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Abstract 

The project, the Road Interference Mapper (The RIM), was designed to reduce evitable damages to 

vehicles or accidents by notifying drivers with the number of approaching interferences on the road. The 

information on the designed street was collected by an ultrasonic sensor and the noise of the 

interferences was filtered. The data was calculated in the microcontroller unit. The smartphone app was 

developed to convey the collected information to drivers. The RIM successfully detected the 

interferences at least 0.4m deep within +/-2 and alerted on the developed smartphone app. This system 

has the potential to raise awareness and to reduce the rate of vehicle damages and accidents caused by 

interferences on the streets. 
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1. Introduction 

1.1 Purpose 

In many places, there are multiple roads one can take to get to one's desired destination 

within a similar amount of time. Especially in many metropolitan cities where the road layout is a 

grid, there are countless paths to a given destination. However, in many places, certain roads 

are littered with potholes and debris. These roads with many interferences would ideally be 

avoided but there is currently no way to tell whether or not a road contains a large number of 

potholes and debris. Even government surveyors have no real way to find and count potholes 

besides manually counting them. 

To allow for better driving path planning and pothole detection, our product allows 

government road surveyors to attach a device to their vehicle that will detect the number of 

interferences on the road and send that data to a server. Consumers can then view this data on 

their own smartphones using our app. Ultrasonic sensors periodically sense the average 

distance to the road and any deviation in this distance within a threshold signifies the presence 

of an interference. A microcontroller unit (MCU) periodically processes the distance data, and 

upon detection of an obstacle, sends a signal to a smartphone app notifying the app of the 

detected obstacle. The signal differs depending on if a pothole or a piece of debris was 

detected. The smartphone app then increments the number of potholes or debris, depending on 

the signal received, the surveyor has detected on the current road. This information is then sent 

to a server where the displayed number of potholes and debris on each nearby road is an 

average of all of the surveyor data on that road. All consumers using this app are able to see 

the average number of interferences on each road that the surveyors detected. However, we 

believed the server portion of this system was out of the scope of this class. 

1.2 Functionality 

 Our product has three main requirements in order to function properly. The first 

requirement is that it must be able to detect potholes and debris of at least .25 m in width, .25 m 

in length, and .04 m in depth. This makes sure our system does not fail to detect interferences 

of a notable size. We chose these dimensions based on United Kingdom road data [1] and the 

average size of a tire [2]. Secondly, our product must be able to count the number of potholes 

and debris on a road within +/- 2 potholes and debris and display this data on a smartphone 

app. This is to ensure we get an accurate count on each road so that the data we collect and 

broadcast is useful data. Finally, the product must be able to detect potholes and debris while 

moving at speeds of up to 9.5 mph. This speed was chosen to allow the surveyors to move at a 

decent speed while also allowing the ultrasonic sensors to collect enough data to determine the 

existence of interferences. 

1.3 Subsystem Overview 

The RIM requires five main electrical components for operation as shown in figure 1.3. First, a 9 

V battery is needed to supply power to a processing module at all times, Second, an ultrasonic 

sensor is required to detect potholes and debris on streets at speeds within 9.5 mph. Third, we 
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need a MCU to power the ultrasonic sensor and the Bluetooth module at 5 V, and to process all 

data from the sensor and the Bluetooth module. Fourth, the Bluetooth module will be  

a data bridge to process between the MCU and a smartphone. Fifth, a 

smartphone/software is needed to exchange data with the Bluetooth module and count the 

number of potholes and debris for users. 

 

 

Figure 1.3 Overall Block Diagram 

 

2. Design 

2.1 Power Supply Module 

9 V battery supplies power to the processing unit regulating 9 V to 5 V by a voltage regulator, 

which in turn supplies power to the Bluetooth module and an ultrasonic sensor. As the voltage 

regulator is a linear regulator, it converts a 9 V input power to a 5 V output which is supplied to 

the input voltage on the MCU; all components and modules in our system require    5 V power 

supply. 
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2.2 Processing Module 

2.2.1 Processing Module Design Procedure 

The design decision for MCU of the system was to add complexity in hardware to our 

project, instead of just using Arduino Nano. At the beginning of consideration for our project, it 

was decided that we use Arduino Nano as our MCU. However, this would simply lead our 

project to just connecting and wiring modules to each other and programing the sensor, the 

Bluetooth module, and the smartphone app. Also, there were some unnecessary output pins to 

be removed as analog pins were not used. By designing our own MCU, only necessary pins 

were drawn to be connected to our sensor and Bluetooth module. The MCU was built on Printed 

Circuit Board (PCB). On the PCB, through hole components, such as resistors, capacitors, and 

crystal oscillator, are used, as they were easily found in our lab. Even if the size of through hole 

components are much bigger than the size of surface mount components, they were still 

suitable in scale for the PCB because not too many components were placed on the PCB; the 

size of the PCB is 76 mm x 67 mm in length and width, so that even with the through hole 

components, the PCB still has spacious surface. On the PCB, bypass capacitor is used for the 

power supply to short AC noises, so only DC signal can be delivered. The Bluetooth module 

(HC-06) was used as its operating voltage is 5 V. However, voltage divider is connected to the 

data-in pin on the Bluetooth module as RX pin can only receive 3.3 V, but the MCU pin supplies 

5 V through the pin; as the MCU pin can read 3.3 V as HIGH, the TX pin on the Bluetooth 

module can directly connected to the MCU. The first decision of the mode of the Bluetooth 

module was that we intend to turn it on and off with the smartphone app. However, it would add 

complexity to our system in software portion and there was no necessity as the system is turned 

on and off manually by connecting and disconnecting the power source for our demonstration; 

so the system can only be operated whenever in use. The bootloader (FTDI chip - 

LM1117IMPX-5.0) allows the MCU to communicate with a computer through the mini-B USB 

port, so the MCU can be coded to make calculations with data from the sensor and the 

Bluetooth module. The MCU (ATMEGA328P-AU) is chosen to receive data from the sensor, to 

make calculations of the data and to communicate with the smartphone block through the 

Bluetooth module. This chip is equipped with enough digital pins required for our project. 

2.2.2 Processing Module Design Details 

As shown in Appendix A and Appendix B, the processing module consists of a MCU 

(ATMEGA328P-AU), a bootloader chip (FT232RL), a Bluetooth module(HC-06), and a mini-B 

USB port. The processing module performs critical calculations with data collected by the 

ultrasonic sensor in order to determine whether or not interferences are detected; the noisy data 

is filtered out. The information of the interference calculated in this module is sent to the 

smartphone block to be displayed on the smartphone app for users. The Bluetooth module 

operates with the Bluetooth 2.0 protocol at an operating frequency of 2.4 GHz in the ISM 

frequency band [3]. As shown in Appendix B, The MCU is to communicate with ultrasonic 

sensors and the Bluetooth module. The crystal oscillator connected to pin 7 and pin 8 on MCU 

generates the 16MHz clock signal. The left three connectors are to connect sensors to the MCU 
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and the Bluetooth pin connector is to connect the Bluetooth module to the MCU for data 

transmission with the smartphone block via digital pins on MCU. 

2.3 Sensor Module 

2.3.1 Sensor Design Procedure 

The sensors of The RIM were chosen to achieve one objective: detect change in 

distances. In the preliminary stages of design, we considered infrared, LIDAR, and ultrasonic 

sensors to detect change in distances; we chose ultrasonic sensors. Although ultrasonic 

sensors don’t measure distances perfectly, the low cost of the unit combined with the fact that 

sound is less prone to noise than light led us to choose ultrasonic sensors over the more 

expensive LIDAR and noisier infrared sensors.  

