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Abstract 
Hundreds of millions of people across the world play sports in their free time. According to a 

2007 census by FIFA, there are 265 million people playing soccer across the globe [1]. A 

number which is likely to have grown in the past decade. And that is not counting other sports, 

like volleyball, basketball, baseball, etc. The majority of these players aren’t professionals 

however. They play for fun in the evenings; casual games of pickup with local community 

members. These players have no effective way of keeping score, only relying on their memory 

which often proves unreliable. By developing a portable voice activated scorekeeper, we can 

help millions of people in the world keep track of the score quickly, easily, and reliably. Players 

will no longer forget what the score is, less time will be wasted trying to remember the score, and 

games can be played with more intensity and focus.  
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1. Introduction 

1.1. Problem & Solution Overview 

Pickup games are very casual and quickly organized games with either strangers or a group of 

friends. Due to its casual nature, there is no referee or scorekeeping system; rather, the players 

are keeping track of the score using their memory. In fast-paced, or high-scoring games such as 

basketball or volleyball, this can result in players forgetting the score and having to ask other 

players what the score is. Not only is this disruptive to the flow of the game, it can also result in 

errors in scorekeeping. 

 

Our goal is to eliminate this problem by creating a voice activated scorekeeper that will allow 

players to quickly and easily update and check the current score. Using specific keywords, users 

will be able to increment and decrement the score for two teams.  

 

1.2. High-level requirements list 

● Score correctly changes through keywords spoken by a user with at least 85% accuracy. 

● Microphone should pick up audio commands ≤ 10 ft from the user with a background 

noise of 75 ± 5% dB. 

● Battery should be rechargeable, lasting ≥ 4 hours. 
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1.3. Block Diagram 

 

Figure 1. Block Diagram 

 

The block diagram shown in Figure 1 contains three subsystems: power, control, and user 

interface. The power subsystem allows the battery to be recharged safely and in turn power the 

rest of the system for at least 4 hrs when supplying 3.3V. The seven-segment displays in the UI 

output subsystem must be large enough to be seen from the service line 30ft away. Since they 

will be larger than standard seven segment displays, the system utilizes a boost converter to 

increase the voltage from the voltage regulator in order to properly power the displays. Finally, 

the UI input subsystem contains a microphone which allows the system to capture the keywords 

spoken by a user and pass it to the microcontroller for processing and determining what action to 

perform. The microphone should still be able to receive user commands in an environment where 

the background noise is 75 db ± 5%. We arrived at this value by measuring the noise level of a 

gym while players were playing volleyball and finding the average noise level over a 

three-minute time frame. 
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1.3.1. Block-level Changes 

In our final design, we had to separate the speech-recognition system from our microcontroller. 

Initially, our speech-recognition system was a tensorflow model which would reside in the flash 

memory of the microcontroller. Due to problems with tensorflow model not being able to 

correctly predict the right keyword despite being given data provided by the tensorflow team 

itself, we made the decision to switch to a different library. The new library we chose to use, 

uSpeech, is an Arduino-based library for voice recognition using phonemes. A phoneme is a 

distinct unit of sound such as ‘sh’, ‘f’, and ‘e’. Since this is an Arduino-based library, we used an 

Arduino Uno to interface between our microphone and microcontroller. Our final design 

operated by having uSpeech determine which phoneme is being said and then generating an 

interrupt on the microcontroller by briefly turning the corresponding teams increment/decrement 

pin high. 
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2. Design 

2.1. Design Procedure 

2.1.1. Microcontroller 

The microcontroller, a STM32F401, will handle a variety of tasks. First, it will receive input 

from either the buttons, or the microphone. If input is received from the microphone, the 

microcontroller unit (MCU) will transform the analog signal to a digital signal. It then feeds the 

newly transformed signal into the Keyword Spotting (KWS) model stored in its flash memory. 

Depending on the keyword detected by the model, the MCU can turn on the indicator light to 

show users it is listening or update the game score. If the input is received from the buttons, the 

MCU can immediately update the score based on which button it received a signal from. In order 

to visually update the score, the MCU will communicate with the seven-segment display using 

shift registers. Finally, the MCU will also receive input from the battery management IC over I2C 

to show users the charge status of the battery. 

 

This microcontroller was chosen for a few reasons. First, it is an ARM Cortex M-4 based MCU. 

