

Hardware Security Module

ECE 445 Design Document
Team 63

Frankie Papa, Calvin Fisher, Nick Schiesl
TA: Evan Widlowski

2/23/2020

1

1 Introduction
1.1 Problem and Solution
Hardware Security Modules (HSMs) are devices that have a protected keystore coupled with crypto
hardware that provides features such as encryption/decryption or random number generation [2]. In
practice, these products can be very expensive and may not be able to do everything that is desired. For
example, one of our members faced an issue while working with the Trusted Platform Module (TPM), a
cheap and standard HSM in many personal computers, where he was not able to persist symmetric keys (a
feature desired in the project he was working on). These devices can also be very costly ranging from low
cost options at around $110.00 to high cost units at around $32,000 [4]. The problem that we are looking
to solve is that of finding a low-cost, high-security option. A typical low cost HSM has limited key
storage space and limited support, or no support, to symmetric algorithms [4]. Our solution to this is to fill
this gap by producing a cheaper HSM that has the ability to store a large amount of keys, provides
symmetric encryption algorithms, and has a random number generator with high entropy.

In order to provide a more secure product at this lower price we will make sure that it fulfills the main
requirements for FIPS 140-2 Level 3 with room for additions later to fully fulfill each requirement. In
NIST’s documentation on FIPS 140-2 Level 3 the main features that we are implementing would be at
least one approved algorithm/security function (AES Encryption), the use of tamper-evident coatings or
seals, and systems in place which make it more difficult to gain access to the modules inside as well as the
zeroization of keys in the event that the cryptographic module is opened [5]. We have found that many of
the higher end HSMs that are FIPS 140-2 Level 3 or 4 certified and have higher performance are priced
near $1000.00 or more and we aim to provide a device capable of some of their features at a fraction of
the price [2].

1.2 Visual Aid

1.3 High-Level Requirements

2

1. The device must be able to store thousands of AES-128 keys in nonvolatile memory
2. The device must be able to encrypt and decrypt files as large as 1GB
3. The random number generator on the device can generate high entropy AES-128 keys
4. Tamper evidence module must be able to zeroize the keystore in the event of physical
tampering

2 Design
2.1 Block Diagram
In order for our design to be successful our device is going to need a power supply, a random number
generator, a tamper evidence module, and a control module (which doubles as the encryption module).
With the parts that we have chosen our power supply will come from the USB connector which has a
voltage rating of 30V. The voltage regulator will then supply 5V to each component and 18V to the RNG
circuit. The flash memory has 2GB storage which allows us to store a lot of 128-bit keys. The tamper
evidence buttons and the conductive wire mesh sensor will alert the microcontroller of tampering and
wipe the keys from the keystore. The RNG circuit will generate AES-128 bit keys on command from the
microcontroller which will store them in the flash memory. Lastly, inside of the control module the
microcontroller will route all data to each piece. Doubling as the encryption module, the microcontroller
will also use AES encryption to encrypt or decrypt data sent in through the USB connector using a
designated key from the keystore.

Figure 1. Block Diagram

2.2 Power Supply

3

The main source of power for our device will be through a USB power supply. This power supply will be
regulated by a 5V and 3.3V regulator that will supply the correct voltage to the rest of the device’s
components.

2.2.1 USB Connector
The USB Connector will be the main power source for our device with an output of 30 volts. This higher
voltage will allow us to power all of our devices and supply enough current for all of the components.

2.2.2 5 Volt Regulator
The 5 volt regulator will create a 5 volt output from the USB connector. This output will be used to power
the random number generator module and other components of our device.

2.2.3 3.3 Volt Regulator
The 3.3 volt regulator will generate a 3.3 volt output from the 5 volt bus output from the 5 volt regulator.
This output will be used to provide the correct voltage to our microcontroller and flash memory
components. It will also be used to supply power to several other components in our device.