 With our choice of sensors narrowed down to ultrasonic, we then shifted our focus to the 

placement of the sensors, the number of sensors we were going to use, the operating speed of 

the sensors, and how we were going to process the sensor readings to detect change in 

distances. To find the optimal placement and number of sensors, we studied the sensor’s range 

behavior and spread behavior described by equations 2.1 and 2.2 respectively. To find the 

maximum speed at which a vehicle can move for the sensors to operate correctly, we studied 

the sensor’s sampling rate governed by equation 2.3. Given a sampling rate, we can then 

calculate the maximum operating speed of the sensors using equation 2.4. To figure out how to 

use the sensor’s readings to discern changes in distances, we designed a detection algorithm 

mapped out in figure 2.1 

    

Equation 2.1 Travel time of ultrasonic sensor pulse 

 

  

Equation 2.2 Ultrasonic sensor spread 

 

 

Equation 2.3 Ultrasonic sensor sampling rate 

 

 

Equation 2.4 Maximum Ultrasonic Sensor Operating Speed 
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Figure 2.1 Interference detection algorithm 

 

2.3.2 Sensor Design Details 

2.3.2.1 Sensor Physical Design Details 

First, to determine the optimal height to mount the ultrasonic sensors, we must 

understand how ultrasonic sensors use sound waves to measure distances. Sound waves 

produced by an ultrasonic sensor leave through the transmitter, bounce off the closest object in 

front of the sensors, and return to the ultrasonic sensor’s receiver; this process is portrayed in 

figure 2.3. Time one in equation 2.1 denotes the time at which a sound wave leaves the 

sensor’s transmitter and time two denotes the time at which the sound wave returns to the 

receiver. The delay between time two and one gives us a sense of how far an object is from the 

sensors. Ideally, the further an object is from the sensor the greater this time delay will be and 

the closer an object is from the sensor the shorter this time delay will be. This time delay 

depends directly on the trajectory of the sound wave being transmitted and received by the 

ultrasonic sensor. In turn, trajectory is affected by the geometry of the object the sound waves 

are hitting, the distance the object is from the sensor, and external sound interferences. 
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                  Figure 2.2 Ultrasonic sensor side view      Figure 2.3 Ultrasonic sensor top view  

 

According to the sensor’s manufacturer’s documentation, the sensors should accurately 

measure distances between 2 cm and 400 cm [4] so we initially chose to mount the sensors 40 

cm above ground level corresponding to the height of the chair seat on which we tested our 

device. After empirical tests explained in section 3.3.1, we found that the sensors doesn’t 

operate below 40 cm and so we raised the sensors to a height of 90 cm above ground level for 

the final implementation.   

Next, in order to determine the optimal number of sensors to use, we applied equation 

2.2 which computes the width (w) of the floor an ultrasonic sensor would be able to probe when 

placed at height d above the floor given that the sensor’s measuring angle is Θ. These 

parameters are illustrated in figure 2.2. Using the initial height we decided to mount the sensors 

at (d=40 cm), we found that a single ultrasonic sensor unit will be able to probe a horizontal 

width of w=10cm of the ground underneath it. With the goal of probing the entire width 

underneath the test vehicle in mind, we initially decided to use four sensor units.  



7 
 

 

Figure 2.4 Realization Illustration 

 After taking into account the geometry of the interferences we are trying to detect and 

performing tests on the ultrasonic spread behavior described in section 3.3.2 , we realized that 

only one center sensor is needed for our device to function. This realization is illustrated in 

figure 2.4. 

Finally, to determine the maximum velocity that the sensors can travel at for it to function 

correctly, we applied equation 2.4. This equation calculates a maximum operating velocity 

based on the sampling rate of the sensors and the minimum distance interval between which we 

want to get samples. Using the HC-SR04’s suggested measurement cycle of 60 ms the sensors 

should theoretically exhibit a sampling frequency of 17 Hz [4]. If we aim to obtain a ground-

distance reading every 0.25m, equation 2.4 tells us an ultrasonic sensor sampling at 17hz will 

only be able to detect interferences under a car moving up to a velocity of 4.25 m/s. This result 

assumes that every single sample the ultrasonic sensor returns is accurate. Due to noise, the 

effective sampling rate is lower than 17 Hz and thus the actual operating velocity of The Rim is 

below 4.25m/s.  

 



8 
 

 

Figure 2.5 Sensor phase offset illustration 

 

To compensate for this sampling rate reduction, we could’ve placed multiple ultrasonic 

sensors adjacently one behind the other (shown in figure 2.5) with a phase offset introduced 

between sensors. This phase offset sensor configuration would multiply the effective sampling 

rate achieved with one sensor by the new number of sensors; this solution was not 

implementable due to the limitation of having only one functioning digital pulse width modulation 

pin on our printed circuit board. We could've also switched to LIDAR sensors which inherently 

have much higher sampling rates than ultrasonic sensors. In the end, due to monetary and time 

restraints, we had to make due with one ultrasonic sensor. Consequently, The RIM in its current 

state has to move at a slower speed to detect interferences. This speed is dependent on the 

number of accurate data samples the ultrasonic sensor is collecting in any given timer interval.       

 

2.3.2.1 Sensor Data Processing Design Details 

After the physical design ultrasonic sensors were taken into account, we then created a 

detection algorithm mapped out in figure 2.1 that would use the ultrasonic sensor’s data to 

detect change in distances caused by potholes and road debris. The function of our final 

detection algorithm depends on 4 main variables: constant, threshold 1, threshold 2, and flag. 

Constant is set equal to 4770 µs and describes the average time delay returned by the 

ultrasonic sensors when The RIM is over level ground. Threshold 2 is set equal to 100 µs and 

describes the average deviation from the constant in an ultrasonic sensor’s reading when The 

RIM is over level ground. Threshold 1 is set equal to 200 µs microseconds which describes the 

minimum difference in sensor readings from the constant when it is 4 cm below ground level. 

Flag is a binary variable that prevents double counting; when an interference is detected, flag 

gets raised to 1 and isn’t lowered again to 0 until The RIM detects that it is once again over level 

ground.  
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As The RIM travels along a road, it’s ultrasonic sensors constantly probes the ground and 

returns data points in the form of a time delay. The detection algorithm subtracts the variable 

constant from the data point and compares it to threshold 1 to decide if an interference of at 

least 4 cm in thickness was present when the data point was taken. If an interference wasn’t 

detected, the algorithm then compares this same difference to threshold 2 to determine if it is 

back on level ground. 