The Cortex M-4 contains a DSP extension to ARM’s Thumb instruction set with additional 

instructions which accelerate DSP algorithms. In addition to faster DSP algorithms, by using an 

MCU with a Cortex M-4, is able to reduce manufacturing cost, development cost, and system 

complexity by removing the need for a separate DSP unit. This enables our system to rapidly 

modify the signal from the microphone so that it can be used as input for the KWS model. 

Secondly, this MCU has flash memory ranging from 128 to 512 kb which is necessary to store 

our KWS model. Deployment of a KWS application onto a Cortex M-7 STM32F746G-DISCO 

development board used ~70kb of memory [2], so we estimate that our application will use 

around the same amount of memory, while allowing us leeway to increase the size of the model.  

 

Alternatively, other microcontrollers can also be chosen to implement our final design. Since the 

speech-recognition system in our final design is an Arduino library, it is possible to simply use 

an ATmega328P as the microcontroller for the project. This would greatly reduce development 

time and reduce code complexity. This is not recommended however, since the uSpeech library 
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has a very low accuracy so the final product would be unusable. Using this microcontroller 

would also limit further improvements to the product and possibly extend development time for 

future iterations of this product. 

 

2.1.2. 8-Bit Shift Registers 

The main purpose of these shift registers is to provide a controllable drain for our seven segment 

displays. Each bit stored in the registers will represent whether or not a certain segment of the 

display is on. In addition to acting as a current drain, the shift registers also greatly reduce the 

number of I/O pins necessary on the microcontroller. Since we have four seven-segment 

displays, this reduces the required pins from 32 pins to 4 pins. Furthermore, it is possible to 

daisy-chain these shift registers together. In our case, we daisy-chained two shift registers for 

each team, so we only used two pins, but it is possible to use only one pin to update the score by 

daisy-chaining all four shift registers together. 

 

2.1.3. Microphone 

The microphone we chose to use is the MAX9814 which comes with automatic gain control. The 

key reason we chose to use this microphone is for simplicity. The automatic gain control allows 

us to avoid tweaking the amplifier gain consistently.  

 

There are a vast amount of alternatives that can be used. Microphone polar patterns can have a 

large influence on how well users are heard. There are three main types of polar patterns for 

electret microphones: omnidirectional, unidirectional, and noise-cancelling. Omnidirectional 

microphones are designed to receive sound from any direction; unidirectional microphones 

receive sound from a single direction; noise-cancelling microphones filter out sound from a 

certain direction. For our purposes, unidirectional microphones are best since the microphones 

are placed facing users. We chose not to focus on the polar pattern of the microphone since it is a 

fine detail that can be refined in future iterations of the product. 
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2.1.4. Seven-Segment Displays 

The seven-segment display will indicate the current scores of two teams, and we chose our 

specific 6.5in. display because it would be easily visible from a distance.  

 

2.1.5. Charge Controller 

The charge controller will supply the battery with a constant 4.2 V supply. More importantly, the 

controller will monitor the input charge current and stop charging once the current drops below 

3% of the battery’s rated current. 

 

2.1.6. Battery 

When choosing a battery for our project, we decided to choose a lithium-ion battery because they 

tend to be lighter and smaller than other alternatives such as lead-acid. 

 

2.1.7. 3.3 V Voltage Regulator 

The voltage regulator will output 3.3VDC while receiving variable voltage input from the 

battery. 

 

2.1.8. 5V Boost Converter 

The voltage regulator will output 5VDC while receiving variable voltage input from the battery. 

 

2.1.9. 12V Boost Converter 

The voltage regulator will output 12VDC while receiving variable voltage input from the battery. 

 

2.1.10. Speech Recognition 

A main high-level requirement of our project is to control our scorekeeper using voice 

commands. Thus, speech recognition was extremely important. We decided to use Tensorflow 

Lite for its ability to train machine learning models to recognize only the specific keywords that 

we needed while maintaining a small enough footprint to be deployed on a microcontroller with 
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limited computation and memory resources. Trained Tensorflow models also demonstrated their 

ability to train reasonably accurate models sufficient for our needs. 

 
2.1.11. Speech Recognition State Control  

While using Tensorflow Lite to recognize the specific spoken keywords, we will use the state 

control to keep track of the spoken keywords and update the correct teams score accordingly 

once a full loop has been made. 

