
Button Remapping for GameCube Games such as Super Smash
Bros Melee

Michael Qian, Srikanth Yaganti, Yeda Wu
ECE 445 Proposal - Spring 2020

TA: Evan Widloski

1 Introduction

1.1 Objective
In fighting games, it is usually beneficial to remap certain buttons to perform different actions for
ease of doing combos. For example, a player might want to remap the X button on their
controller from "jump" to "attack". This is present in the game settings of many popular fighting
games except for Super Smash Bros Melee for the Nintendo GameCube.

Our goal is to create an adapter that sits between the GameCube and GameCube controller.
The controller will plug into the adapter which plugs into the GameCube. Users will have a
phone app where they can choose how to remap their buttons. Users can then load the adapter
with multiple button reconfigurations and toggle through these configurations on the adapter.
This adapter will then take in the signals of the button presses of the controller and translate
them to signal button presses based on the button remapping. This hardware will also allow for
button remapping for any other GameCube games.

1.2 Background
The GameCube came out in 2001[1]. Many third-party controllers came out since then, but only
recently have some companies been making controllers which support button remapping. These
controllers include the Smash Box[2] and B0XX controllers[3]. Although this is the case, these
controllers are not shaped like the GameCube controller. Instead of having analog sticks, they
have 4 directional buttons. This causes gameplay to differ from the classic GameCube
experience because directional buttons cannot match the precision of analog sticks. Thus, there
is still a lack in the market for a hardware component to remap GameCube controller inputs.

1.3 High-level requirements
● Phone app is able to communicate with microcontroller via bluetooth to send the

button-remapping schemes
● Microcontroller is able to read the controller inputs
● Microcontroller is able to send the remapped button inputs to the console

2 Design

2.1 Block Diagram

2.2 Functional Overview

2.2.1 Phone

A phone app is required to allow users to easily set button remapping configurations for
their controller. This app will connect to the microcontroller via bluetooth.

2.2.2 Button Remapping Module

2.2.2.1 Microcontroller

The microcontroller will convert the input signal from the controller into a remapped
output signal that will be driven to the GameCube console. We have determined
that the ATmega2560 matches all these criteria and is therefore a good choice for
our project.

2.2.2.2 Bluetooth Module

Required for communication with the phone app. It will contain a bluetooth receiver
for receiving configurations for button remappings from the phone. We have opted
to use the HC-05 Bluetooth module because of its simplicity and compatibility with
the ATmega2560.

2.2.2.3 Level Shifter

Since the GameCube console and controller both send data at 3.3V[4] but the
ATmega2560 outputs at 5V[5], a level shifter module will be required between the
microcontroller and the console to ensure the proper signals are being passed onto
the console. We are considering using the TE291 bidirectional logic level shifter.

2.2.2.4 Toggle Button

Since we wish to be able to store and switch between multiple button remapping
configurations, a button is needed to cycle through the number of configurations
stored within the microcontroller (4 or 8 configurations).

2.2.2.5 7-Segment Display

This will display the current button remapping configuration being implemented by
the microcontroller. It is simply a set of LEDs driven by the microcontrollers digital
output pins.

2.2.2.6 Reset Button

This button will reset the current configuration and the microcontroller will then
simply pass the data from the GameCube controller on to the console without any
button remapping.

2.2.3 GameCube Controller

GameCube Controller will communicate with the Microcontroller to send button data.
This data will be remapped by the microcontroller and sent to the GameCube console.

2.2.4 GameCube Console:

GameCube Console will receive the proper button mappings from the microcontroller. It
will also provide power to all other modules.

2.3 Block-Level Requirement

2.3.1 Phone

A phone app should be able to communicate with the microcontroller via bluetooth.
Users should be able to send new button remappings to the microcontroller.

2.3.2 Button Remapping Module

2.3.2.1 Microcontroller

It should be able to send valid data to the GameCube Controller. It will also require
enough memory to store the table of button remapped signals. The controller will

need to be configured through Bluetooth and capable of driving the bus to 250kHz
to be compatible with the GameCube bus protocol[4].

