
Button Remapping for GameCube Games such as Super Smash
Bros Melee

ECE445 Design Document
Team 14 - Michael Qian, Srikanth Yaganti, Yeda Wu

ECE 445 Design Document - Spring 2020
TA: Evan Widloski

1 Introduction

1.1 Problem and Solution Overview
In fighting games, it is usually beneficial to remap certain buttons to perform different actions for
ease of doing combos. For example, a player might want to remap the X button on their
controller from "jump" to "attack". This is present in the game settings of many popular fighting
games except for Super Smash Bros Melee for the Nintendo GameCube.

Our goal is to create an adapter that sits between the GameCube and GameCube controller.
The controller will plug into the adapter which plugs into the GameCube. Users will have a
phone app where they can choose how to remap their buttons. Users can then load the adapter
with multiple button reconfigurations and toggle through these configurations on the adapter.
This adapter will then take in the signals of the button presses of the controller and translate
them to signal button presses based on the button remapping. This hardware will also allow for
button remapping for any other GameCube games.

1.2 Visual Aid

1.3 High-level requirements list

● Phone app is able to communicate with microcontroller via bluetooth to send the
button-remapping schemes

● Microcontroller is able to read the controller inputs
● Microcontroller is able to send the remapped button inputs to the console

2 Design

2.1 Block Diagram

2.1.1 Phone App

A phone app is required to allow users to easily set button remapping configurations for
their controller. This app will connect to the microcontroller via bluetooth module HC-05.
App should be able to store multiple preset configurations and users should be able
choose which to use. We are considering sending the data as a string that will be
received and parsed by the microcontroller which will store the configurations in a struct.

2.1.2 Button Remapping Module

2.1.2.1 Microcontroller

The microcontroller is required to communicate with 3 external devices. First it
should be able to communicate with the phone app via bluetooth, then it is required
to write and read data from GameCube Console, and finally it will be required to
read and write data from/to GameCube console. This requires our microcontroller to
have one RX and TX ports for reading and writing data from bluetooth device and at
least 2 I/O pins for reading and writing to console and controller via bitbanging using
a custom software serial library for communication via GameCube protocols. We
have determined that the ATmega328 microcontroller matches all these criteria and

is therefore a good choice for our project. In addition the microcontroller is supposed
to mimic the polling that GameCube Console does for the controller. To meet the
high-level requirements, the microcontroller should be able to successfully act as a
middle man for the communication between controller and console and remap the
button data as they communicate. Microcontroller will be required to store
configurations so that users can easily change between configs within the
remapping module itself. We are considering storing this data in the microcontroller
EEPROM of size 1 KB.

2.1.2.2 Bluetooth Module

Required for communication with the phone app. It will contain a bluetooth receiver
for receiving configurations for button remappings from the phone. We have opted
to use the HC-05 Bluetooth module because of its simplicity and compatibility with
the STM32F103.

2.1.2.3 Toggle Button

Since we wish to be able to store and switch between multiple button remapping
configurations, a button is needed to cycle through the number of configurations
stored within the microcontroller (4 or 8 configurations).

2.1.2.4 7-Segment Display

This will display the current button remapping configuration being implemented by
the microcontroller. It is simply a set of LEDs driven by the microcontrollers digital
output pins. All remapping configurations will have a number associated with it, and
this display will show the current configuration being used.

2.1.2.5 Reset Button

This button will reset the current configuration and the microcontroller will then
simply pass the data from the GameCube controller on to the console without any
button remapping.

2.1.2.6 5V Power Supply

This will power both the microcontroller and the bluetooth module. It will need to
supply 0.3mA and between 1.8V to 5.5V to the microcontroller. It will need to supply
30mA and between 4 to 6V to the bluetooth module.

2.1.2.7 Level Shifter

This is used to convert the microcontroller’s signals from 5V to 3.43V, which is the
voltage level used by the GameCube controller and console for digital data.

2.1.3 GameCube Controller

GameCube Controller will communicate with the Microcontroller to send button data.
This data will be remapped by the microcontroller and sent to the GameCube console.

2.1.4 GameCube Console:

GameCube Console will receive the proper button mappings from the microcontroller. It
will also provide power to all other modules.

