

University of Illinois at
Urbana-Champaign

Door Access Tracker
Patrick Connelly (prc2), Ben Wasicki (wasicki2),

and John Scholl (johnts2)

ECE 445 Design Document Check

Team #41
TA: Chi Zhang

February 25, 2020

Table of Contents
1. Introduction

1.1. Objective
1.2. Background
1.3. Visual Aid
1.4. High Level Requirements

2. Design
2.1. Block Diagram
2.2. Physical Design
2.3. Subsystems

2.3.1. Magnetic Sensor
2.3.2. WiFi Chip and Microcontroller
2.3.3. Battery
2.3.4. Cloud Server
2.3.5. Android Application

2.4. Tolerance Analysis
2.4.1. Plots
2.4.2. Circuit Schematics
2.4.3. Calculations

3. Cost and Schedule
3.1. Cost Analysis
3.2. Schedule

4. Discussion of Ethics and Safety
5. Citations

1

1. Introduction

1.1 Objective :

Many areas of day-to-day life involve the opening and closing of a door. We believe that
better information on the state of a door can improve one’s quality of life. For example,
one could monitor a door as a security measure, such as a front door, a liquor closet, or
a medicine cabinet. Alternatively, some doors may also have a tendency of getting stuck
open. In this case, knowing that the door was not closed properly may be good
information to have. In addition, knowing when the mailbox has been accessed could be
time saving, especially for someone who has mobility problems because they would not
need to check the mailbox unnecessarily.

Our proposed solution is the Door Access Tracker. This tracker would consist of a
sensor to detect the state of a door, a microcontroller, a wifi card, a cloud server, and an
android app. This would be a portable device that would be adhered to a door. The
primary functionality involves the user getting an update on their phone via an
application when the state of the door is changed. In order to make this product more
versatile, we would allow for different configurations on when to send notifications. For
example, a consumer may want to know the instant a medicine cabinet or liquor cabinet
is opened; however, they may only care about a door’s state if it were to be left open for
a specific amount of time before being closed.

1.2 Background:
There are many situations in which the monitoring of a door or cabinet may be useful.
From a security perspective, knowing when an area is accessed could be extremely
useful information, especially for knowing when something has been tampered with.
From a convenience perspective, putting this device on something such as a mailbox
would let someone know when they should go to check for mail. Finally, from an
energy-savings perspective, this product could let a person know when a door or window
is left ajar, leading to heat loss in the winter and air conditioning loss in the summer. A
key issue that needs to be addressed as well is that a user may want a different
notification or set of notifications for different situations. For example, they may want to
know immediately when a door state is changed, they may only want to know when a
door is opened, or they may only want to know if a door is left open for a certain amount
of time.

2

There are some products on the market that attempt to achieve the same functionality as
our project. Our design would not only be cheaper than available products, but it would
also have additional functionality. The application we propose would be more
configurable than currently available alternatives; giving the user the option to select
when, why, and how they are notified. Our solution is also stand-alone and does not
require any subscriptions or any hub device.

1.3 Visual Aid:

1.4 High Level Requirements:
The following are the three most important qualities our project must exhibit in order to be
successful:

● The door sensor sends a different signal based on the state of the door (i.e., open or
closed).

● The system controller takes the signal from the door status sensor and updates the
back-end server with the door’s state.

● The back-end server can send the Android application an update based on the
information it receives from the system controller and the current configuration set.

3

2. Design

2.1 Block Diagram

Fig. 2 Block Diagram

4

2.2 Physical Design

2.3 Subsystems

2.3.1 Magnetic Sensor

2.3.2 WiFi Chip and Microcontroller
The WiFi chip we intend to use for our Control Module will be a variant of the ESP8266. This will
simplify our design, as the onboard microcontroller has extra resources to process our sensor
input, which removes the need for a separate microcontroller.

5

2.3.3 Battery

6

2.3.4 Cloud Server
● Description:

The cloud server contributes to the second and third high level requirement. It contains
most of the computations and memory that will be needed. As such, it will take requests
from the user via the android application and from the control module, be able to set
configurations, store history, and send updates to the android application based on the
set configurations. This will be run as a pod in a kubernetes cluster with a service and
ingress to connect it to the outside. The benefits of running this on a cluster are
persistent volumes, easy scalability, and self-healing.

● Requirements and Verifications Table

Requirements Verification

1. Server is able to receive state change
from at least 1 control module

2. Server will be able to complete
registration of a specific application
with a specific serial number.

3. Server will be able to send updates to
at least 1 application after a state
change is received from a
control-module.

4. Server will be able to use
configurations specified by an
application to deliver updates to said
application as set by configurations.