 
2.1.12. Hardware/Software Integration 

In order to make sure that all of our subsystems worked correctly together, we had to program 

our microcontroller using Mbed and C++. While using Mbed enabled functions, we were able to 

access low level capabilities without needing to explicitly set up specific settings such as clock 

frequency, registers, and others. 
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2.2. Design Details 

2.2.1. Microcontroller (Schematic: Appendix A.1.) 

To design the surrounding circuit for our STM32F4 microcontroller, we referenced its datasheet, 

[3]. The primary design challenges were choosing how to properly design its power supply and 

how to choose the correct General Purpose In/Out (GPIO) pins. 

 

Designing the power supply scheme was as easy as reading and following the suggested method 

found in [3]. This included placing decoupling capacitors between the IC’s voltage pins. Pins 

labeled Vdd were given the input 3.3V, while pins labeled Vss were connected to electrical 

ground. On our version of the STM32F4, there were four pairs of Vdd/Vss pins; each pair 

required a 100nF capacitor, and one pair, the main voltage reference, required at least a 4.7µF 

capacitor. 

 

Additionally, we referenced the datasheet to determine which pins supported our needs. 

Specifically, we needed to locate those capable of analog-to-digital conversion (ADC), as we 

planned on processing the digital sample of the analog microphone’s output. In the end, we 

found and used pins 8 and 9 for the signals ADC. The rest of the pins are simply GPIOs and can 

be used for normal control. The resulting pinout and schematic can be found in Appendix A.1. 

 

2.2.2. 8-Bit Shift Registers (Schematic: Appendix A.2.) 

The shift registers, Texas Instruments TPIC6C596, were chosen because each pin was capable of 

sinking more current than the MCU’s pins, 250mA compared to 25mA. This was important 

because each segment of our seven-segment displays was rated to draw 140mA. 

 

The resulting circuit became very straightforward to design after referencing its datasheet, [4], as 

the chip simply needed to be supplied 5V (pin 1)  and grounded (pin 16). In addition, because the 

IC uses a serial-in and parallel out, we needed to supply signals from the microcontroller to 

control how the input data would shift along through the registers. To do this, we connected 

SRCK (pin 15) and SRCK (10)  to the MCU. SRCK stands for shift register clock and it controls 
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how the data in, SERIN (pin 2), flows through the buffer registers. Once the desired data has 

been loaded, the RCK signal needs to toggle to shift the contents of the buffer registers to the 

main registers that control the output. Lastly, because the four displays will be paired to create 

two 2 digit numbers, we daisy-chained two shift registers together to create a large 16-bit register 

that controls two digits. In all, we used two pairs of shift registers, four in total. 

 
2.2.3. Charge Controller (Schematic: Appendix A.5.) 

The charge controlling IC that we used to charge our battery was the Texas Instruments 

BQ25896. To design the circuit, we referenced the part’s datasheet [5] and followed the 

recommended circuit. The particular charge-sensing behavior of the controller was already 

embedded in the IC and was able to be later tweaked by communicating with a microcontroller 

over I2C protocol. As seen in Appendix B.5., the signals that communicate with the MCU 

needed to be pulled up to the main system voltage through a 10kΩ resistor. This is done to 

ensure that high logic satisfies the MCU’s logic levels and does not float at an unspecified value. 
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Figure 2: Maximum Current Draw Approximation 
 

2.2.4. Battery 

While we did not directly design a battery, we had to choose a battery that was able to provide 

enough current to last about 4 hours, as specified in our high level requirements. To do this we 

referenced the datasheets of all of our components and found the maximum current draw for 

each component. The resulting totals can be seen in Figure 3; these totals allowed us to choose 

and properly spec the battery in addition to the voltage converters. 

 

As seen in Figure 3, we approximated the total current draw to be about 1585mA. Additionally, 

the common practice for discharging lithium-ion batteries is to withdraw current at a rate 

0.2-0.25 times the battery’s C-value, as we learned from Battery University’s lesson BU-409: 

Charging Lithium-Ion Batteries [6]. The C-value of a battery is how many mAh the battery 

contains. Therefore, we calculated the C-value’s upper and lower bounds as 
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pper C 925mAhU = 0.2
1585mAh = 7 (1) 

ower C 340mAhL = 0.25
1585mAh = 6 (2) 

Consequently, we chose a battery with a C-value of 6600mAh, resulting in a maximum discharge 

rate of (1585mAh / 6600mAh) = 0.240C. 

 

2.2.5. 3.3 V Voltage Regulator (Schematic: Appendix A.6.) 