 

2.4 Smartphone Module 

2.4.1 Smartphone Design Procedure 

 The main design decisions for the smartphone block of the system revolve around the 

GPS and location mapping portions of the system. The first decision was which GPS unit to use 

to get the current longitude and latitude coordinates of the user. We could have either used the 

smartphone GPS capabilities or a separate GPS chip. Using a separate GPS chip would 

provide a more accurate location data, however, it would have added significant complexity to 

the system as well as introduce latency from the GPS chip’s necessity to communicate data to 

the smartphone. We decided it would be better to use the smartphone GPS as the accuracy 

was believed to be sufficient and the data would be available almost instantly. The smartphone 

GPS would provide the location data necessary to map each interference detected on an 

onscreen map. However, after testing the accuracy of the smartphone GPS with a public 

Google play app [5], as shown in table 2.1, it was found that the smartphone GPS would not be 

accurate enough to get a good mapping of the interferences detected. Also, we failed to 

consider the fact that since our system would be on a moving vehicle, the location data would 

be even more inaccurate as the system would move away from the location of the interference 

as data propagated to mark the interference. Due to the inaccuracy of the smartphone GPS, we 

decided to change the scope of the project. Instead of mapping the exact locations of each 

interference, our system was changed to count the number of interferences on each road. This 

change relaxed the accuracy requirements of our GPS system to require accuracy to the closest 

road instead of to a specific point. It also helped to keep the complexity of this project within the 

scope of our class. 

 After changing the scope of the project, we had to determine the best way to get the 

current road based on the users current latitude and longitude coordinates. This process of 

converting latitude and longitude coordinates to road names is called reverse geocoding. There 

were many reverse geocoding APIs available and we narrowed it down to four, Nominatim [6], 

Google Nearest Road [7] , Geonames [8], and Mapbox [9]. The Nominatim reverse geocoding 

API offered a fast response time and accurate results because of the expansiveness of the 

Open Source Maps database. The responses, however, were fairly large. The Google Nearest 

Road API had the largest database of the reverse geocoding options and had compact 

responses. However, this was a paid service and was prone to slowdowns due to needing 

verification for each request. Geonames had a smaller database than the other two 
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aforementioned APIs, however, it had customizable response parameters which allowed for 

simple and easy to parse responses. Finally, Mapbox also seemed to provide accurate results 

and easy to parse responses. However, the responses contained a large amount of extraneous 

data that made responses take a long time. The responses for the same input in all of these 

APIs are located in Appendix G. In the end, we decided to use the Nominatim reverse 

geocoding API for its accuracy and speed of responses. These two factors were the most 

important for ensuring the system was detecting the correct road and would change the current 

road quickly if the user changed roads.  

Location Moving? Error (m) 

Residential House X 3.2  

ECEB ✓ 4.3  

Outside X 4.9 

Outside ✓ 6.0 ~ 8.0 

Table 2.1 Smartphone GPS Accuracy Table 

 

2.4.2 Smartphone Design Details 

 We used Java to design the smartphone app in Android Studio. The smartphone app 

consists of two main components, the Bluetooth communication module, and the location 

tracking module. The Bluetooth communication module allows the smartphone to communicate 

with the Processing module to update the pothole and debris counts on the current road upon 

the reception of a Bluetooth signal. While the location tracking module keeps track of the current 

road the user is on and displays the correct pothole and debris counts according to that current 

road. The source code for the smartphone app is found in Appendix E. Figure 2.6 shows the 

overall flowchart for the smartphone app. 

The Bluetooth communication module uses the Client Bluetooth Library [10]. This library 

allowed the smartphone to connect with the Bluetooth module in the processing unit and 

communicate with the module as needed. This library allowed for the synchronous reception of 

a Bluetooth signal in the form of a text string. Upon receiving a text string, the smartphone app 

will check whether the signal corresponds to a pothole or a piece of debris. Upon receiving the 

text string “<DEB>” or “<POT>”, the app will increment the count of debris or potholes 

respectively for the current street. 

The location tracking module utilizes a pipeline of Google Location Manager [11], Volley 

[12], Nominatim, and back to Volley. First, the app uses Google Location Manager to get the 
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current latitude and longitude coordinates of the user. Google Location Manager uses either the 

network or the GPS of the smartphone get these coordinates depending on which one is more 

accurate. Outside the GPS will be more accurate, and inside a building, the network will be 

more accurate. Then, we use the Volley library to construct and send a Javascript Object 

Notation, or JSON, request to the Nominatim API through the internet. The Volley library 

properly formats the latitude and longitude coordinates received in the first step into a format the 

Nominatim API can parse. After this request is sent, the app must wait for the reverse 

geocoding response from Nominatim. Upon receiving a response, the Volley library will parse 

the JSON response for the street name. With this information, the app can update the current 

street and the current pothole and debris counts displayed to the user. The app repeats this 

process periodically to ensure the user has not changed roads. The workflow for the location 

tracking feature of the smartphone is found in figure 2.7. 

These modules allow the smartphone app to display and update the number of potholes 

and debris on the current road upon receiving each Bluetooth signal sent from the processing 

module. 

 

 

Figure 2.6 Smartphone App Flowchart 
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Figure 2.7 Smartphone Location Tracking Flowchart 

3. Design Verification 

3.1 Power Module 

For a successful project, constantly supplying power would be the most critical process 

to be done. As shown in figure 3.1, the top red led on the right hand side lights up when the 

power is supplied to the PCB after regulation through the voltage regulator. Another method to 

check if the power is supplied is to simply connect the Bluetooth module or the ultrasonic 

sensor; if the Bluetooth module blink the light on itself or if the MCU receives data from the 

sensor, it means that the power is being supplied. 

 

 

Figure 3.1 Top view of the PCB 

 

This voltage regulator has a low efficiency which is about 46.9% by using the equation 3.1.  

𝑉𝑖𝑛 = 8.0𝑉 𝐼𝑖𝑛 = 1.2𝐴 𝑉𝑜𝑢𝑡 = 5.0𝑉 𝐼𝑜𝑢𝑡 = 0.9𝐴 
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𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟

𝐼𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟
× 100 =

𝑉𝑜𝑢𝑡 × 𝐼𝑜𝑢𝑡

𝑉𝑖𝑛 × 𝐼𝑖𝑛
× 100 

Equation 3.1 Efficiency of the Voltage Regulator 

3.2 Processing Module 

In order for this processing module to perform its role in the system, all the requirements 

should be met. First, the distance data from the ultrasonic sensor should be collected in the 

MCU. Second, the interference detection algorithm on the MCU should detect the number of the 

interference on a given street within +/-2 interference. Third, The Bluetooth chip should receive 

all signals from the MCU and send them to the smartphone app within 2 second. Fourth, The 

Bluetooth chip should receive all signals from the smartphone app and send them to MCU 

within 2 seconds. In other words, the communications between the MCU and the sensor, and 

between the MCU and the smartphone through the Bluetooth module. To verify this, the system 

should be actually run and ultimately should be able to display the number of potholes and 

debris respectively, as shown in figure 3.2.  

 

 

Figure 3.2 Picture of Smartphone App Display 
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3.3 Sensor Module 

3.3.1 Ultrasonic Sensor Range Behavior 

 

 

Figure 3.3 Ultrasonic Sensor Range Behavior 

To test the ultrasonic sensor’s range behavior, an ultrasonic sensor was moved from 1 

cm to 120 cm away from the ground in 2 cm intervals. The echo duration output (difference 

between the time the transmitter sent a signal and the time the receiver collected an echo) was 

recorded at each of these distance intervals and plotted in figure 3.3. From the sensor module’s 

requirement and verification table, we originally required the ultrasonic sensors to function 

between a range of 2-400cm. However, after empirical tests, the sensors were found to be noisy 

to the point of being unusable below ranges of 34 cm. In addition, the ultrasonic sensors 

readings had a margin of error of up to +/- 100 µs at all distances which limits the sensor’s 

accuracy as well as resolution.  

