
zkTap: A Zero-Knowledge Trustless Authentication Protocol
ECE 445 Senior Design Fall 2019; Team 33: Joseph Kuo, Majdi Hassan, Lilan Yang; TA: Evan Widloski

Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois at Urbana-Champaign

PROBLEM STATEMENT

On January 19, 2010, Muhammad al-Muhbound was
relaxing in his hotel room, when a group of four individuals
opened his hotel room and assassinated him. It turns out
that they had reverse engineered the RFID hotel “master
key” and they were able to gain entry to his room. This
underscores that many RFID authentication systems do not
employ adequate security.

PROPOSED SOLUTION

We propose to create a RFID Tag/Reader System that uses
public-key cryptography. The tag will be anactive RFID
tag which will use a MSP430 to perform the public-
key cryptography and it will feature ahardware random
number generator.

Figure 6: Tag

In order to harvest entropy, we used avalanche noise from a
Zener diode and set it up the following cell configuration.

Protocol

The interaction between the tag and reader systems follows
a certain protocol. First, the tag and reader exchange public
keys. Then, the tag will utilize the random number gener-
ator and compute its point on the elliptic curve and trans-
mits this information to the reader. The reader will gener-
ate a challenge from the information it just received and
transmits the challenge to the tag. The tag will compute an
answer according to the challenge and the reader will verify
if this message is correct.

Web Application

Written in Python and Django, the web application func-
tions as a visual aid for the authentication system to create a
door accessing scenarios where students can request access
to doors in ECEB. Users can login as admin and students
where students can request access to all doors available in
the SQLite database while admin can either accept or reject
these requests. It also shows alert whether if there’s a failed
or successful attempt and log these attempts.

Figure 6: Screenshot of Django web application

RESULTS
Misc Results: Random Number Generator >200 kbits/s the
software UART doesn’t allow for very fast transfer rates and
so we were not able to properly benchmark the throughput
of our Random Number Generator.

Overall circuit consumes roughly 15mA~20mA of power
@ 4.2V, however the majority of it is consumed by the
NRF24L01 chip and so if we were to get rid of it we could
significantly cut down on power usage.

Random Number Generator consumes ~5mW of power,
however this can be further reduced if we use Zener diodes
with a lower avalanche breakdown voltage.

Tag handshake takes around ~12 seconds, however can be
accelerated by implementing Ristretto25519 in assembly.
transmits the challenge to the tag. The tag will compute an
answer according to the challenge and the reader will verify
if this message is correct.

Figure 7: RFID reader connecting to
TI MSP430

TOP LEVEL BLOCK DIAGRAM

Figure 3: Block Diagram

Figure 4: Protocol

SUBSYSTEMS
Tag System

The subsystem consists of power supply and management
system, random number generator, a microcontroller, and
an NRF24l01 chip. The microcontroller utilizes the output
of the random number generator for calculations that help
determine that the tag is who it claims to be when commu-
nicating with the reader. The NRF24l01 chip allows for this
communication to take place between the tag and reader
systems.

Reader System

The subsystem consists of msp430 and an NRF24l01 chip.
The reader system interacts with the tag subsystem and
web application subsystem. The reader communicates with
the tag via NRF24l01 chips and verifies if the tag is who
it claims to be. Then, it grants or denies access by pulling
information from the web application and determining if
the tag has access rights or not.

Elliptic Curve Cryptography

Originally we chose to use the curve, Curve25519, as it is
less computationally expensive to implement than most
other elliptic curves. Rather than using a large prime order,
we use an elliptic curve of size 8p. While this allows faster
computations, we have to clear the last three significant bits
in order to prevent small subgroup attacks. Because of this
clamping, we cannot implement our protocol since the veri-
fication step isn’t guaranteed to hold true.

Instead we chose to use the curve, Ristretto25519, which
builds off of the curve, Curve25519 and allows us to cheaply
provide a prime order group.

Random Number Generator

Often times computers have a hard time generating ran-
dom numbers as most processes are deterministic. To make
it even harder for us, we do not have access to that many
sources of entropy on a microcontroller. Instead we create
our own source of entropy.

Figure 3: Zener Diode noise cell

Figure 4: Waveform of Random Number Generator

Figure 5: Results from NIST SP800-90B
Entropy Assessment Test