To design the circuit for our Texas Instruments low-dropout regulator (TPS75233QPWP), we 

referred to [7]. The most important part was to properly adjust the output voltage. This was done 

by following the provided voltage divider equation from the datasheet. The resistor from the 

feedback (FB)/sense pin to ground was suggested to be 30.1kΩ. In our schematic, Appendix 

A.6., this resistor is R37. The resulting resistor, R36 in the schematic, was calculated to be 

36 37 0.1kΩ 3.6kΩ  R = (V ref

V out − 1) · R = ( 3.3V
1.1834V − 1) · 3 = 5 (3) 

where Vref is the chip’s internal reference voltage, given by the datasheet, [7]. 

 

2.2.6. 5V Boost Converter (Schematic: Appendix A.7.) 

The Texas Instruments boost converter, TPS61089RNRR, operates similarly to the 3.3V 

regulator in the sense that the output must be set by a voltage divider between the output voltage, 

a feedback pin, and ground. However, this boost converter is a switching converter meaning that 

it requires additional components like an inductor to lessen the output current ripple. To size our 

inductor, we referenced the datasheet [8] and chose a value of 1µH based on the provided table. 

More importantly, we needed to compute the resistance values for the output voltage divider. 

Resistor, R43, in Appendix A.7. is the resistor between FB and ground; this value was chosen to 

be 100kΩ in order to keep the FB current low. As a result, the output resistance, R42, was 

calculated as 

42 43 00kΩ 09.17kΩ  R = (V ref

V out − 1) · R = ( 5.0V
1.222V − 1) · 1 = 3 (4) 

where Vref is the chip’s internal reference voltage, given by the datasheet [8]. 
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2.2.7. 12V Boost Converter (Schematic: Appendix A.8.) 

This boost converter is the exact same as our 5V boost converter except for the voltage divider 

resistances. Resistor, R46, in Appendix A.8. is the resistor between FB and ground; this value 

was chosen to be 113kΩ in order to keep the FB current low and because R=100kΩ resulted in 

an output resistance that was hard to find as a real component. As a result, the output resistance, 

R45, was calculated as 

45 46 13kΩ .00MΩ  R = (V ref

V out − 1) · R = ( 12.0V
1.222V − 1) · 1 = 1 (5) 

where Vref is the chip’s internal reference voltage, given by the datasheet [8]. 

 

2.2.8. Tensorflow Machine Learning Overview 

 

 

Figure 3: Keyword State Control 

 

When training our ML model for speech recognition, we had to follow the general steps as 

shown in Figure 3. The first step is to train our model on the computer. As our team was using 

the specific keywords “one”, “two”, “three”, “up”, “down”, “stop”, “marvin”, we had to train the 

model with audio files of those spoken words. Using the Google Speech dataset, we were able to 

train our model with the one-second examples of the words and reached a final test accuracy of 

88%. After training the model, we then needed to convert the model to a format that was usable 

by our microcontroller. Therefore, we had to convert it to a Tensorflow Lite model, and finally a 

C++ array. 

After training the model, you can then move from the computer to the microcontroller, which has 

its own specific set of instructions. On the microcontroller, you need to first initialize the model 
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that you trained with the training parameters like feature bins and window stride. After 

initializing, you can then get the input data from the microphone. The microphone returns the 

reading in terms of amplitudes, but our model requires analyzing the audio files in terms of 

frequencies, so we needed to convert the input data using fast fourier transform. With the 

amplitudes converted to frequencies, the model can then take the input features and perform the 

necessary calculations to assign scores to the keywords. Then, the keyword with the highest 

score is chosen as the final prediction. Upon the identification of a particular, our state control 

would then be able to be updated to the next state or update the score if all necessary keywords 

were spoken. 

 
 
 
2.2.9. Speech Recognition State Control  

In order to implement our state control, we chose to use Mbed OS which is an open-source 

RTOS by Arm. This allowed us to setup an easy to use development environment since it 

provided features such as prewritten interfaces and the ability to code using C++.  

 

To drive our state control when using tensorflow, we need to first provide input data for the 

keyword spotting model. We sampled the microphone at a rate of 16kHz and stored the samples 

in an external buffer before passing the data to our model. Our model then converts the 

amplitudes by the microphone into frequencies using fast fourier transform, and splits the 

frequencies into a set number of feature bins. Then, it can run the final calculations, get its 

prediction, and then call specific functions when it recognizes a command. 