2.2 SubSystems

2.2.1 Config Creation Subsystem (Phone App, Bluetooth, Microcontroller)

The purpose of this subsystem is to allow the user to create button configurations and have
them stored on the microcontroller. The bluetooth module will allow communication of the user
configurations between the phone app and the microcontroller. User configurations will be
stored in structs in the microcontroller’s EEPROM. There is 1 KB of EEPROM on the
ATmega328p, so it is more than enough memory to store configurations. We expect to use 11
bytes of data to store the button configurations (1 byte per remapped button), and we also plan
to only allow users to make 10 different configurations. This means we will be only using 110
bytes of EEPROM. To pass configs between the microcontroller, we will be passing them as
strings. Each config will be converted to a 11 char length string. The index of a character in the
string is the default button value and the value of the character is the remapped button value.

Configs will be stored on the microcontroller in a struct similar to what is below:

#define A 0

#define B 1

…

#define D_RIGHT 10

struct Config {

uint8_t a;

uint8_t b;

uint8_t l;

uint8_t r;

uint8_t x;

uint8_t y;

uint8_t z;

uint8_t d_up;

uint8_t d_down;

uint8_t d_left;

uint8_t d_right;

} config;

Requirements Verification

1) Microcontroller receives configs from the
phone app

1) User presses a button on the phone app to
transfer configurations via bluetooth to the
microcontroller.

2.2.2 Config Selection Subsystem (Reset button, Toggle Button, 7-segment display,
Microcontoller)

Users will click the reset button to clear the configurations. The toggle button will be used to
switch between a maximum of 10 different configurations, and the 7-segment display is for
showing which configuration is being used. All configurations are stored in EEPROM. When the
toggle button is pressed, the new corresponding configuration will be copied from EEPROM to
SRAM to allow for faster accesses and remapping.

Requirements Verification

1) Resetting configurations is functional; set
button configuration to default settings

2) Toggling configurations is functional;
switching between the stored configurations
on the microcontroller

1) Store a configuration on the
microcontroller. When the user clicks the
reset button, controller inputs are now back to
the default mapping.

2) Store 2 configurations on the
microcontroller. When the user clicks on the
toggle button, controller inputs are switched
from one configuration to the next.

2.2.3 Controller Interface Subsystem (GameCube Controller, Microcontroller, Level Shifter)

The microcontroller’s purpose here is to send polling requests to the GameCube controller and
read responses from the GameCube controller. In order to do this, we must follow the
GameCube protocol for bit representation and polling the controller button values. Because this
is not UART, we are unable to use the TX and RX pins on the microcontroller. To interpret and
send these digital signals, we will be bit banging with a digital pin on the microcontroller.

2.2.3.1 Bit representation

Zero and one bits are represented in GameCube’s unique protocol. A zero bit is low
for 3µs and then high for 1µs. A one bit is low for 1µs and then high for 3µs.

Figure 1. Zero and one bits for GameCube[4]

2.2.3.2 Polling

The GameCube console polls the controller for inputs with a 24-bit command
sequence (0100 0000 0000 0011 0000 0010). The console replies with a 8 byte
sequence.

Data format sent by the controller:

● Byte 0 - 0, 0, 0, Start, Y, X, B, A
● Byte 1 - 1, L, R, Z, D-up, D-down, D-right, D-left
● Byte 2 - Joystick X Value (8bit)
● Byte 3 - Joystick Y Value (8bit)
● Byte 4 - C-Stick X Value (8bit)
● Byte 5 - C-Stick Y Value (8bit)
● Byte 6 - Left Button Value (8bit)
● Byte 7 - Right Button Value (8bit)

Requirements Verification

1) Microcontroller should successfully pass the
polling data to GameCube Controller

2) Microcontroller should successfully receive
data from GameCube controller and
successfully remap the button inputs to the
configurations set by the user

3) Microcontroller should mimic GameCube
controller data transfer of 4µs per bit. About
250kbits/second. It should be able to read the
data from the controller at a rate of 250kbits/sec.
Baud Rate of 115200 for GameCube controller

1) Connect GameCube Controller’s data
pin to I/O pin on microcontroller and run
program which do bitbanging to send
polling data and to receive responses from
GameCube controller. Test to see if we
receive 64-bit data of button inputs from
the controller.

2) Send the 24-bit command sequence
(0100 0000 0000 0011 0000 0010) to the
controller from the microcontroller and
verify the pad will respond with 64-bit data
via bit banging. Going to be using a
custom bit banging software API for
GameCube protocol.

3) Verify that microcontroller correctly
parses and remaps 64-bits of data based
on the config sent by phone app.