5. Server will keep a history of door state
changes with corresponding
timestamps based on the number
specified by the application and will
send state changes to an application
by request.

1.
A. Do Step 1 .
B. Do Step 2 .
C. Start the test pod with the - -test1=true

argument specified in the pod yaml
file.

D. Check the logs of the server Pod to
see if they have the following output:

“<Timestamp> : test1-serial-number : open”
“<Timestamp> : test1-serial-number : closed”

2.

A. Do Step 1 .
B. Do Step 2 .
C. Start the test pod with the - -test2=true

argument specified in the pod yaml
file.

D. Check the logs of the server Pod to
see if they have the following output:

“<Timestamp> : test2-serial-number : <IP>”

3.

A. Do Step 1 .
B. Do Step 2 .
C. Start the test pod with the - -test3=true

argument specified in the pod yaml
file.

D. Check the logs of the test Pod to see
if they have the following output:

“<Timestamp> : test3-serial-number : open”
“<Timestamp> : test3-serial-number : closed”

7

4.
A. Do Step 1 .
B. Do Step 2 .
C. Start the test pod with the - -test4=true

argument specified in the pod yaml
file.

D. Wait 10 seconds then check the logs
of the test Pod to see if they have the
following output:

“Timestamp1 : test4-serial-number : open”
“Timestamp2 : test4-serial-number : closed”

E. Ensure Timestamp2 is approximately
5 seconds after Timestamp1 .

5.
A. Do Step 1 .
B. Do Step 2 .
C. Start the test pod with the - -test5=true

argument specified in the pod yaml
file.

D. Check the logs of the server Pod to
see if they have the following output:

“---HISTORY BEGIN---”
“<Timestamp> : test5-serial-number : open”
“<Timestamp> : test5-serial-number : closed”
“<Timestamp> : test5-serial-number : open”
“<Timestamp> : test5-serial-number : closed”
“---HISTORY END---”

*The Following are steps that must be repeated for each of the above tests. They are presented
here to avoid repetition:

● Step 1 : Ensure that the Kubernetes cluster is running with both the server Pod’s Ingress
and Service, and the test program Pod’s Ingress and Service configured correctly.

● Step 2 : Start the Pod using the verbose=true argument specified in the pod yaml file.

8

2.3.5 Android Application

2.4 Tolerance Analysis

2.4.1 Plots

9

2.4.2 Circuit Schematics

2.4.3 Calculations

● When the door is closed, the WiFi chip is the only power draw, consuming about 20μA in
its “deep-sleep” mode. An ENERGIZER CR2032 3V battery has a typical capacity of
235mAh. Thus, with no closing or opening of the door, our device should last
approximately:

1750 h 90 days .3 yrs235 mAh
0.02 mAh = 1 ≈ 4 ≈ 1

10

3. Cost and Schedule

3.1 Cost Analysis

3.2 Schedule

11

4. Discussion of Ethics and Safety
As the developers of this project, we believe it is important that we produce a safe, reliable, and
efficient product to our user. We commit ourselves to holding a high degree of professional
conduct in accordance with both the IEEE and ACM Code of Ethics. We will avoid ethical
breaches by following all device specifications, working in our respective areas of competence,
and clearly stating proper operating procedure (ACM 2.6). At the same time, we acknowledge
that our device could be misused; therefore, we will take all necessary precautions to prevent
any harmful modes of operation.

In accordance with the ACM Code of Ethics, this project will pose no risk to the user or
community under standard operations. Given that our project monitors when a door is opened
and closed, it could pose a safety risk to the user if the data is compromised. We will ensure
that all wireless protocols are followed, and communications will be secure. The data gathered
by our sensor will be the sole property of the intended user of the device (ACM 2.9). All software
will follow accepted community standards.

Following the IEEE Code of Ethics, we have decided it is important to make our design as
energy efficient as possible to minimize waste. As designers, it is our responsibility to limit the
environmental impact of our device. We have implemented a circuit break when the door is
closed to ensure power is only consumed when necessary. This will limit the amount of waste
associated with battery replacements.

In addition, we will ensure there is no exposed wiring or electrical components in our design to
minimize the risk of electrical shock. Similarly we will ensure all components are operating
within their respective operating regions to reduce the risk of a short or fire hazard.

12

5. Citations
[1] “IEEE Code of Ethics,” IEEE . [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 12-Feb-2020].

[2] “ACM Code of Ethics and Professional Conduct,” Association for Computing Machinery .

[Online]. Available: https://www.acm.org/code-of-ethics. [Accessed: 12-Feb-2020].

13