 

When we switched to uSpeech, the design of our state control had to change. First, we needed to 

initialize constants for specific phonemes [9] . Once that is done, we then constantly check 

whether there is a sound being heard by the microphone. In our case, we were only able to utilize 

three phonemes effectively: ‘e’, ‘o’, and ‘sh’. We set ‘e’ and ‘o’ to indicate two teams and ‘sh’ to 

indicate an increment in the respective team’s score. Since the program is always listening for 

sounds, there needed to be a way to prevent the program from recognizing the other team in case 
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the user’s pronunciation changes before incrementing the score. As a result, when the phoneme 

for a team is first heard, it sets a flag indicating that a team has been heard and which team it is. 

After hearing the ‘sh’ sound, that team will increment the score by generating a pulse which 

indicates to our microcontroller to increment that teams score. The flag is then reset. 

 

2.2.10. Keyword Spotting Model 

 

Figure 4: Keyword State Control 

 

As shown in Figure 3, our keyword state control is responsible for keeping track of all the 

spoken keywords and updating the correct team with the specified amount. In summary, our 

keywords are recognized in a specific order. In the beginning, our device is in an idle state, but 

once the correct keyword for the next state is provided, it will move on to the next state. These 

states will specify which team, to increment or decrement, the amount to change, and then update 

the score. 

 

Unfortunately, we were unable to use this state control since as mentioned, Tensorflow was 

unable to recognize any of the keywords. As such, we had to use uSpeech instead, which only 

provided us three spoken keywords: ‘e’, ‘o’, and ‘sh’ sounds. Thus our final state control was to 

determine the team by either ‘e’ or ‘o’ and increment the score when the ‘shh’ sound was heard. 
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3. Verification 
3.1. Microcontroller (Requirements: Appendix B.1.) 

To verify that our microcontroller (MCU)  had the proper amount of flash storage and that it 

could properly communicate over I2C with the battery controller, we had to use a development 

board. Unfortunately due to a hardware bug in our 3.3V regulator, we were never able to put our 

STM32 on our own PCB. However, on the development board, we were able to verify that the 

MCU we chose had sufficient flash storage and could communicate over I2C. 

 
3.2. 8-Bit Shift Registers (Requirements: Appendix B.2.) 

To verify that our shift registers functioned properly, we soldered the chips to our board after we 

verified that our 5V boost converter was functioning properly. Then we connected the outputs to 

the displays through 15Ω current limiting resistors. Finally, we probed the pins to simulate the 

high and low toggle of the MCU’s signals, and successfully verified that the shift registers shift 

properly and that the pins could safely sink the proper amount of current, 140mA. 

 
3.3. Charge Controller (Requirements: Appendix B.5.) 

The charge controller was simply verified by monitoring the input current to the battery. After 

the USB connector was connected to the board, and the charge control module was soldered, we 

could test the battery charging. Built into the charge controller is a pin that outputs the current 

charge state of the battery. We connected this pin to an LED, and monitored the status. If the 

battery was charging improperly, the controller was supposed to blink the status output at 1Hz. 

This never occurred for us, and we were able to observe that the controller properly cut off the 

charge current as the battery approached a full charge. 

 

3.4. Battery (Requirements: Appendix B.6.) 

To verify the battery, we simply tested the battery voltage at various charge percentages, and we 

found that its voltage output ranged from 3.65V to 4.1V, and as a result, its average voltage was 

3.87V, slightly higher than its projected nominal voltage of 3.7V.  
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3.5. 3.3 V Voltage Regulator (Requirements: Appendix B.7.) 

To verify that our 3.3V regulator met its requirements found in Appendix B.6., we first verified 

that the battery charging and output was proper, then we connected this voltage, Vbat, to the 

input of the regulator. Next we probed the output of the regulator and found the output voltage to 

be exactly the same as Vbat, the input voltage. This can be seen in Figure 4, where the blue 

signal is the battery voltage and the green signal is the regulator voltage. Despite attempts to 

debug and solve this problem, we could not identify the error. As a result, we could not meet our 

requirements, and additionally, we were never able to test the microcontroller on our own board. 

 

3.6. 5V Boost Converter (Requirements: Appendix B.8.) 