 

 

 

 



15 
 

3.3.2 Ultrasonic Sensor Spread Behavior 

Edge of Book (cm) Sensor 1 (µs) Sensor 2 (µs) Sensor 3 (µs) 

30 4770 4800 4990 

31 4800 4820 5010 

32 4780 4810 5010 

33 4790 4790 5000 

34 4810 4800 4810 

35 4820 4770 4810 

36 4790 4800 4820 

37 4810 4810 4790 

38 5000 4800 4810 

39 4950 4820 4810 

40 5020 4790 4800 

41 5010 4810 4800 

Table 3.1 Ultrasonic sensor spread behavior test results 

To test the ultrasonic sensor’s spread behavior, we placed three ultrasonic sensor units 

along the edge of a table as they would be mounted on The RIM. We then moved a styrofoam 

block 2”x4”x12” across the width of the bottom of the chair in 1 cm intervals and recorded the 

sensor’s reading for each position as illustrated in figure 3.3 which can be found in Appendix D. 

The results are shown in table 3.1. Based on the data in table 3.1, no matter what position the 

interference is at, two sensors are able to detect its presence. Furthermore, the center sensor 
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will be able to detect the interference at all positions if the interference is fully underneath the 

test vehicle. 

3.3.3 Ultrasonic Sensor Sampling Rate 

Time interval number: Samples Collected 

1 180 

2 183 

3 162 

4 179 

5 170 

6 186 

7 165 

8 167 

9 179 

10 183 

Average number of samples/ second 17.54 

    Table 3.2 Ultrasonic sensor sampling rate test results 

We test the ultrasonic sensor’s sampling rate using a counter that kept track of the number of 

readings the Arduino UNO received from the HC-SR04 ultrasonic sensors in 10 seconds. We 

recorded the number of readings collected over ten, ten second intervals in table 3.2. Based on 

the data in table 3.2, we found that the sensors delivered, on average, 17.54 readings every 10 

seconds. In the sensor modules requirement and verification table, we required that the sensors 

achieve a sampling rate of 17 Hz so that any vehicle The RIM is attached to can travel up to 

4.25 m/s. Even though the ultrasonic sensors achieved a sampling rate of 17 Hz, not all the 

samples were accurate data points that could be used for interference detection which implies 

the effective sampling rate of the ultrasonic sensors is actually below 17Hz.  
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3.4 Smartphone Module 

 In order for the system to function, the smartphone app had to meet requirements on the 

two main modules, the Bluetooth communication module and the location tracking module. 

These requirements and verifications are shown in Appendix F. The Bluetooth communication 

module had to receive signals quickly and without mistakes. We tested this with a test program 

loaded onto an Arduino Uno, shown in Appendix H. We sent multiple text strings of different 

lengths to the smartphone through the Bluetooth module connected to the Arduino and 

observed the time it took to receive the signal. With each string, the time to receive the signal 

was near instant, less than 0.5 seconds. With this response time, the Bluetooth communication 

module on the smartphone app is effective at vehicle speeds much greater than required. This 

means the Bluetooth communication will not be a hindrance to the efficacy of the project. 

 We also needed the location tracking module to identify the current road the user was on 

with a high degree of accuracy. To test this, we added a modification to the app that allowed us 

to update the displayed current road after pushing a button. This is the “GET COORDINATES” 

button shown in the smartphone UI, located in figure 3.2. We then tested the app at various 

locations and observed the response time and the accuracy of the current street. Table 3.3 

shows the results of our testing. The results show that the location tracking module is accurate 

to the closest street almost every time. However, when testing on smaller streets, it was found 

that the location tracking would display a nearby major street rather than the small street we 

were on from time to time. Since our system works for all other cases a vast majority of the time, 

we feel that this accuracy is suitable for the project. To improve this accuracy we would have to 

implement a separate GPS module with a higher accuracy and use a more premium reverse 

geocoding API. At that point, it would be more beneficial to implement the original goal of the 

project, mapping the exact locations of each pothole and debris. Finally, we found the response 

time for the location tracking module to be far under our requirement. 

 With all requirements for the smartphone block of our system met, the smartphone 

portion of the system works flawlessly when implemented with the rest of the system. When we 

test our system over our constructed environment, the app counts each pothole and debris 

when given a Bluetooth signal from the processing unit. The app is also able to display the 

current road the user is on and update the number of potholes and debris displayed depending 

on the current road. 

 Location Tracking Testing  

True Location Displayed Location Response Time (s) 

Green St. Green St. 2.6 

Springfield Ave. Springfield Ave. 2.4 
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S. Busey Ave. S. Busey Ave. 3.0 

Wright St. Wright St. 2.5 

W. High St. W. High St. 2.7 

1st St. Green St. 2.1 

2nd St. 2nd St. 3.1 

Table 3.3 Smartphone Location Tracking Verification 

 

4. Cost 

4.1 Parts 

Description Manufacturer Part # Quantit
y 

Unit 
Price($) 

MCU Unit Microchip Technology ATMEGA328P-AU 1 2.14/ea 

Bootloader FTDI FT232RL-REEL 1 4.50/ea 

Bluetooth Module DSD Tech HC-06 1 7.99/ea 

Ultrasonic Sensor Adafruit Industries LLC HC-SR04 (4007) 4 3.95/ea 

PCB PCBway  1 5.00/10 
items 

Adhesive 3M  1 9.29/ea 

9V Battery Energizer  1 3.10/ea 

9V Battery clip Gonioa 2.1mmx5.5mm 1 0.58/ea 

9V Battery 
Adapter 

Duttek  1 6.99/ea 
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Mini-B USB port CUI 490-UJ2-MBH-1-SMT 1 0.49/ea 

Speaker Grill 
Cloth 

The Wire Zone  1(6ftx3ft
) 

10.95/ea 

Plastic Box Saim  1 1.80/ea 

Voltage Regulator Texas Instruments 926-LM1117IMPX50NOPB 1 1.10/ea 

Schottky Diode Vishay Semiconductor 
Diodes Division 

SS1P3L-M3/84AGICT-ND 1 0.45/ea 

Resonator Murata Electronics CSTCR6M00G53Z-R0 1 0.46/ea 

1k Ohm Resistor EDGELEC E10P004 1 0.80/10 
items 

100nF Capacitor BOJACK B07X5 1 0.80/10 
items 

1uF Capacitor LATTECH B074LZWRV5 1 0.70/5 items 

Green LED Kingbright APT2012SGC 2 0.37/ea 

Yellow LED Kingbright APT2012YC 1 0.37/ea 

Red LED Kingbright APT2012SRCPRV 1 0.41/ea 

Total Cost    74.09 

Table 4.1 Cost Analysis of the Components 

4.2 Labor 

Team Member Hourly Wage Weekly Hours Number of 
Weeks 

Cost per member 

Michael $35 15 hours 14 weeks $7,350 
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Minh $35 15 hours 14 weeks $7,350 

Ethan $35 15 hours 14 weeks $7,350 

Total Cost    $22,050 

Table 4.2 Cost Analysis of the Labor 

4.3 Schedule 

Week Michael’s task Minh’s task Ethan’s Task 

10/7 Test ultrasonic 
sensor spread and 
sampling rate 

Created rough draft 
of detection algorithm 

Create schematic and 
board for PCB 

10/14 Calibrate sensors; 
Research how to 
interface sensors with 
an app we will create 