4) Verify that microcontroller can read data
from GameCube controller at a rate of
250Kbits/sec by connecting it to the

oscilloscope and measuring that each bit
takes about 4µs to send.

2.2.4 Console Interface Subsystem (GameCube Console, Microcontroller, Level Shifter)

The microcontroller’s purpose here is to detect polling command sequences from the
GameCube console, and send the remapped button inputs of the GameCube controller to the
console. In order to do this, we will be bit banging using a digital pin on the microcontroller.

Requirements Verification

1) Mirocontroller should successfully pass
64-bit remapped data from the GameCube
controller to the GameCube Console via
bitbanging of GameCube Protocol API

2) Microcontroller should successfully mimic
controller responses to polling by the
GameCube Console. Sending data at a rate
of 250Kbits/second. Baud Rate of 115200. 8
bytes of data in the format stated above.

1) Connect GameCube Console data pin to
I/O pin on microcontroller and run program to
send responses to polling requests from the
console via bitbanging. Verify to see if the
console has detected a controller. With an
official controller attached, there is a typical
interval of about 8ms between successive
updates. Check to see if polling updates
requests fall in that time interval. We can do
this by printing time difference between two
consecutive update request and check if its
around 8ms.

2) Verify that microcontroller correctly sends
64-bits of controller data by seeing how the
game responds to different button inputs.
Test via oscilloscope to see if the transfer
rate of data from microcontroller to console is
4µs per bit.

2.3 Software

2.3.1 Polling Algorithm

The GameCube console polls the controller roughly every 8ms. Our goal is to
respond to the controller with remapped button configurations as quickly as possible.
A simple approach would be to poll the controller whenever we receive a poll request
from the console, read the controller response, and send the remapped controller
response to the console. This method may not be fast enough though.

Figure 2. Naive method’s steps for replying remapped values to the console.

Our approach is to instead poll the controller separately from the console’s polling.
The microcontroller will poll the controller for its values in between the console’s poll
requests. We will then remap the controller’s values and have that ready to be sent
to the console before the console requests for the controller values.

Figure 3. Our method’s steps for replying remapped values to the console.

2.3.2 Phone App

There will be 2 screens on the app: a menu screen to display configurations and one
to edit a configuration. The menu screen will display all the configurations that the
user has made. Users will have options to select a configuration, create a new
configuration, or send the configurations to the microcontroller. When the user
selects one of the configurations, a new screen will appear for editing the
configuration. In this screen, they are able to remap their button values. Also, the app
will cap the user to only be able to create 10 different configurations.

Figure 4. Design of menu screen and configuration editing screen of the app

2.4 Tolerance Analysis
The Gamecube console polls for controller values every 8ms. In this time period, the
microcontroller must do the following:

1. Send the polling request to the controller
2. Detect the response from the controller
3. Remap the controller response values
4. Detect the polling request from the console
5. Send the remapped values to the console

Step 1 will take 4 * 24µs = 72µs. Each bit takes 4µs to send, and there are 24 bits in the polling
request[4].
Step 2 will take 4 * 8 * 8µs = 256µs because we must read 8 bytes of data from the GameCube
controller.
Step 4 will take 4 * 24µs = 72µs because we are reading 24 bits from the console.
Step 5 will take 4 * 8 * 8µs = 256µs because we are sending 8 bytes of data to the console.

In total, all steps but step 3 will require 72 + 72 + 256 + 256 = 656µs. This means that we have
7.344ms for the microcontroller to perform the remapping step and any other delays. When
running the microcontroller at 16MHz, we will have 117,504 clock cycles for this, which should
be more than adequate.

Figure 5. Timeline for polling and responses

2.5 Schematic

3. Cost and Schedule

3.1 Cost Analysis
At $50 per hour and 10 hrs per week for 3 people for 16 weeks, we expect this to result in
$24,000 for the labor cost. Below is the cost breakdown for one manufacturing one part:

Part Quantity Cost (prototype) Cost (bulk)

ATmega328
Microcontroller

1 1.90 (Digikey,
ATMEGA328-PU-ND)

1.58 (Digikey,
ATMEGA328-PU-ND)

Gamecube
extension cord

1 5.85 (Amazon, company:
Mizar)

2.75 (Amazon, company:
Pegly)

HC-05 Bluetooth
Module

1 19.14 (Digikey,
1738-1164-ND)

2.58 (DHgate, seller:
Tenypure)

Assorted resistors,
capacitors, buttons,
crystals, sockets

1 3.00 (Digikey, est.) 0.25 (Digikey, est.)

