

Abstract

For our senior design project, we set out to design, build, and test a robot to balance on top of a

cylinder. This is a difficult problem in controls because of the multiple dynamic bodies involved, and

because of the fast dynamics of the small, yet heavy robot. By using accurate sensors, precise motor

control, and fast processing, we were able to get our robot to balance like we set out to.

2

Contents

1. Introduction 1

1.1 Section head 1

2 Design 2

2.1 [Component or Block] 2

2.1.1 [Subcomponent or subblock] 2

3. Design Verification 3

3.1 [Component or Block] 3

3.1.1 [Subcomponent or subblock] 3

4. Costs 4

4.1 Parts 4

4.2 Labor 4

5. Conclusion 5

5.1 Accomplishments 5

5.2 Uncertainties 5

5.3 Ethical considerations 5

5.4 Future work 5

References 6

Appendix A Requirement and Verification Table 7

1. Introduction
Problem: It is a challenge to build a robot that is capable of balancing atop a cylinder. Many
people studying robotics or controls would be interested in experimenting and improving upon a
robotic platform like this, and it does not currently exist.

Solution: We will build such a robot in an affordable way, using hardware and software that
enables precise realization of the control algorithm chosen by the researcher. The robot will
measure data, process it, and actuate its motor so that it will stay on top of the cylinder. Once this
project is complete, it will be an accessible development platform for those studying robotics and
controls.

3

Figure 1: System Block Diagram

4

2 Design
A major choice in designing a robot that can balance on a cylinder is the motor. One can choose
either a Brushed DC motor or a stepper motor. Stepper motors have very good positional and
velocity accuracies, but suffer from lack of precise torque control. Brushed DC motors on the
other hand, combined with an encoder and a feedback loop can also achieve very good positional
and velocity accuracies, with the added benefit of torque control by monitoring and controlling
the current through the armature windings.

5

6

7

2.1 Power System
This system will deliver power to all other blocks in our design so that the robot remains
functional. The system consists of a 12V 5A power supply and a
5V linear regulator.

2.1.1 Wall Power Supply

Supplies the power needed by all other blocks. Once it is connected to the PCB via a barrel
connector, it is directly connected to the motor driver and the linear regulator through copper
traces on the PCB.

2.1.2 Linear Regulator (LM1117)

Sources the stable 5V signal needed to power the MCU and orientation sensor.

2.2 Motor System
This system will exert the necessary torque, calculated by the processor system, on the drive
wheel to balance the robot.

2.2.1 Motor (ROBOT ZONE 638260)

Converts current output by motor driver into torque output to the drive wheel. The torque applied
will drive the robot toward stability atop the cylinder.

2.2.2 Motor Driver (TI DRV8840)

Converts the digital control signal from the MCU into a precise current used to drive the motor.

2.2.3 Motor Encoder (included with motor)

Reports the shaft position of the motor to MCU. Necessary for MCU to compute proper control
signal.

2.3 Processor System

2.3.1 Microcontroller (ATmega328P)

The microcontroller (MCU) will run the control algorithm, processing data prom the sensors and
generating a control signal for the motor driver.

2.3.2 Orientation Sensor (Adafruit BNO055 absolute orientation sensor)

Measures the tilt angle of the robot in the world reference frame, reporting it to the MCU. The
goal of the robot is to drive this angle to zero degrees from vertical

2.4 Unity3D Physic Simulator

Unity’s built-in physics engines provide components that handle the physical simulation for our
projects. In our unity simulator, we set the size and weight of the cylinder and motor to be the
same as our wobblebot, even the size of the wheels. All of them are in 3-d models.

8

2.4.1 Feature of Unity3D Simulator

- Physics engines, Physics parameters and Physics connection.
- Mock orientation sensor and motor encoder. UnityEngine includes the

Gyroscope.input.package which can access the tilt angle and shaft position and assign
these features to the controller.

- Functions and equations related to the movement between motor and cylinder. By
changing some parameters, it will break the equations and the motor will not stay balance
on the cylinder.

- MonoBehaviour includes the SystemObject(cylinder and motor) and Collections.
2.4.2 Goal of the Unity3D Simulator

- Test the functioning requirement of the wobblebot with same data set up as the real
hardware has. By changing the parameters of some features such as resistance, velocity
or mass, it will differ the result of whether the motor can balance on the cylinder.

- Using the simulator, it is easier to set the mass, velocity, resistance and anything on the
board and controller. It will be more convenient to test the functionality by using the
simulator.

9

3. Design Verification

3.2 Motor System

3.1.2 Motor Driver

The goal of the motor driver is to deliver a current proportional to the digital signal it receives. This

requirement was tested by applying different signals to the motor driver, and measuring the voltage

across a shunt resistor in series with the motor. From the results, it is unclear whether there is a

correlation between the desired and actual current, as the voltage changes very rapidly. To improve this,

a different motor driver IC could be tested and interfaced with a high precision 14bit DAC to provide a

voltage reference for the current limiter.

3.3 Processor System
One requirement of the processor system is to operate at a period of 10 ms or 100 Hz. To verify this, the

full code for the project was ran, and the amount of time to complete each loop was recorded.

Clearly, the period stays between 9 ms and 11 ms, satisfying our requirement.

10

4. Costs

4.1 Parts
Based on a 100k salary per group member and 8-week time window in which the project is
performed, plus an estimated upper limit of $200 for every component making up the robot, this
project will cost:
(100,000 * 3 group members) / ((12 months/year)/(2 months/project)) = $50,000

● $200 for the robot
= $50,200

The estimated upper-limit of $200 is based on the cost of the $50 motor and $30 orientation
sensor(the two most expensive components present), combined with a fairly wide buffer for the
unforseen(i.e. something breaking, etc.).