2.3 Control Module
The control module (or the encryption module) is in charge of connecting all of the pieces of our device
as well as encrypting data transmitted from the USB connector. At the core, the microcontroller will be
programmed to encrypt data, wipe data in case of tampering, and store input or generated keys.

2.3.1 Microcontroller
We have chosen a STM32F7 series microcontroller from STMicroelectronics for our device because we
wanted a high performance, programmable controller which can be used to route all incoming data from
the USB connector as well as utilize a CBC AES encryption algorithm to encrypt or decrypt incoming
data. The microcontroller chosen has a speed of 216MHz which should give us high speed encryption
capabilities. It will also be constantly polling the tamper evidence module which will alert the controller
when to zeroize the NAND Flash memory. We will be referring to the microcontroller’s programming
manual to write software to encrypt/decrypt data.

2.3.2 NAND Flash
The Winbond Flash Memory that we chose has 2GB of memory which technically allows us to store
125,000,000 128-bit keys. This is likely smaller due to software preloaded on the chip, but we are only
looking for the ability to store thousands of keys.

2.3.3 USB Connector
The USB Connector powers and interfaces with the microcontroller. This will allow us to send data to the
microcontroller which can be used in multiple subsystems of our device. We will likely have command
codes which preface our data which tell the microcontroller whether we are looking to encrypt data,
decrypt data, or store a new key. These parameters will be fed into our program which will then do the
desired computations or command.

4

2.4 RNG Module
The HRNG or Hardware Random Number Generator is essential for this encryption device. We are
hypothetically creating a hardware security device for the market, so security is top priority. The HRNG
will be a big step up from the PRNG or pseudo random number generator that most programs use. In a
PRNG a “seed” is passed through a black box algorithm which spits out a “random” number. Obtaining
the seed used makes the random number obsolete. In our case, obtaining a seed means obtaining the
AES-128 bit key for an experienced hacker. Our HRNG will not use a seed and will instead use digitized
transistor noise to generate random bits.

In our HRNG a reverse biased or negative voltage applied transistor will generate noise. This noise will
then be amplified by 2 more resistors. The noise is then “digitized” by a Schmitt Trigger Inverter. We
now have a readable output of truly random bits.

[Circuit Schematic Here]

2.4.1 Noise Generator
2.4.2 Signal Digitizer
2.4.3 State Selector
2.4.4 Requirements & Verifications

2.5 Tamper Evidence Module

3 Cost and Schedule
3.1 Cost Analysis
When determining the cost for development we assume an average salary of $80,000 per person of our 3
member team. We also assume 10 hours of work per week and a 16 week timeframe for completing the
project. Using this we calculated the development cost for labor as follows.

 people 6 weeks 0 hours .5 46, 53.85year
$80000 × 1 year

52 weeks × 1 week
40 hours × 3 × 1 × 1 × 2 = $ 1 (1)

The table below details the estimated cost for parts:

Part Name Manufacturer Part # Quantity Cost/part

Microcontroller STMicroelectronics STM32F730R8T6 1 $4.96

NAND Flash Winbond W29N029VSIAA 1 $3.82

USB Connector TE Connectivity 1734035-4 1 $1.46

Buttons Omron Electronics B3FS-1000P 4 $0.65

Assorted
Resistors,
Capacitors, ICs,

Digikey N/A 1 ~$10.00

5

etc.

PCB PCBway N/A 1 ~$5.00

Plastic Housing N/A N/A 1 ~$10.00

Total Cost - - - $35.89

Assuming that we will be making three prototypes for testing and demoing, the cost for parts will amount
to $107.67. Adding this to the cost of labor gives us a total cost of $46,261.52.