Interfaced Bluetooth 
with microcontroller 

Research how to 
interface the phone’s 
gps with an Android app 
we will create 

10/21 Mount hardware on 
PCB 

Interfaced app with 
Bluetooth module 

Create demonstration 
environment 

10/28 Test power and 
sensor modules 

Tested smartphone 
app Bluetooth 
capabilities to count 
interferences 

Test processing module 

11/4 Interface hardware 
with software 

Begin smartphone 
app location tracking 

Interface hardware with 
software 

11/11 Test product and 
make necessary 
adjustments 

Implemented current 
road software on 
smartphone app 

Test product and make 
necessary adjustments 

11/18 Make adjustments 
based on mock demo 
feedback 

Interfaced hardware 
with software 

Make adjustments 
based on mock demo 
feedback 

Table 4.3 Schedule of Team Members 
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5. Conclusion 

5.1 Accomplishments 

 As shown in the previous sections, most of our modules met all of our requirements. The 

power module functions as designed and adequately provides power to all of the other modules 

without damaging any components. The smartphone module receives all incoming Bluetooth 

signals from the processing module and updates the pothole or debris count corresponding to 

the type of Bluetooth signal received. The smartphone module is also able to identify the current 

road the user is on with a high degree of accuracy for major roads. The app also properly 

updates the number of potholes and debris displayed when the current road changes. The 

processing module PCB works perfectly. The processing moduleis able to receive all incoming 

sensor data, use the sensor data in the detection algorithm to determine if there is a pothole or 

debris present ,and send Bluetooth signals to the smartphone when an interference is detected. 

The detection algorithm maintains our required accuracy of +/- 2 potholes and debris when 

counting interferences of at least .25 m in length, .25 m in width, and .04 m in depth. The 

sensors are able to get semi-accurate distance data, however, the effective sample rate is much 

lower than expected. The sensors still give enough reliable data to detect potholes and debris 

within our size requirement and only affect the speed at which we can detect interferences. 

 The full system is able to detect potholes and debris of our required size when moving at 

4 mph or less on our test environment. The final count of potholes and debris on each run over 

our test environment is always within the +/- 2 potholes and debris bound, barring outliers. 

Overall, our product will accurately count the number of potholes and debris on the current road 

when the system is moving at speeds of up to 4 mph. 

5.2 Uncertainties 

 The biggest uncertainty surrounding The RIM is the behavior of its ultrasonic sensors. 

The RIM depends on its detection algorithm to detect interferences. The detection algorithm 

needs accurate data from the sensors to correctly indicate whether a pothole or road 

interference is present. The ultrasonic sensor’s limited resolution, periodic inaccuracy, and 

limited sampling rate described in section 3.3 are all sources of uncertainty that prevent The 

RIM from operating consistently and quickly.  

5.3 Ethical Considerations 

There are a few ethical and safety concerns with our project. The sensor mount could 

fall off of the vehicle and potentially damage the vehicle or other vehicles if it becomes 

completely unattached. Extensive stress testing and a strong adhesive or mountain apparatus 

will remedy this potential hazard. Also, in accordance with Illinois state laws, the sensor mount 

will not at all obstruct the view of the front license plate [13]. 

First, as with all batteries, the 9V battery used to power the system could overheat or 

melt due to an electrical short. First, the circuit was carefully designed as to prevent shorts. 

Then every component of the circuit was extensively tested to ensure there are no potential 

shorts in the circuitry of the system. 
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Secondly, our app could be a potential distraction for the driver and may cause 

accidents. To mitigate this, our app reminds the users to pay attention to their surroundings 

while using the app. This will dissuade users from putting too much focus on the app when 

driving. 

Finally, if given to consumers, they could use the app to generate false interferences and 

deter others from using those roads. This would also give a false flag for necessary repairs on 

roads that may not need them. This would go against #9 of the IEEE code of ethics [14]. To 

solve this we only allow government surveyors to input data into the app. This way, malicious 

persons will not be able to tamper with the data.  

Our solutions to potential safety and ethics concerns follow #1 of the IEEE code of 

ethics, “to hold paramount the safety, health, and welfare of the public, to strive to comply with 

ethical design and sustainable development practices, and to disclose promptly factors that 

might endanger the public or the environment;” [14]. There are many potential risks in a product 

that is to be used while operating an automobile, but we feel that our mitigations allow the 

benefits to outweigh the potential problems with such a system. 

5.4 Future Work 

 The sampling rate and noisiness of the ultrasonic sensors are a significant detriment in 

the efficacy of our project. The sensors output unreliable data a large amount of the time which 

renders most samples useless. This lowers the effective sampling rate to a point that the 

product becomes ineffective at high speeds. In order to improve this we have two options. The 

first option is to continue using the ultrasonic sensors and instead put them in an array. If we set 

up the sensors out of phase with each other we should be able to improve our effective 

sampling rate. This could allow the product to function at higher speeds. However, this would 

also increase the complexity of the detection algorithm. The increase in hardware complexity 

and incoming data could slow down the detection algorithm and the system as a whole. The 

other option is to use a more expensive and effective sensor, for example a LIDAR sensors. 

This would allow us to keep the number of sensors and incoming data to the detection algorithm 

low while increasing the sampling rate and accuracy of our sensor module. This would also 

significantly increase the speed our system could function at. However, this would make the 

product much more expensive.  

 Another improvement to the project would be to implement the original goal of mapping 

the exact location of each pothole and debris and displaying those locations to the user. In order 

to achieve this we would need to use a better GPS chip. We could use a more accurate GPS 

chip to get more accurate latitude and longitude coordinates and perform the calculations 

required to pinpoint the location of the interference. This would add a significant amount of 

complexity to the project, but it would be a huge improvement in the usefulness of our product. 

 Finally, we would have to scale up our project for commercial use. This would require 

widening the array of sensors and adjusting the detection algorithm to take the data of multiple 

sensors as input. If the above improvements are implemented, the current microcontroller may 

be able to support all the necessary components, however, we may have to replace 
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microcontroller with one with more pins to support the addition of new components and sensors.

 Also, with the increase in input data, we may need to utilize a microcontroller with a 

faster computing speed in order to keep the system fast. Lastly, it would be beneficial to 

upgrade the power system to support all the new components. We could replace the 9 V battery 

with a connection straight to the vehicles power source. Then we would replace the linear 

voltage regulator with a more efficient option to match the upgraded power source. 