4.2 Labor
Based on a 100k salary per group member and 8-week time window in which the project is
performed, plus an estimated upper limit of $200 for every component making up the robot, this
project will cost:
(100,000 * 3 group members) / ((12 months/year)/(2 months/project)) = $50,000

● $200 for the robot
= $50,200

11

5. Conclusion

5.1 Accomplishments
In the end, we were able to create a robot that balances on top of a cylinder, so we were successful.

5.2 Uncertainties

5.3 Ethical considerations
Our robot contains hard, possibly fast moving parts which could cause injury to a person in the
event of a collision. This event would go against IEEE #9 “to avoid injuring others.”[2] To avoid
this, people will be kept clear of the robot’s trajectory while it is powered on, and a group
member will be prepared to disconnect power rapidly if the robot begins to behave dangerously.

Our project has the potential of furthering others' knowledge in the area of control systems and
robotics, but only if it is made available for use. This concerns IEEE code of ethics #5, “to
improve the understanding by individuals and society of the capabilities...of conventional and
emerging technologies, including intelligent systems.”[2] To abide by this, our hardware and
software designs will be open source, freely available for duplication by anyone interested in the
topic.

Our project team consists of three students who wish to gain valuable technical experience.
Although there are many individual areas of work to be done, it is possible for one or more group
members to take responsibility for the project’s completion away from the others, denying them
of the experience they wish to gain. This would go against the IEEE code of ethics #10, which
requires its members to “assist colleagues and co-workers in their professional development.”[2]
To prevent this, our group will ensure the work to be done is shared equally, and allocated
according to each member’s overall career development goals.

12

References
 [1]U. Control Systems Instructional Laboratory at University of Illinois, "UIUC Segbot -

Home", Coecsl.ece.illinois.edu, 2019. [Online]. Available:
http://coecsl.ece.illinois.edu/segbot/segbot.html. [Accessed: 20- Sep- 2019].

[2] Ieee.org, "IEEE IEEE Code of Ethics", 2016. [Online]. Available:
http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 9-19 Sep-2019]

13

Appendix A Requirement and Verification Table
Table X System Requirements and Verifications

Requirements Verification Verificatio
n status
(Y or N)

1. Must provide 5A of current at
12V continuously without
overheating

2. Output voltage must remain
within 5% of 12V

1,2. Plug in power supply to wall
power and attach resistive load
such that current draw is 5A.
Ensure voltage remains between
11.5V and 12.5V

3. Must provide 30mA
continuously while staying
cooler than 125 degrees Celsius.

4. Output voltage must remain
between 4.5 and 5.5V

1,2. Attach power supply voltage
at input of regulator, attach
resistive load such that current
draw is 30mA. Measure voltage
and ensure it is between 4.5 and
5.5V. Measure temperature using
infrared thermometer, ensure it is
below 125 degrees Celsius

5. Must rotate at a max speed of
153rpm

6. Must provide at least 1.86
in-lbs. of torque when stalled

7. Must provide torque output
proportional to the applied
current

8. Must not exceed 60 degrees
Celsius while operating under
load

1. Connect 12V power supply to
motor terminals, measure speed
from encoder signals with arduino

2. Connect 1 ft. lever arm to motor
shaft, measure force at end of
lever with digital scale

3. Apply different currents from 0 to
5 volts and measure stalled
torque. Plot data and ensure the
correlation is linear.

4. Apply 12V to stalled motor,
measure temperature using
infrared thermometer

9. Must output at least 5A at 12V
continuously while staying
below 160 degrees Celsius

10. Must output current
proportional to control signal

5. Connect 12V power supply to
driver, set current limit to 5A,
load with motor, and measure
current and voltage with DMM,
and the temperature with an
infrared thermometer.

14

(coefficient TBD) through
motor load

6. Specify all 32 current levels using
Arduino, and measure output
current through motor using
DMM. Plot the data and find the
line of best fit. Ensure the
maximum error from the line is
less than 5% of expected

1. Must report shaft position within
5% accuracy at all times

2. Must report shaft position at least
100 times per second

1. Use Arduino to count pulses from
encoder. Allow motor shaft to rotate
10 full times. Ensure count number is
1973.

2. Use Arduino to poll the encoder
count number every 10ms. Set a
GPIO pin high while the processor is
idling, and low while it is busy,
monitor the pin using an oscilloscope
and ensure the code runs in less than
10ms each cycle.

1. Must process sensor data and output
control signal at 100Hz

2. Must communicate with orientation
sensor over UART at 100Hz

1. Use MCU to set a GPIO pin high
while the processor is idling, and low
while it is executing control signal
calculation. Monitor the pin using an
oscilloscope and ensure the duty
cycle of the pin output is always
greater than 0.

2. Connect MCU to orientation sensor
over UART and poll data from it
every 10ms, ensuring the code runs
smoothly using same method.

1. Must report tilt angle with less than
3% accuracy at all times

2. Must report tilt angle at least 100
times per second

1. Build a test platform with attached
inclinometer to measure actual tilt.
Record tilt angle from sensor. Record
data pairs into a table. Ensure the
maximum error is less than 3% for all
angles.

2. Program MCU to poll the sensor at
100Hz, ensure new data is available
from the sensor at each poling time

15

16