3.2 Schedule

Week Frankie Calvin Nick

3/2/2020 Begin CBC AES
algorithm design

Begin RNG circuit
design

Begin tamper evidence
module design

3/9/2020 Program
microcontroller and test
algorithm

Assemble circuit and
begin testing

Order parts and begin
assembling circuit

3/23/2020 Design PCB and design
key storage abilities

Design PCB and verify
entropy

Test circuit and design
PCB

3/30/2020 Assemble circuit and
begin testing of the
encryption module

Assemble circuit on
PCB

Assemble circuit on
PCB

4/6/2020 Refine encryption
module

Test and refine PCB Test and refine PCB

4/13/2020 Assemble prototype Assemble prototype Assemble prototype

4/20/2020 Mock demo and refine
prototype

Mock demo and refine
prototype

Mock demo and refine
prototype

4/27/2020 Demo and begin final
paper

Demo and begin final
paper

Demo and begin final
paper

5/4/2020 Final presentation Final presentation Final presentation

4 Ethics and Safety
While designing our product we have to keep in mind the ethics involved in producing a HSM with
stringent security requirements. It would be highly unethical to advertise a product that is supposed to

6

fulfill FIPS 140-2 level 3 requirements, but then fails in some aspect (perhaps some other way of
tampering with our device). It would also be unethical for us to produce a faulty product; this requires us
to create and administer strict tests to our device in order to assure to our customers that we have a
working product.

Working in the senior design lab will require us to follow strict safety measures to prevent any injury.
Using soldering irons or hot air can put us at risk of burning ourselves.To prevent this from happening
will follow the correct safety precautions that were explained in our lab safety training and our soldering
assignment. We will always power these devices off while not in use and use correct soldering techniques
to prevent any risk of injury. Another hazard would be when we power our device with the lab power
supplies. We will follow all safety guidelines to prevent risk of electrical shock or electrical shorts.

5 Citations
[1] S. W. Smith, “Hardware Security Modules,” Dartmouth, 2010. [Online]. Available:

https://www.cs.dartmouth.edu/~sws/pubs/hsm-draft.pdf. [Accessed: 24-Feb-2020].
[2] J. Schlyter, “Hardware Security Modules,” internetstiftelsen.se. [Online]. Available:

https://internetstiftelsen.se/docs/hsm-20090529.pdf. [Accessed: 24-Feb-2020].
[3] “TestU01,” Empirical Testing of Random Number Generators. [Online]. Available:

http://simul.iro.umontreal.ca/testu01/tu01.html. [Accessed: 24-Feb-2020].
[4] S. Dickinson, “HSM Buyers' Guide - Documentation Reference Material,” OpenDNSSEC.

[Online]. Available: https://wiki.opendnssec.org/display/DOCREF/HSM Buyers' Guide.
[Accessed: 24-Feb-2020].

[5] D. L. Evans, P. J. Bond, and A. L. Bement, “FIPS PUB 140-2,” 12-Mar-2002. [Online].
Available: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf. [Accessed:
24-Feb-2020].

[6] C. Platt and A. Logue, “Really, Really Random Number Generator: Make:” Make,
01-May-2015. [Online]. Available:
https://makezine.com/projects/really-really-random-number-generator/. [Accessed:
24-Feb-2020].

WEBSITES:
https://www.cs.dartmouth.edu/~sws/pubs/hsm-draft.pdf HSM PAPER
https://internetstiftelsen.se/docs/hsm-20090529.pdf HSM COST+BASICS
http://simul.iro.umontreal.ca/testu01/tu01.html RNG ENTROPY
https://wiki.opendnssec.org/display/DOCREF/HSM+Buyers%27+Guide HSM BUYER’S GUIDE
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf FIPS 140-2 REQS
https://makezine.com/projects/really-really-random-number-generator/ DIGITIZED INVERTER RNG
FROM AMPLIFIED TRANSISTORS

7

https://www.cs.dartmouth.edu/~sws/pubs/hsm-draft.pdf
https://internetstiftelsen.se/docs/hsm-20090529.pdf
http://simul.iro.umontreal.ca/testu01/tu01.html
https://wiki.opendnssec.org/display/DOCREF/HSM+Buyers%27+Guide
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://makezine.com/projects/really-really-random-number-generator/