To verify the requirements for our 5V boost converter, we connected Vbat to the input of the 

converter. Next we probed the output of the converter with an oscilloscope. In Figure 5, the blue 

signal is the battery voltage, and the green signal is the boost converter voltage. We can see that 

our output voltage has an RMS value of 5.08V. Additionally our peak-to-peak ripple was 

400mV. This means that our over-under voltage variation was 

v  % 00 00 4%± ~ = 2(V )max

peak−peak · 1 = 2(5V )
400mV · 1 = ±    (6) 

where Vmax is our desired voltage of 5V. This ripple variation is successfully less than our 

required value of ±5%. 

 

3.7. 12V Boost Converter (Requirements: Appendix B.9.) 

To verify the requirements for our 12V boost converter, we connected Vbat to the input of the 

converter. Next we probed the output of the converter with an oscilloscope. In Figure 6, the blue 

signal is the battery voltage, and the green signal is the boost converter voltage. We can see that 

our output voltage has an RMS value of 12.2V. Additionally our peak-to-peak ripple was 1.20V. 

This means that our over-under voltage variation was 

v  % 00 00 + 2.5%± ~ = 2(V )max

peak−peak · 1 = 1.2V
2(12V ) · 1 = ±    (7) 

where Vmax is our desired voltage of 12V. This ripple variation is successfully less than our 

required value of ±5%.  
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Figure 4: 3.3V Regulator Output 

 
Figure 5: 5V Boost Converter Output 

 
Figure 6: 12V Boost Converter Output 
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3.8. Speech Recognition State Control  

When we first began, we had used Tensorflow Lite for our speech recognition. After training our 

machine learning model with the training data for our specified keywords, we had encountered 

issues with getting the incorrect predictions. Our first approach was to unit test our voice 

recognition system by breaking it down into its core components. Despite testing our main 

components such as the input data, microphone bias, and other parameters, we were unable to 

figure out what was wrong. It was only until we testing running Tensorflow Lite using the 

example model and example input data provided by Tensorflow that we discovered that 

Tensorflow did not run correctly on our microcontroller. After this discovery, we tried to run the 

model on other controllers such as the Arduino Uno and Nano, yet we did not have success 

recognizing our keywords and running the ML models. Therefore, as mentioned we transitioned 

to using the uSpeech library. 

 

3.9. Keyword Spotting Model 

Our Keyword Spotting model was revised after switching to the uSpeech library. The uSpeech 

library used phonemes, and as such our KWS used phonemes as well. After calibrating the 

uSpeech library as their mentioned documentation, we still found that we were unable to get 

great accuracy, and where therefore limited to only three phonemes: ‘e’, ‘o’, and ‘sh’. Therefore, 

our KWS was simple and used only those phonemes to recognize the team and add one to that 

team’s score. Verification of this functionality was done with debugging and printing directly to 

the computer’s console. While we did face issues with the team score not updating correctly or 

being decremented without warning, we finally were able to get the final system to work 

correctly and increment the correct team. 
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4. Costs 
As seen in Appendix C as C.1., our estimated prototype cost is $148.58. 

 

According to the IlliniSuccess 2017-2018 annual report [10], the average salary for Computer 

Engineering graduates was $92,430 and $76,079 for Electrical Engineering graduates. This 

translates to an hourly rate of $46.22 and $38.04 respectively. As a result, our total development 

cost can be seen is calculated in (6) to be $48,930. 

2  ) .5 5 weeks $48, 30( • hr
$46.22 +  hr

$38.04 • 2 • week
10hrs • 1 =  9 (8) 
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5. Conclusion 
The biggest goal for future improvements would be finding a better method of voice activation. 

We looked to use Tensorflow because we were able to find examples of other projects using it 

successfully. If Tensorflow is not an option however, there are alternative solutions such as 

prebuilt voice recognition kits which come with set keywords. These kits can be implemented 

into our system similar to how we utilized uSpeech. 

 

Although we were unable to achieve our goal using keywords to control the scoreboard, we were 

able to implement a simpler version using sounds instead. Through this project, we learned a lot 

about the process of making an idea a reality. We learned skills such as PCB design, part 

picking, and testing. We also faced many challenges and roadblocks in the process such as our 

tensorflow model failing. Despite the challenges we faced, we were able to find alternative 

solutions to our problems. 