5V Power supply 1 4.69 (Amazon, company:
Yosoo)

2.30 (DHgate, seller: Vizgiz)

Level shifter 1 2.95 (Sparkfun, BOB-12009) 0.54 (Digikey,
296-21929-2-ND)

PCB 1 2.30 (PCBWay) 0.13 (PCBWay)

Total 39.83 10.13

In total, if we wish to create 10 parts, then the overall development cost will be $24,398.30.

3.2 Schedule

Week Michael Srikanth Yeda

2/17 Create phone app to allow
users to configure data

Work on design doc Work on design doc

2/24 Work on sending data
between phone app and
bluetooth module

Clip GameCube cables
such that we can connect
the GameCube controller to
male and female ends.

Design PCB

3/2 Write code to store
configurations in
EEPROM and read
configurations

Mock console polling signal
to the GameCube controller
via a microcontroller

Mock console polling
signal to the GameCube
controller via a
microcontroller

3/9 Read console polling
signal via a
microcontroller

Mock console polling
signal to the GameCube
controller via a
microcontroller

Mock console polling
signal to the GameCube
controller via a
microcontroller

3/16 Read console polling
signal via a
microcontroller

Read controller response
signals after being sent a
mocked console polling
signal

Read controller response
signals after being sent a
mocked console polling
signal

3/23 Mock controller response
signal after obtaining a
polling request from the
console

Read controller response
signals after being sent a
mocked console polling
signal

Rework PCB

3/30 Mock controller response
signal after obtaining a
polling request from the
console

Read controller response
signals after being sent a
mocked console polling
signal

Solder components onto
PCB

4/6 Combine project
components together on
breadboard and test

Combine project
components together on
breadboard and test

Combine project
components together on
breadboard and test

4/13 Combine project
components on PCB and
test

Combine project
components on PCB and
test

Combine project
components on PCB and
test

4/20 Combine project
components on PCB and
test

Combine project
components on PCB and
test

Combine project
components on PCB and
test

4/27 Prepare presentation Prepare presentation Prepare presentation

5/4 Prepare presentation Prepare presentation Prepare presentation

4 Discussion of Ethics and Safety
From a hardware perspective, the safety concerns are few but not absent. For example, the
GameCube console has a specified signal voltage of 3.43V, whereas the microcontroller and
the rest of the modules all require 5V of power. Accidently miss wiring the power inputs of these
two parts could result in the serious damage of both these parts. Furthermore, many of the parts
used in this project will be susceptible to electrostatic discharge and thus, precautions must be
taken to prevent damaging these parts such as using anti-static gloves and ESD wristbands.

For ethics, we hold responsibility for our project, which is the first rule in the IEEE Code of
Ethics[6]. Additionally, our product could introduce a situation within professional gaming if the
device is used when non-Nintendo/performance-enhancing devices are not allowed. This would
be an unethical use of our device. In addition to this, it may be possible for people to tamper
with our microcontroller such that certain button presses can lead to button macros. These two
situations violates the IEEE Code of Ethics #9 because, if used in such a way, the trust in and
reputation of professional gamers will be harmed[6].

5 Citations
[1] “GameCube,” Wikipedia, 09-Feb-2020. [Online]. Available:

https://en.wikipedia.org/wiki/GameCube. [Accessed: 09-Feb-2020].
[2] “SMASH BOX,” Hit Box Arcade. [Online]. Available:

https://www.hitboxarcade.com/products/smash-box. [Accessed: 07-Feb-2020].
[3] “B0XX Controller,” B0XX. [Online]. Available: https://b0xx.com/. [Accessed: 07-Feb-2020].
[4] “Nintendo Gamecube Controller Protocol,” Nintendo Gamecube Controller Pinout. [Online].

Available: http://www.int03.co.uk/crema/hardware/gamecube/gc-control.html. [Accessed:
14-Feb-2020].

[5] “8-bit Atmel Microcontroller with 16/32/64KB In-System Programmable Flash” ATMEL.
[Online]. Available:
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-at
mega640-1280-1281-2560-2561_datasheet.pdf. [Accessed: 13-Feb-2020].

[6] “IEEE Code of Ethics,” IEEE. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 13-Feb-2020].

