nine weeks. This would make our total costs of labor to be:

= $16,200 in labor$40
1 hour * 1 week

15 hours * 9 weeks
1 person *

3 people
1 prototype

Table 5: Individual parts and their costs for the prototype of the design.

Part Cost (prototype)

Raspberry Pi Zero W $10

Tactile Buttons- 4 $1

Adafruit NeoPixel Digital RGB LED Strip - Black 30
LED [ADA1460]

$10.98

KY-040 Rotary Decoder Encoder $1.64

20x4 Parallel Character LCD $14.88

PCB RONSHIN Memory Card Micro SD Card Class
6 Flash Card Memory Microsd TF/SD Cards for
Tablet 128mb C6

$5.13

13

PCB

$ 5

Battery Pack $12.99

Total

$61.62

Combining the product and labor costs, the total cost for one prototype of our design is

estimated to be $16,261.62.

3.2 Schedule

Table 6: Proposed week-by-week schedule and designated tasks for the rest of the semester.

Week Oumar Dillon Kyle

3/2/20 Convert sheet music to
MIDI; Store MIDI files on
the MicroSD Card

Begin developing finite
state machine for
user-interface, research
SDCard file retrieval on
Raspberry Pi

Order all hardware
parts to begin
prototyping and testing
with breadboard

3/9/20 Start Developing MIDI to
LED Algorithm

Continue developing FSM
using console as the LCD
screen, and keyboard keys
to imitate knob/button
input

Continue testing with
breadboard and create
initial PCB design to get
early bird extra credit

3/16/20 Continue developing
Algorithm

Ensure complete
functionality of FSM prior
to loading to Raspberry Pi

Finish prototyping
power supply and
hardware

3/23/20 Ensure MIDI can be
converted to an accurate
LED sequence and in <30
sec. Begin working on a
timing system for tempo
adjustment

Build Python script to
record microphone input
and connect guitar for the
first time to observe
signals

Help Dillon with
hardware connection
from guitar to
computer. Help Oumar
with LED hardware

3/30/20 Continue working on the
timing system

Debug and continue
working on note detection
until we reach the desired
tolerance of < 2% error.

Solder PCB and test 1st
PCB. Get 2nd PCB
design ordered if
needed

14

4/6/20 Integrate Dillon’s user
interface and note
detection with LED
Algorithm and timing
system

Work with Oumar to
integrate note detection
with proper timing.

Solder 2nd PCB and
begin testing and
integrate with the
whole system

4/13/20 Begin working on
Performance Metric
Output

Debug note detection
until we are confidently
receiving one specific note
per ‘tick’ from the guitar

Continue testing 2nd
PCB and debug any
issues

4/20/20
(Mock
Demo)

Continue working on
Performance Metric Output
with Dillon

Help finish Performance
Metric Output with Oumar

Continue testing and
debugging at critical
stress points on the
design

4/27/20
(Demo)

Debug as needed;
Begin working on
Presentation and Final
Paper

Debug performance metric
and add features as
desired until demo

Finish Debugging and
assist other team
members in finishing
the project.

5/4/20
(Present
ation)

Turn in all assignments Turn in all assignments Turn in all assignments

Ethics and Safety

A safety risk that involves our project concerns the power and hardware of it. Since we are

using a mobile battery pack to power the systems aboard the guitar, we must watch out for

potential overheating. If the battery pack’s heat becomes an issue, we must look into creating a

safe comfortable harness to protect the user. Another safety concern is the risk of electrical

shock. There will be interaction between the user’s hand and the fret where all the LEDs are

located. Any exposed or loose wiring between the LED’s and control system could lead to

electrical shock. This would be a violation of IEEE Code of Ethics #1 and #9 by putting the safety

of the user at risk and potentially injuring them [15]. Therefore, we must ensure that the

battery and wiring on the system is as secure as possible to mitigate these risks and stay in

compliance.

During this project, we plan to convert music sheets into MIDI files that will be stored on the

device. This leads to the risk of copyright infringement on music, which is in violation of IEEE

Code of Ethics, #7: “to credit properly the contributions of others” [15]. In order to be in

compliance with copyright laws, we will need to ensure that we obtain copyrighted music by

15

legal means, or use music that is considered public domain or no longer copyrighted. If this

device is later used for commercial use, we will need to conduct further research on the rules

for using copyrighted music in this domain.

Another ethical concern that our project faces is ensuring that the device does what was

promised to the user. Our device plans to teach the user to play the guitar through LED

instructions and feedback. We must ensure that the instructions and feedback adhere to the

levels of accuracy stated in our requirements. Providing inaccurate data to the user would be a

violation of IEEE Code of Ethics, #3: “to be honest and realistic in stating claims or estimates

based on available data” [15]. Therefore, we plan to avoid this through constant testing,

debugging, and verification of our device.