2.3.2.2 Bluetooth Module

This module must allow the phone app and the microcontroller to communicate with
each other. This module must also have a built-in button to perform pairing with the
phone.

2.3.2.3 Level Shifter

Level shifter module will be required to convert 5V output from the microcontroller to
3.3V input for GameCube Console. This is crucial to ensure the proper signals are
being passed onto the console. It must also be able to drive signals of 250kHz.

2.3.2.4 Toggle Button

Toggle button will be required to smoothly switch and cycle through multiple (4 or 8
configurations) mappings that will be stored on the microcontroller. This button must
not cause any mechanical bouncing that would interfere with the signal.

2.3.2.5 7-Segment Display

This display is required to show the current mapping configuration that is being used
by the user while using a minimal amount of power.

2.3.2.6 Reset Button

This button is required to reset the configurations to the original GameCube
mappings. This button must not cause any mechanical bouncing that would interfere
with the signal.

2.3.3 GameCube Controller

The controller will be required to set proper button data to the controller where they will
get remapped and sent to the console.

2.3.4 GameCube Console

GameCube Console will be required to properly receive and interpret button data from
the microcontroller. It must also be able to provide both 3.3V at 1mA and 5V at 5mA.

2.4 Risk Analysis
There are a few big risks to the success of the project. First is the Bluetooth module being able
to properly communicate with the phone app. This risk is two-fold where first, the phone app
must be capable of driving Bluetooth communication and then, the hardware Bluetooth module
must be able to translate the incoming signal to a format usable by the microcontroller. Second,
the communication from the microcontroller to the GameCube console presents a major risk
because the console requires a rather specific bus protocol that we must match completely in

order to properly communicate with it. Lastly, the microcontroller we are using is a 100 pin
TQFP with a lead pitch of 0.5 mm which will be very difficult to solder and risks producing an
electrical short that will prevent the functionality of the project[5].

3 Safety and Ethics
From a hardware perspective, the safety concerns are few but not absent. For example, the
GameCube console has a specified signal voltage of 3.3V, whereas the microcontroller and the
rest of the modules all require 5V of power. Accidently, miss wiring the power inputs of these
two parts could result in the serious damage of both these parts. Furthermore, many of the parts
used in this project will be susceptible to electrostatic discharge and thus, precautions must be
taken to prevent damaging these parts such as using anti-static gloves and ESD wristbands.

For ethics, we hold responsibility for our project, which is the first rule in the IEEE Code of
Ethics[6]. Additionally, our product could introduce a situation within professional gaming if the
device is used when non-Nintendo/performance-enhancing devices are not allowed. This would
be an unethical use of our device. In addition to this, it may be possible for people to tamper
with our microcontroller such that certain button presses can lead to button macros. These two
situations violates the IEEE Code of Ethics #9 because, if used in such a way, the trust in and
reputation of professional gamers will be harmed[6].

References
[1] “GameCube,” ​Wikipedia​, 09-Feb-2020. [Online]. Available:

https://en.wikipedia.org/wiki/GameCube. [Accessed: 09-Feb-2020].
[2] “SMASH BOX,” ​Hit Box Arcade​. [Online]. Available:

https://www.hitboxarcade.com/products/smash-box. [Accessed: 07-Feb-2020].
[3] “B0XX Controller,” ​B0XX​. [Online]. Available: https://b0xx.com/. [Accessed: 07-Feb-2020].
[4] “Nintendo Gamecube Controller Protocol,” ​Nintendo Gamecube Controller Pinout​. [Online].

Available: http://www.int03.co.uk/crema/hardware/gamecube/gc-control.html. [Accessed:
14-Feb-2020].

[5] “8-bit Atmel Microcontroller with 16/32/64KB In-System Programmable Flash” ​ATMEL​.
[Online]. Available:
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-at
mega640-1280-1281-2560-2561_datasheet.pdf. [Accessed: 13-Feb-2020].

[6] “IEEE Code of Ethics,” ​IEEE​. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 13-Feb-2020].