 With these improvements, our product will be commercially viable and a valuable 

resource for drivers and government agencies looking to improve road conditions.  
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Appendix A Schematics of the PCB - 1 
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Appendix B Schematics of the PCB - 2 
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Appendix C Board of the PCB 
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Appendix D Ultrasonic Sensor Spread Behavior  
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Appendix E Smartphone Source Code 

 

package com.example.rim_test_counter; 

 

import androidx.appcompat.app.AppCompatActivity; 

import androidx.core.app.ActivityCompat; 

 

import android.Manifest; 

import android.content.Context; 

import android.content.pm.PackageManager; 

import android.location.Criteria; 

import android.os.Bundle; 

import android.util.Log; 

import android.util.Pair; 

import android.widget.TextView; 

import android.widget.Button; 

import android.view.View; 

import android.content.Intent; 

import android.widget.AdapterView; 

import android.location.Location; 

import android.location.LocationManager; 

import android.location.LocationListener; 

 

import android.bluetooth.BluetoothDevice; 

import me.aflak.bluetooth.Bluetooth; 

import me.aflak.bluetooth.interfaces.BluetoothCallback; 

import me.aflak.bluetooth.interfaces.DiscoveryCallback; 

import me.aflak.bluetooth.interfaces.DeviceCallback; 

 

import java.util.ArrayList; 

import java.util.List; 

import android.widget.ArrayAdapter; 

import android.widget.ListView; 

 

import com.android.volley.Request; 

import com.android.volley.RequestQueue; 

import com.android.volley.Response; 

import com.android.volley.VolleyError; 

import com.android.volley.toolbox.StringRequest; 

import com.android.volley.toolbox.Volley; 

import com.google.gson.Gson; 

import com.google.gson.JsonObject; 
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import com.google.gson.JsonParser; 

 

import java.util.HashMap; 

 

import org.json.*; 

public class MainActivity extends AppCompatActivity { 

 // Local Variables 

 public TextView counter; 

 public TextView streetText; 

 public TextView counterStreet2; 

 public TextView counterStreet; 

 public Button counter_button; 

 public Button scan_button; 

 public Button reset_button; 

 public Button green; 

 public Button spring; 

 public Button wright; 

 public Button gps; 

 public TextView coordinates; 

 private Bluetooth bluetooth; 

 private ArrayList<BluetoothDevice> scannedDevices; 

 public boolean scanning = false; 

 int tempCount; 

 public ListView listView; 

 HashMap<String, Pair<Integer,Integer>> streetCounts = new HashMap<>(); 

 

 Location currLoc; 

 String currentStreet = "Green St."; 

 String msg; 

 ArrayAdapter adapter; 

 String url = "www.google.com"; 

 

 // Instantiate the RequestQueue. 

 RequestQueue queue; 

 // Request a string response from the provided URL. 

 StringRequest stringRequest = new StringRequest(Request.Method.GET, url, 

         new Response.Listener<String>() { 

             @Override 

             public void onResponse(String response) { 

                 // Display the first 500 characters of the response string. 

                 streetText.setText("Response is: "+ response.substring(0,500)); 

             } 

         }, new Response.ErrorListener() { 
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     @Override 

     public void onErrorResponse(VolleyError error) { 

         streetText.setText("That didn't work!"); 

     } 

 }); 

 

 @Override 

 protected void onCreate(Bundle savedInstanceState) { 

     queue = Volley.newRequestQueue(this); 

     streetCounts.put("Green St.", Pair.create(0,0)); 

     streetCounts.put("Springfield", Pair.create(0,0)); 

     streetCounts.put("Wright St.", Pair.create(0,0)); 

     // Ask for permissions 

     int MY_PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION = 1; 

     ActivityCompat.requestPermissions(this, 

             new String[]{Manifest.permission.ACCESS_FINE_LOCATION}, 

             MY_PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION); 

 

     int MY_PERMISSIONS_REQUEST_ACCESS_INTERNET = 1; 

     ActivityCompat.requestPermissions(this, 

             new String[]{Manifest.permission.ACCESS_WIFI_STATE}, 

             MY_PERMISSIONS_REQUEST_ACCESS_INTERNET); 

 

     // Setup Bluetooth Library 

     setContentView(R.layout.activity_main); 

     bluetooth = new Bluetooth(this); 

     bluetooth.setBluetoothCallback(bluetoothCallback); 

     bluetooth.setDiscoveryCallback(discoveryCallback); 

     bluetooth.setDeviceCallback(devicecallBack); 

 

     // Setup list of devices 

     listView = findViewById(R.id.device_list); 

     adapter = new ArrayAdapter<String>(this, 

             R.layout.activity_listview, new ArrayList<String>()); 

     if (listView != null) { 

         listView.setAdapter(adapter); 

         listView.setOnItemClickListener(onScanListItemClick); 

     } 

     super.onCreate(savedInstanceState); 

     // Initialize counter button and textview 

     counter = findViewById(R.id.textView); 

     counterStreet2 = findViewById(R.id.counterStreet2); 

     counterStreet = findViewById(R.id.counterStreet); 
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     counter_button = findViewById(R.id.btn_count); 

     scan_button = findViewById(R.id.scan_btn); 

     counterStreet.setText(String.valueOf(0)); 

     // Set up counter button 

     counter_button.setOnClickListener(new View.OnClickListener() { 

         @Override 

         public void onClick(View view) { 

             tempCount = streetCounts.get(currentStreet).first; 

             tempCount += 1; 

             streetCounts.put(currentStreet, Pair.create(tempCount, 

streetCounts.get(currentStreet).second)); 

             counterStreet.setText(String.valueOf(tempCount)); 

         } 

     }); 

 

     // Setup Bluetooth Scan Button 

     scan_button.setOnClickListener(new View.OnClickListener() { 

         @Override 

         public void onClick(View view) { 

             bluetooth.startScanning(); 

             scanning = true; 

         } 

     }); 

     // Setup Reset Button 

     reset_button = findViewById(R.id.resetBTN); 

     reset_button.setOnClickListener(new View.OnClickListener() { 

         @Override 

         public void onClick(View view) { 

             for (String name : streetCounts.keySet()) 

                 streetCounts.put(name, Pair.create(0,0)); 

 

             counterStreet.setText(String.valueOf(0)); 

             counterStreet2.setText(String.valueOf(0)); 

         } 

     }); 

 

     // Setup current street text 

     streetText = findViewById(R.id.streetText); 

     green = findViewById(R.id.greenSt); 

     spring = findViewById(R.id.Springfield); 

     wright = findViewById(R.id.wright); 

 

     green.setOnClickListener(new View.OnClickListener() { 



34 
 

         @Override 

         public void onClick(View view) { 

             currentStreet = "Green St."; 

             tempCount = streetCounts.get(currentStreet).first; 

             counterStreet.setText(String.valueOf(tempCount)); 

             tempCount = streetCounts.get(currentStreet).second; 

             counterStreet2.setText(String.valueOf(tempCount)); 

             streetText.setText(currentStreet); 

         } 

     }); 

 

     spring.setOnClickListener(new View.OnClickListener() { 

         @Override 

         public void onClick(View view) { 

             currentStreet = "Springfield"; 

             tempCount = streetCounts.get(currentStreet).first; 

             counterStreet.setText(String.valueOf(tempCount)); 

             tempCount = streetCounts.get(currentStreet).second; 

             counterStreet2.setText(String.valueOf(tempCount)); 

             streetText.setText(currentStreet); 

         } 

     }); 

 

     wright.setOnClickListener(new View.OnClickListener() { 

         @Override 

         public void onClick(View view) { 

             currentStreet = "Wright St."; 

             tempCount = streetCounts.get(currentStreet).first; 

             counterStreet.setText(String.valueOf(tempCount)); 

             tempCount = streetCounts.get(currentStreet).second; 

             counterStreet2.setText(String.valueOf(tempCount)); 

             streetText.setText(currentStreet); 

         } 

     }); 

 

 

 

     gps = findViewById(R.id.gps); 

     coordinates = findViewById(R.id.coordinates); 

 

     gps.setOnClickListener(new View.OnClickListener() { 

         @Override 

         public void onClick(View view) { 
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             currLoc = getLocationWithCheckNetworkAndGPS(view.getContext()); 

             String Lat, Long; 

             Lat = String.valueOf(currLoc.getLatitude()); 

             Long = String.valueOf(currLoc.getLongitude()); 

             coordinates.setText(Lat+","+Long); 

 

             url = 

"https://nominatim.openstreetmap.org/reverse?&format=jsonv2&lat="+Lat+"&lon="+Long; 

             StringRequest stringRequest = new StringRequest(Request.Method.GET, url, 

                     new Response.Listener<String>() { 

                         @Override 

                         public void onResponse(String response) { 

                             // Display the first 500 characters of the response string. 

