
Design Document Check
1. Introduction

1.1. Contributors: Daniel Chen, Fangqi Han, Christian Held
1.2. Problem and Solution Overview:

A modern job-oriented citizen needs to have technology that lets them get
their goals accomplished in a timely manner. In their office they have the
space and comfort to use effectively a full size keyboard with all the
amenities that allows them to work at maximum efficiency. Whilst
traveling, they do not have such luxury. Additionally, left handed typers
can find the numpad on keyboards to be awkward to use. The usual
solution is to either buy additional, smaller keyboards for travels or to
attach keyboard extensions through USB (Universal Serial Bus) at home.
That means one will need either multiple keyboards or an undersized one.
Furthermore, users of touchscreen devices may find the lack of numpad
inconvenient while using a smaller keyboard.

Our solution to this problem is to make a keyboard with
detachable modules that will allow users to conform to their working
environment while still providing them with maximum utility. Users can
simply add or remove modules to the keyboard by plugging or unplugging
their TRRS(Tip/Ring/Ring/Sleeve) connectors. The keyboard will have
adaptable firmware that allows the user to still have the keypresses
available even when in a condensed mode.

1.3. Visual Aid

Figure 1. Visual Aid

1.4. High-level requirements list:

1.4.i. The Main Keyboard is functional with at least 61 usable keys.

1.4.ii. Auxiliary Modules are functional and able to plug into the main keyboard
with at least 10 usable keys on each module.

1.4.iii. Firmware is workable and partially customizable with at least 20
changeable keys.

2. Design

2.1. Block Diagram:

Figure 2. Block Diagram
An external USB powers the main microcontroller that is the operational key
piece. With just the base keyboard connected solely the keyboard can still
function. The other modules will take power and give data through a wire
connector. When connected the microcontroller will recognize their data through
an I/O extender from the respective module. The firmware on the microcontroller
will be able to process any number of key presses, but the main limitation will be
on the data feed back to the computer.

2.2. Schematic:

Figure 3. Provided Schematic for Teensy 2.0++ 1

1 PJRC

Figure 4. Kicad schematic.

Figure 4 shows the first steps to the keyboard PCB. The main challenge tackled in this
figure is the microcontroller. Luckily, Teensy provides a picture of their schematic and so
the difficulty is just attaching the right amount of keys and TRRS connections (commonly
known as an audio jack; this has four channels in the Tip, two Rings and one Shield).
Only an example of the key layout is shown due to the fact that it would dominate the
whole image. The shown example is fully modular and expandable.
2.3. I/O Expander

2.3.i. These components on the exterior modules are the hub for power and
data transfer on the modules. They receive power from the main 60%
keyboard and use it to allow the HIDs to send data back to the I/O
extender. It interprets the data and returns it back to the central keyboard
via I2C connection.

Requirement Verification

Have a polling speed that can
interpret key presses and send an
I2C signal to the microcontroller
within 10 ms .

Give a unit step signal to both the
I/O expander and oscilloscope.
Verify that the response signal
from the expander is within 10 ms.

2.4. Microcontroller
2.4.i. The microcontroller receives power from the computer and disperses it

through the connected systems. This power is sent through the matrix
that contains all the keyboard switches, as well as to the external
components through the I/O extenders. The HID and I/O extenders will
send back data they receive, which is organized and sent to the computer
as typing inputs. The power and the thinking of the keyboard is performed
by the microcontroller.

Requirements Verification

Have a polling speed that allows a
complete scan of the keyboard in
around 100 ms.
Each key should be able to be
read (assuming the module is
attached).
Be able to run the firmware.

Give a unit step signal to both the
controller and oscilloscope. Verify
that the response signal from the
expander is within 100 ms.
Run the previous test additionally
on all rows and columns in unit
tests.
Give an I2C signal (provided from
I/O expander) and verify it
responds within 100 ms.

2.5. Key Switches (HID)
2.5.i. The human interface devices for our keyboard are mechanical

key-switches which when pressed shorts a connection and completes a
circuit. When these switches are combined into a matrix and hooked up to
a microcontroller, firmware for the microcontroller can match these
completed circuits to which keys were pressed and put letters from our
fingers on to the screen. As the main component that interacts with the
user, this is one of the most important components and provides most of
the usability and with its specific configuration will do much of the
organizing for the microcontroller.

2.6. Connectors
2.6.i. The wiring between the main hub keyboard and the modules will be a

TRRS cable. This is commonly known as a 3.5 mm jack. The TRRS
version has four separate wires associated with it. The Four things
transferred will be five volts, ground, SDA, and SCL (the latter two are
part of the I2C protocol and are the only lines that return from the
modules to the main hub).

2.7. Firmware
2.7.i. The firmware is software coded in the microcontroller that will detect the

attached-ness of modules, scan the keyboard matrix for pressed and
released keys, interpret keys based on preset layouts or user determined
values, and send out corresponding signals through anUSB connection.