 

5.1. Ethics & Safety 

Our projects main ethical concern is the voice recognition system. In recent years, users are 

becoming increasingly aware of the data that is being collected by large companies such as 

Google, Amazon, and Facebook; much of that data being collected without the knowledge and 

consent of the user. Amazon Echo devices have been an especially large privacy and safety 

concern ever since it was revealed that the device has recorded private conversations and even 

shared them [11]. This should not  have been a surprise to consumers. Not because it is 

“obvious” that they are recording, but because these companies should have made sure that 

consumers were aware of the data being collected. According to the IEEE Code of Ethics #1 and 

#5 [12], engineers must ensure the safety of the public and improve their understanding of 

emerging technologies. Large tech companies are choosing to ignore these codes and leaving 

consumers unaware and oblivious to threats to their privacy. Because our project also utilizes a 

voice recognition system, we need to be cognizant of these facts.  
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Our project mitigates the dangers of voice recognition in the following manners. First, the length 

of time that the recording of the user will exist should be no more than a few seconds. By the 

time the score has been updated, the recording should no longer exist in the system. The system 

has a limited amount of memory (128kb), with the majority being used by the operating program 

and KWS model. The leftover amount of memory will likely range from a couple kb to around 

ten kb. If the system were to keep the voice recordings, it would quickly run out of memory. In 

addition, the system does not have internet connectivity, unlike Alexa. Alexa operates using a 

server to handle the voice processing and must upload the user’s voice command to the server 

where memory is not an issue. Because our system is not connected to the internet, it cannot 

upload the user’s voice recordings and must delete them to save memory. 

 

5.2. Impact 

While our project may not have much impact in global and economic contexts. It is able to 

positively impact society by providing a quality of life improvement to casual sport players, a 

demographic which encompasses most humans on Earth. Further improvements to the project 

such as reducing production costs will only increase its impact by reaching those in less 

developed nations where its current cost may be too expensive for the average citizen.  
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Appendix A - Schematics 

A.1. Microcontroller (STM32F401RCT6) 
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A.2. Shift Registers (TPIC6C596DRQ1) 
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A.3. Microphone Connection 
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A.4. Seven-Segment Display Connections 
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A.5. Battery Charging IC (BQ25896RTWT) 

 
 

A.6. 3.3V Low-Dropout Regulator (TPS75233QPWP) 
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A.7. 5V Boost Converter (TPS61089RNRR) 

 
 
A.8. 12V Boost Converter (TPS61089RNRR) 
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Appendix B - Requirements and Verification Tables 

B.1. Microcontroller (STM32F401RCT6) 

Requirements Verification 

1. Flash memory is ≥ 100kb 1.  
a. Connect MCU to PC with an 

ST-Link connector 
b. Compile and load a test project 

with 100kb of data into flash 
memory using Arm Mbed IDE 

c. Connect MCU to PC with a 
USB-to-Serial Converter 

d. Using a terminal (ie. PuTTY), 
connect to the board on the 
associated COM port 

e. Transmit data loaded in flash 
memory from the MCU using 
USART 

f. Verify that data received 
matches data loaded 
 

2. Must communicate over I2C 

 

2.  
a. Connect MCU to a chip which 

can generate data and 
communicate over I2C(ie. 
RTC, Temperature sensor, etc.) 

b. Connect MCU to PC with a 
USB-to-Serial Converter 

c. Using a terminal (ie. PuTTY), 
connect to the board on the 
associated COM port 

d. Transmit data received over 
I2C from sensor to terminal 
using USART 

e. Verify data received is data 
that can be generated by the 
chip 
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B.2. Shift Registers (TPIC6C596DRQ1) 

Requirements Verification 

1. Must have Serial in Parallel Out 
 

 

1.  
a. Feed 4 bits of data into the 

register through serial in 
b. Read data from parallel out on 

4th clock cycle 
c. Verify data read is same as 

data entered  

2. Each drain pin must be capable of 
sinking at least 140mA  

 

2.   
a. Connect device to 5V power 
b. Insert serial data using 

microcontroller dev board 
c. Drive an output drain pin low 

with a 40Ω, 5V load attached 
d. Measure drain current with 

multimeter 
 

 

B.3. Microphone 

Requirements Verification 

1. Must pick up audio from ≤ 10 ft away 1.  
a. Drive chip at 3mA 
b. Connect chip output to an 

oscilloscope 
c. Measure 10 ft from 

microphone 
d. Play music/speak and verify 

that the signal is appearing on 
the oscilloscope 
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B.4. Seven-Segment Display (Sparkfun COM-08530) 

Requirements Verification 

1. Each segment must illuminate when 

applied with 12V and drive at a 

maximum of 140mA 

1.  
a. Supply display with 12V and 

drive current of 140mA 
b. Ensure segments are 

illuminated 
 

 
B.5. Battery Charging IC (BQ25896RTWT) 

Requirements Verification 

1.  Must provide the battery with a 

constant charging voltage of 4.2 V. 