                             JsonObject jsonObject = new 

JsonParser().parse(response).getAsJsonObject(); 

                             jsonObject = jsonObject.get("address").getAsJsonObject(); 

                             streetText.setText(""+ jsonObject.get("road")); 

                             currentStreet = jsonObject.get("road").getAsString(); 

                             if (!streetCounts.containsKey(currentStreet)){ 

                                 streetCounts.put(currentStreet, Pair.create(0,0)); 

                             } 

                             tempCount = streetCounts.get(currentStreet).first; 

                             counterStreet.setText(String.valueOf(tempCount)); 

                             tempCount = streetCounts.get(currentStreet).second; 

                             counterStreet2.setText(String.valueOf(tempCount)); 

                         } 

                     }, new Response.ErrorListener() { 

                 @Override 

                 public void onErrorResponse(VolleyError error) { 

 

                     streetText.setText(error.getMessage()); 

                 } 

             }); 

             queue.add(stringRequest); 

         } 

     }); 

 

 

 } 

 

 @Override 

 protected void onStart() { 

     super.onStart(); 
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     bluetooth.onStart(); 

     if(bluetooth.isEnabled()){ 

         String message = "Bluetooth Enabled"; 

         counter.setText(message); 

     } else { 

         bluetooth.enable(); 

     } 

 } 

 

 @Override 

 protected void onStop() { 

     super.onStop(); 

     bluetooth.onStop(); 

 } 

 

 @Override 

 protected void onActivityResult(int requestCode, int resultCode, Intent data) { 

     super.onActivityResult(requestCode, resultCode, data); 

     bluetooth.onActivityResult(requestCode, resultCode); 

 } 

 

 

 private BluetoothCallback bluetoothCallback = new BluetoothCallback() { 

     @Override public void onBluetoothTurningOn() {} 

     @Override public void onBluetoothTurningOff() {} 

     @Override public void onBluetoothOff() {} 

 

     @Override 

     public void onBluetoothOn() { 

         // doStuffWhenBluetoothOn() ... 

     } 

 

     @Override 

     public void onUserDeniedActivation() { 

         // handle activation denial... 

     } 

 }; 

 

 private DiscoveryCallback discoveryCallback = new DiscoveryCallback() { 

     public void onDiscoveryStarted() { 

         scannedDevices = new ArrayList<>(); 

     } 

     @Override public void onDiscoveryFinished() {} 
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     @Override public void onDeviceFound(BluetoothDevice device) { 

         String message = "Device Found"; 

         counter.setText(message); 

         scannedDevices.add(device); 

         adapter.add(device.getAddress()+" : "+device.getName()); 

     } 

     @Override public void onDevicePaired(BluetoothDevice device) {} 

     @Override public void onDeviceUnpaired(BluetoothDevice device) {} 

     @Override public void onError(int errorCode) { 

 

     } 

 }; 

 

 private DeviceCallback devicecallBack = new DeviceCallback() { 

     @Override public void onDeviceConnected(BluetoothDevice device) { 

         String message = "Device Connected"; 

     } 

     @Override public void onDeviceDisconnected(BluetoothDevice device, String 

message) {} 

     @Override public void onMessage(byte[] message) { 

         msg = new String(message); 

         Log.d("myTag", msg); 

         if (msg.equals("<POT>")){ 

             tempCount = streetCounts.get(currentStreet).first; 

             tempCount += 1; 

             streetCounts.put(currentStreet, Pair.create(tempCount, 

streetCounts.get(currentStreet).second)); 

         } 

         else if (msg.equals("<DEB>")){ 

             tempCount = streetCounts.get(currentStreet).second; 

             tempCount += 1; 

             streetCounts.put(currentStreet, 

Pair.create(streetCounts.get(currentStreet).first, tempCount)); 

         } 

         runOnUiThread(new Runnable() { 

 

             @Override 

             public void run() { 

                setStatus(msg); 

                counterStreet.setText(String.valueOf(streetCounts.get(currentStreet).first)); 

               

 counterStreet2.setText(String.valueOf(streetCounts.get(currentStreet).second)); 

             } 
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         }); 

     } 

     @Override public void onError(int errorCode) {} 

     @Override public void onConnectError(BluetoothDevice device, String message) {} 

 }; 

 

 private void setStatus(String message){ 

     counter.setText(message); 

 } 

 

 private AdapterView.OnItemClickListener onScanListItemClick = new 

AdapterView.OnItemClickListener() { 

     @Override 

     public void onItemClick(AdapterView<?> adapterView, View view, int i, long l) { 

         if (scanning) { 

             bluetooth.stopScanning(); 

         } 

         // Pair 

         bluetooth.pair(scannedDevices.get(i)); 

         String message = "Device Paired"; 

         setStatus(message); 

         bluetooth.connectToDevice(scannedDevices.get(i)); 

         message = "Device Connected"; 

         setStatus(message); 

         listView.setVisibility(View.GONE); 

     } 

 }; 

 

 

 // Location Get 

 public static Location getLocationWithCheckNetworkAndGPS(Context mContext) { 

     /* 

     LocationManager lm = (LocationManager) 

             mContext.getSystemService(Context.LOCATION_SERVICE); 

     assert lm != null; 

     boolean isGpsEnabled = lm.isProviderEnabled(LocationManager.GPS_PROVIDER); 

     boolean isNetworkLocationEnabled = 

lm.isProviderEnabled(LocationManager.NETWORK_PROVIDER); 

 

     Location networkLocation = null, gpsLocation = null, finalLoc = null; 

     if (isGpsEnabled) 

         if (ActivityCompat.checkSelfPermission(mContext, 

Manifest.permission.ACCESS_FINE_LOCATION) != 
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PackageManager.PERMISSION_GRANTED && 

ActivityCompat.checkSelfPermission(mContext, 

Manifest.permission.ACCESS_COARSE_LOCATION) != 

PackageManager.PERMISSION_GRANTED) { 

 

             return null; 

         }gpsLocation = lm.getLastKnownLocation(LocationManager.GPS_PROVIDER); 

     if (isNetworkLocationEnabled) 

         networkLocation = 

lm.getLastKnownLocation(LocationManager.NETWORK_PROVIDER); 

 

     if (gpsLocation != null && networkLocation != null) { 

 

         //smaller the number more accurate result will 

         if (gpsLocation.getAccuracy() > networkLocation.getAccuracy()) 

             finalLoc = networkLocation; 

         else 

             finalLoc = gpsLocation; 

 

     } else { 

 

         if (gpsLocation != null) { 

             finalLoc = gpsLocation; 

         } else if (networkLocation != null) { 

             finalLoc = networkLocation; 

         } 

     } 

      */ 

     LocationManager lm = 

(LocationManager)mContext.getSystemService(Context.LOCATION_SERVICE); 

     assert lm != null; 

     if (true) 

         if (ActivityCompat.checkSelfPermission(mContext, 

Manifest.permission.ACCESS_FINE_LOCATION) != 

PackageManager.PERMISSION_GRANTED && 

ActivityCompat.checkSelfPermission(mContext, 

Manifest.permission.ACCESS_COARSE_LOCATION) != 

PackageManager.PERMISSION_GRANTED) { 

 

             return null; 

         } 

     Location loc = lm.getLastKnownLocation(LocationManager.NETWORK_PROVIDER); 

     return loc; 
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 } 

}; 

 

 

 

 

Appendix F Smartphone Module R&V table 

Requirement Verification Verified? 