16

References

[1] “How to Play Guitar: Learn Guitar,” ​Yousician​. [Online]. Available:

https://yousician.com/guitar. [Accessed: 20-Feb-2020].

[2] “Digital Trends,” ​Fret Zealot​. [Online]. Available: https://www.fretzealot.com/. [Accessed:

20-Feb-2020].

[3] “Fender Play Online Guitar Lessons - Learn How to Play Guitar,” ​Fender Guitars​. [Online].

Available: https://www.fender.com/play. [Accessed: 20-Feb-2020].

[4] “Practice the Guitar & Make Music On-the-Go with This Travel-Sized MIDI Smart Guitar,”

Popular Science Shop​. [Online]. Available:

https://shop.popsci.com/sales/jamstik-7-guitar-trainer-righty?gclid=CjwKCAiA7t3yBRAD

EiwA4GFlI0suONrrWyqCbnK5V8NuvRlZq7ZBXpbM95LC569UtI4aCdAjkfOUJxoCMloQAvD

_BwE. [Accessed: 20-Feb-2020].

[5] “Simon (game),” ​Wikipedia​, 11-Jan-2020. [Online]. Available:

https://en.wikipedia.org/wiki/Simon_(game). [Accessed: 20-Feb-2020].

[6] Banggood.com, “KY-040 Rotary Decoder Encoder Module AVR PIC Geekcreit for Arduino -

products that work with official Arduino boards Module Board from Electronics on

banggood.com,” ​www.banggood.com​. [Online]. Available:

https://usa.banggood.com/KY-040-Rotary-Decoder-Encoder-Module-AVR-PIC-p-914010.

html?gmcCountry=US¤cy&createTmp=1&utm_source=googleshopping&utm_medium=c

pc_bgs&utm_content=frank&utm_campaign=ssc-usg-100-all-0821&ad_id=3788253334

88&gclid=CjwKCAiA7t3yBRADEiwA4GFlI8B8PyZgKTuLvCr8m1viQiWEZ32fq3CdkW-Tth3k

bziiV6e7_E3xbxoCkB4QAvD_BwE&cur_warehouse=CN. [Accessed: 25-Feb-2020].

[7] “Tactile Button Assortment,” ​COM​. [Online]. Available:

https://www.sparkfun.com/products/10302. [Accessed: 28-Feb-2020].

[8] “WS2812 and WS2812B RGB LED Module,” ​WS2812 and WS2812B RGB LED Module -

Parallax Inc. - Addressable, Specialty | Online Catalog | DigiKey Electronics​. [Online].

Available:

https://www.digikey.com/catalog/en/partgroup/ws2812-and-ws2812b-rgb-led-module/

50496?utm_adgroup=Optoelectronics&utm_source=google&utm_medium=cpc&utm_c

ampaign=Dynamic

Search&utm_term=&utm_content=Optoelectronics&gclid=CjwKCAiA7t3yBRADEiwA4GFl

I9e9u_fSgbWoxGttxqLqWl7mTOey-cZosiAYHI3JlVw6xn5dp6Ur7RoCWMoQAvD_BwE.

[Accessed: 28-Feb-2020].

17

[9] “Smallest LCD Displays,” ​Crystalfontz.com​. [Online]. Available:

https://www.crystalfontz.com/product/cfah2004atmijt-display-module-20x4-character.

[Accessed: 28-Feb-2020].

[10] “Portable Charger, Mr.Batt 10000mAh Power Bank with Dual USB Output Ports,

Ultra-Compact Fast Recharge USB C External Battery Pack for iPhone, Samsung Galaxy,

Huawei and More,” [Online]. Available: ​https://www.amazon.com/Portable-Mr-Batt

-10000mAh-Ultra-Compact-Recharge/. [Accessed: 27-Feb-2020]

[11] “Buy a Raspberry Pi Zero W – Raspberry Pi,” ​Buy a Raspberry Pi Zero W – Raspberry Pi​.
[Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-zero-w/.

[Accessed: 28-Feb-2020].

[12] V. P. V. Pira, “Reading input sound signal using Python,” ​Stack Overflow​. [Online]. Available:

https://stackoverflow.com/questions/35344649/reading-input-sound-signal-using-pyth

on. [Accessed: 28-Feb-2020].

[13] Cal-Pratt, “cal-pratt/SheetVision,” ​GitHub​, 11-Mar-2018. [Online]. Available:

https://github.com/cal-pratt/SheetVision. [Accessed: 20-Feb-2020].

[14] “Standard MIDI-File Format Spec. 1.1, updated,” ​Standard MIDI file format, updated​.
[Online]. Available:

http://www.music.mcgill.ca/~ich/classes/mumt306/StandardMIDIfileformat.html.

[Accessed: 22-Feb-2020].

[15] “IEEE Code of Ethics,” ​IEEE​. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed:

26-Feb-2020].

18

https://www.amazon.com/Portable-Mr-Batt