1.   
a. Properly wire the chip with 

attached battery 
b. Measure the charging voltage 

across the battery with an 
oscilloscope 

2. Must stop charging the battery once 

the charging current drops below 3% 

of the battery’s rated current. 

2.  
a. While charging, measure the 

battery input current with a 
multimeter 

 

B.6. Battery (PkCell ICR18650) 

Requirements Verification 

1. Must provide a nominal output 

voltage of 3.7 V ± 1% 

1.  
a. Connect a simple load to the 

battery to drive 1A 
b. Measure the voltage across the 

load using an oscilloscope 

2. Must provide a continuous discharge 

current of at least 1.5A (.23C) for four 

hours 

2.   
a. Connect a load of 2.5 Ohms 
b. Measure the load current with 

a multimeter every ten minutes 
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B.7. 3.3V Low-Dropout Regulator (TPS75233QPWP) 

Requirements Verification 

1. Must supply 3.3V ± 1% with a varied 

input voltage range of 3V to 5V 

1.  
a. Connect output to an 

oscilloscope 
b. Input a range of DC voltages 

from 3V to 5V 
c. Monitor the output voltage 

with an oscilloscope 

2. Ensure the chip can drive up to 2A 

 

2.  
a. Vary the load across the output 
b. Monitor the load current using 

a multimeter 

 

B.8. 5V Boost Converter (TPS61089RNRR) 

Requirements Verification 

1. Must supply 5V ± 5% with a varied 

input voltage range of 3V to 5V 

1.   
a. Connect output to an 

oscilloscope 
b. Input a range of DC voltages 

from 3V to 5V 
c. Monitor the output with an 

oscilloscope  

2. Ensure the module can drive up to 3A 2.  
a. Vary the load across the output 
b. Monitor the load current using 

a multimeter 
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B.9. 12V Boost Converter (TPS61089RNRR) 

Requirements Verification 

1. Must supply 12V ± 5% with a varied 

input voltage range of 3V to 5V 

1.   
a. Connect output to an 

oscilloscope 
b. Input a range of DC voltages 

from 3V to 5V 
c. Monitor the output with an 

oscilloscope 

2. Ensure the module can drive up to 3A 2.  
a. Vary the load across the output 
b. Monitor the load current using 

a multimeter 
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Appendix C - Cost Table 

C.1. Cost breakdown of prototype 

Power Subsystem 

Part Name Make Part No. 
Cost ($) 

Quantity Total ($) 
Single Bulk* 

1 Battery PMIC Texas Instruments BQ25896 3.87 2.35 1 3.87 

2 Battery Pkcell ICR18650 29.50 - 1 29.50 

3 Voltage Regulator Texas Instruments TPS75233 10.81 6.13 1 10.81 

4 5V Boost Texas Instruments TPS61089RNRR 2.94 2.94 1 2.94 

5 12V Boost Texas Instruments TPS61089RNRR 2.94 2.94 1 2.94 

Control Subsystem 

Part Name Make Part No. 
Cost ($) 

Quantity Total ($) 
Single Bulk* 

1 Microcontroller STMicroelectronics STM32F401RCT6 6.27 3.32 1 6.27 

2 Shift Registers Texas Instruments TPIC6C596DRG4 1.13 0.51 4 4.52 

User Interface Subsystem 

Part Name Make Part No. 
Cost ($) 

Quantity Total ($) 
Single Bulk* 

1 Microphone CUI Inc CMA-4544PF-W 0.83 0.38 2 1.66 

2 Amplifier Maxim Integrated MAX9814 1.51 0.85 2 3.02 

3 Seven-Segment 
Displays SparkFun Electronics COM-08530 18.95 - 4 75.8 

4 Listening Light Kingbright WP154A 1.95 0.83 1 1.95 

5 Power/Charge Status 
light Kingbright WP154A 1.95 0.83 1 1.95 

6 Power Button E-Switch TL2201EEZA1CWHT 0.67 0.37 1 0.67 

7 Increment Button E-Switch TL2201EEZA1CWHT 0.67 0.37 4 2.68 

TOTAL PARTS COST: 148.58 

*Price/piece (1000pcs) 

 

 

39 


