
Project Proposal: Plug and Play Modular Keyboard 

1. Introduction 

○ Contributors: ​Daniel Chen, ​Fangqi Han, ​Christian Held 

○ Objective:  
i. While traveling or while at home one will need two different keyboards to 

work. Additionally, left handed typers can find the numpad on keyboards 
to be awkward to use. The typical solution to this is to either buy another 
small keyboard to travel or one can just start with a smaller keyboard. 

ii. Our solution to this problem is to make a keyboard with detachable 
modules that allow the user to conform to their working environment while 
also giving them maximum utility. The user can simply add or remove 
modules to the keyboard by plugging or unplugging their TRRS 
connectors. The adaptable firmware will also allow the user to still have 
the keypresses available even when in a condensed mode. 

○ Background:  
i. A modern job-oriented citizen needs to have technology that lets them get 

their goals accomplished in a timely manner. In their office they have the 
space and comfort to use effectively a full size keyboard with all the 
amenities that allows them to work at maximum efficiency. Whilst traveling, 
they do not have such luxury. One must have multiple keyboards or one 
undersized keyboard while traveling. Independent reports that the average 
worker spends about 1700 hours a year in front of a keyboard and that time 
should be optimized. 
Source:​https://www.independent.co.uk/news/uk/home-news/office-workers-
screen-headaches-a8459896.html 

○ High-level requirements list:  
i. The Main Keyboard is functional with at least 61 usable keys. 
ii. Auxiliary Modules are functional and able to plug into the main keyboard 

with at least 10 usable keys on each module. 
iii. Firmware is workable and partially customizable with at least 20 

changeable keys.  

2. Design  

https://www.independent.co.uk/news/uk/home-news/office-workers-screen-headaches-a8459896.html
https://www.independent.co.uk/news/uk/home-news/office-workers-screen-headaches-a8459896.html


 

Figure 1. Block Diagram 

An external USB powers the main microcontroller that is the operational key 
piece. With just the base keyboard connected solely the keyboard can still 
function. The other modules will take power and give data through a wired 
connector. When connected the microcontroller will recognize their data through 
an I/O extender from the respective module. The firmware on the microcontroller 
will be able to process any number of key presses, but the main limitation will be 
on the data feed back to the computer. 

○ Physical Design: 



i. The sizing and construction of the key layout and housing is complicated 
and would require significant explanation to go through the whole system. 
However, there are resources like 
http://www.keyboard-layout-editor.com/#/​ and ​http://builder.swillkb.com/ 
that help in this design endeavor. The bulk of the work is easily procured 
through open source and free software. 

○ Functional Overview: 

i. Key Switches (HID)​ - The human interface devices for our keyboard are 
mechanical key switches which when pressed shorts a connection and 
completes a circuit. When these switches are combined into a matrix and 
hooked up to a microcontroller, firmware for the microcontroller can match 
these completed circuits to which keys were pressed and put letters from 
our fingers on to the screen. As the main component that interacts with 
the user, this is one of the most important components and provides most 
of the usability and with its specific configuration will do much of the 
organizing for the microcontroller. 

ii. Microcontroller ​- The microcontroller receives power from the computer 
and disperses it through the connected systems. This power is sent 
through the matrix that contains all the keyboard switches, as well as to 
the external components through the I/O extenders. The HID and I/O 
extenders will send back data they receive, which is organized and sent 
to the computer as typing inputs. The power and the thinking of the 
keyboard is performed by the microcontroller.  

iii. I/O Extender ​- These components on the exterior modules are the hub 
for power and data transfer on the modules. They receive power from the 
main 60% keyboard and use it to allow the HIDs to send data back to the 

http://www.keyboard-layout-editor.com/#/
http://builder.swillkb.com/


I/O extender. It interprets the data and returns it back to the central 
keyboard via I2C connection. 

iv. Connectors ​- The wiring between the main hub keyboard and the 
modules will be a TRRS cable. This is commonly known as a 3.5 mm 
jack. The TRRS version has four separate wires associated with it. The 
four things transferred will be five volts, ground, SDA, and SCL (the latter 
two are part of the I2C protocol and are the only lines that return from the 
modules to the main hub). 

v. Firmware ​- Firmware is software coded in the microcontroller that will 
detect the attachedness of modules, scan the keyboard matrix for 
pressed and released keys, interpret keys based on preset layouts or 
user determined values, and send out corresponding signals through an 
USB connection. The firmware also provides programmability, allowing 
users to modify their keyboard layout to produce user-determined 
characters or potentially commands. Examples include changing the fn 
layers, having programmable keys, and other features that would help 
with user productivity and customization. 

○ Block Requirements: 

Block Diagram Item Requirements  

Key Switches Be able to translate a press into a 
short on the circuitry within 20 ms. 

Microcontroller Have a polling speed that allows a 
complete scan of the keyboard in 
around 100 ms. Each key should be 
able to be read (assuming the module 
is attached). Be able to run the 
firmware. 

I/O Expander Have a polling speed that can 
interpret key presses and send an I2C 
signal to the microcontroller within 
10ms .  

Connectors Capable of sending four separate 
signals across a distance of 1 - 6 
inches. 

Housing Able to hold all 61 - 10  keys 
depending upon which part of the 
keyboard is being housed. Have a 



reasonable amount of strength that 
the average use will not permanently 
deform the housing. 

Firmware The combined keypad matrix should 
have at least 101 entries, 
corresponding to 101 keys of a 
traditional keyboard. 
Keypad matrix for the default 
keyboard without extensions should 
cover around 60% of the keys, while 
each attached auxiliary module would 
extend the matrix by their size. 
The firmware needs to periodically 
scan pressed keys, map their 
coordinates to find their values, and 
send out signals accordingly. The time 
for a complete scan of the keyboard 
should take around 100 ms. 
The firmware also needs to 
periodically poll the status of attached 
auxiliary modules and adjust the 
scanning range accordingly.  
The keypad matrix should be 
customizable through user input, 
allowing the user to change 
corresponding functions of 
programmable keys. 

 
○ Risk Analysis:  

i. The Teensy must be able to process all the information being given to it at 
one time. If the the controller has issues reading the I2C or general 
bookkeeping issues the keyboard will not function well or at all. 

3. Ethics and Safety 

○ According to 1.2 of ACM code of conduct, we should design every part that could 
come in contact with the user to be safe to touch and interact with. Such contact 
points should not abrade the user in any way. With using ACM 2.8, any firmware 
or drivers we utilize will be our own construction or open source material. Our 
design for this keyboard is intended to be touched and used directly by humans. 
This means that we should adhere to ACM 3.3 by creating designs that are 



ergonomic and help the user have a more efficient experience, a crux of our 
background to this project. 

 