The firmware also provides programmability, allowing users to modify
their keyboard layout to produce user-determined characters or potentially
commands. Examples include changing the function layers, having
programmable keys, and other features that would help with user
productivity and customization.

Requirement Verification

1. The combined keypad
matrix should have at least
101 entries, corresponding
to 101 keys of a traditional
keyboard. Keypad matrix
for the default keyboard
without extensions should
cover around 60% of the
keys, while each attached
auxiliary module would
extend the matrix by their
size. The firmware needs
to periodically scan
pressed keys, map their
coordinates to find their
values, and send out
signals accordingly.

2. The firmware also needs to
periodically poll the status
of attached auxiliary
modules and adjust the
scanning range
accordingly.

3. The keypad matrix should
be customizable through
user input, allowing the
user to change
corresponding functions of
programmable keys.

1. Produce input signals
corresponding to each
entry and verify that the
firmware has sent out all
signals correctly and in the
correct order.

2. Produce signals
corresponding to a matrix
entry on an auxiliary
module with and without
sending an input indicating
that the module is
attached. Verify that the
firmware only sends out a
signal when the module is
attached, and that the
signal is correct.

3. Produce a set of signals
that assign different
interrupts to all
programmable keys. Then
send keypress signals for
all programmable keys in
random order. Verify that
the output matches key
customizations and is in
correct order.

2.8. Tolerance Analysis:

2.8.i. According to Wyma et al, the human reaction time is about 210 ms from
stimuli to response. Our goal is to have a keystroke event (between
human interaction to sending the data to the host computer) last about
100 ms. This is so the host computer has enough time to process and

send the event to wherever it needs to go. The datasheets as shown by
Cherry MX indicate that the average debounce time for a keystroke is
about 5 ms. Assuming the longest pathway is from the exterior module
keystroke, the path is as follows: Keystroke, I/O extender, Microcontroller,
USB signal. Assuming we use the initial maximum speed for I2C protocol
of 100kHz (I2C INFO) This means that each 8 bit signal from the I/O
extender will take approximately 8*1/100kHz = or 0.08 ms. The
microcontroller we have preliminarily selected has a clock speed of
16MHz. This is a high enough value that we can assume that the time to
process a signal from the I/O extender is just another round of 0.08 ms of
processing time. USB 2.0 protocol indicates that the maximum speed for
USB is 480Mbits/s; again, this is fast enough that we can add another
0.08 ms. This means that a signal can be gathered in about 5 ms +
3*0.08ms = 5.24ms. This can be made faster by using a higher I2C
protocol.

3. Cost and Schedule

3.1. Cost Analysis: Include a cost analysis of the project by following the outline

below. Include a list of any non-standard parts, lab equipment, shop services,
etc., which will be needed with an estimated cost for each.

3.1.i. Labor: (For each partner in the project)
Assume a reasonable salary
($/hour) x 2.5 x hours to complete = TOTAL
Then total labor for all partners. It's a good idea to do some research into
what a graduate from ECE at Illinois might typically make.

3.1.ii. Parts: Include a table listing all parts (description, manufacturer, part #,
quantity and cost) and quoted machine shop labor hours that will be
needed to complete the project.

3.1.iii. Sum of costs into a grand total
3.2. Schedule:

Include a time-table showing when each step in the expected sequence of design
and construction work will be completed (general, by week), and how the tasks
will be shared between the team members. (i.e. Select architecture, Design this,
Design that, Buy parts, Assemble this, Assemble that, Prepare mock-up,
Integrate prototype, Refine prototype, Test integrated system).

4. Discussion of Ethics and Safety:
4.1. According to 1.2 of ACM code of conduct, we should design every part that could

come in contact with the user to be safe to touch and interact with. Such contact
points should not abrade the user in any way. With using ACM 2.8, any firmware
or drivers we utilize will be our own construction or open source material. Our
Design for this keyboard is intended to be touched and used directly by
humans.This means that we should adhere to ACM 3.3 by creating designs that

are ergonomic and help the user have a more efficient experience, a crux of our
background to this project.

5. Citations:
5.1. PJRC. (n.d.). Teensy Schematics. Retrieved February 22, 2020, from

https://www.pjrc.com/teensy/schematic.html
5.2. L., D., Wyma, M., J., William, E., Herron, J., T., … Reed. (2015, February 26).

Factors influencing the latency of simple reaction time. Retrieved from
https://www.frontiersin.org/articles/10.3389/fnhum.2015.00131/full

5.3. CHERRY MX SPEED SILVER. (n.d.). Retrieved from
https://www.cherrymx.de/en/mx-original/mx-speed-silver.html

5.4. I2C Info – I2C Bus, Interface and Protocol. (n.d.). Retrieved from https://i2c.info/

https://www.pjrc.com/teensy/schematic.html
https://www.frontiersin.org/articles/10.3389/fnhum.2015.00131/full
https://www.cherrymx.de/en/mx-original/mx-speed-silver.html