1) The smartphone app 
should process 
signals and update 
the number of 
interferences on the 
current road within 4 
seconds of receiving 
the signal. 

2) The smartphone app 
should receive and 
recognize the 
Bluetooth signal from 
the MCU within 1 
second. 

3) The smartphone app 
should update the 
current road within 3 
seconds of changing 
roads at speeds of up 
to 10 mph. 

4) The GPS data must 
be able to tell the 
current road and 
nearby roads within 
100m. 

1) Create a test app that 
marks the location of 
an interference 
without using a 
Bluetooth signal. 
Measure the time 
from start to the 
updating of the 
interference count 
with a stopwatch. 
Verify the time is less 
than 4 seconds. 

2) After implementing all 
of the parts of the 
main loop of the app, 
display which box in 
the flowchart we are 
currently in. Then, 
send a bluetooth 
signal from the 
microcontroller and 
measure how long it 
takes to go to the 
signal detected state. 
Verify the time is less 
than 1 second. 

3) Create a test app that 
displays the current 
road. Drive around 
and change roads 
with the app open. 
Have a passenger 
measure the time it 
takes for the current 
road to change with a 

1) Success 

2) Success 

3) Success 

4) Success (Only current 
road detected) 
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stopwatch and ensure 
the time is below 3 
seconds. 

4) Create app to tell the 
name of the current 
road. Verify the 
results are correct. 

 

 

Appendix G Reverse Geocoding Responses 

Geonames 

 

 

Google Nearest Road 
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Mapbox 

 

 

 

Nominatim 
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Appendix H Bluetooth Testing Source Code 

 

#include <SoftwareSerial.h> 

SoftwareSerial BTserial(2, 3); // RX | TX 

// Connect the HC-06 TX to the Arduino RX on pin 2. 

// Connect the HC-06 RX to the Arduino TX on pin 3 through a voltage divider. 

bool start_cmd = false; 

bool end_cmd = false; 

char cmd[8]; 

int cmd_idx = 0; 

void setup() 

{ 

 Serial.begin(9600); 

 Serial.println("Enter AT commands:"); 

  

 // HC-06 default serial speed is 9600 

 BTserial.begin(9600);   

} 

  

void loop() 

{ 

  

 // Keep reading from HC-06 and send to Arduino Serial Monitor 

 if (BTserial.available()) 

 {   

    type_command(); 

    if(end_cmd){ 

       parse_command(); 

    } 

 

 } 

  

 // Keep reading from Arduino Serial Monitor and send to HC-06 

 if (Serial.available()) 

 { 

     BTserial.write("<DET>\n"); 

 } 

  

} 

 

void type_command(){ 

  char current_rec; 
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  if (BTserial.available()){ 

 current_rec = BTserial.read(); 

 if (current_rec == '<'){ 

     start_cmd = true; 

 } 

 else if (current_rec == '>'){ 

     end_cmd = true;   

 } 

 

 if (start_cmd){ 

   cmd[cmd_idx] = current_rec; 

   cmd_idx++; 

   } 

 else{ 

   Serial.write(current_rec); 

   Serial.write('\n'); 

 } 

  } 

} 

 

void parse_command(){ 

  if (strcmp(cmd, "<hello>") == 0){ 

 Serial.write("Goodbye\n"); 

  } 

  else if (strcmp(cmd, "<green>") == 0){ 

 Serial.write("Blue\n"); 

  } 

  else{ 

 Serial.write("Unknown Command\n"); 

  } 

  start_cmd = false; 

  end_cmd = false; 

  cmd_idx = 0; 

} 
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Appendix I Demonstration Environment 
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Appendix J Power Module R&V Table 

 

Requirements Verifications  Verified? 

1) The input of the LDO 
voltage regulator must 
sink 9 V+/-67%. 

2) The output of the LDO 
voltage regulator must 
source 5 V +/-1%.  

1) Using a digital 
multimeter: 

a) Connect the 
red port of the 
dmm to the 
input pin of the 
voltage 
regulator. 

b) Connect the 
black port of 
the dmm to the 
ground pin of 
the voltage 
regulator.  

c) Check the 
voltage 
reading is 9 V 
+/- 67%. 
 

2) Using a digital 
multimeter: 

a) Connect the 
red port of the 
dmm to the 
output pin of 
the voltage 
regulator. 

b) Connect the 
black port of 
the dmm to 
ground pin of 
the voltage 
regulator. 

c) Check the 
voltage 
reading is 5 V 
+/- 1%. 

1) Success (The input 
voltage is 8V) 

2) Success 
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Appendix K Ultrasonic Sensor R&V Table 

 

Requirements Verifications  Verified? 

1) The distance between 
the ground and the 
underside of the 
vehicle the sensors 
are mounted 
underneath must be 
between 2 cm-400 
cm. 

2) The sensors should 
achieve a sampling 
rate of at least 17 Hz 
at a distance of 1m 
from the surface. 

  

1) Measure distance to 
the ground from 
sensors with a meter 
stick or ruler to ensure 
values are within the 
specified 2 cm-400 
cm range. 

2) Verification for Item 2: 
a) Load test 

program on to 
an Arduino 
Uno to probe 
and read the 
data from a 
single 
ultrasonic 
sensor. 

b) Connect a 
laptop to 
monitor the 
sampling rate 
of the sensor. 

c) Connect one 
ultrasonic 
sensor to the 
Arduino Uno. 

d) Connect power 
to the Arduino 
Uno 

e) Observe the 
sample rate  is 
at least 10 Hz 
using the test 
program with 
the surface 1m 
away. 

 

1) Sensor didn’t work 
below 40cm 

2) After filtering noise 
out, the sampling rate 
was cut in half to 9Hz 
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Appendix L Processing Module R&V Table 

 

Requirements Verifications Verified? 

 

1) The MCU should 
receive distance data 
from the ultrasonic 
sensors. 

2) The interference 
detection algorithm on 
the MCU should 
detect the number of 
interferences on a 
given road within +/- 2 
interferences 

3) The Bluetooth chip 
should receive all 
signals from the MCU 
and send them to the 
smartphone app 
within 2 seconds +/- 
5%.  

4) The Bluetooth chip 
should receive all 
signals from the 
smartphone app and 
send them to the 
MCU within 2 seconds 
+/- 5%. 

 

1) Verification for Item 1: 
a) Connect each 

ultrasonic 
sensor to the 
MCU circuit. 

b) Connect power 
to MCU and 
ultrasonic 
sensors. 

c) Create a test 
program to 
send and 
receive the 
required 
signals to get 
distance data 
from the 
ultrasonic 
sensors. 

d) Ensure 
accurate 
distance data 
is being 
received with a 
ruler. 

2) Verification for Item 3: 
a) Load 

interference 
detection 
algorithm onto 
the MCU. 

b) Connect each 
ultrasonic 
sensor to the 
MCU circuit. 

c) Connect power 
to MCU circuit 
and ultrasonic 
sensors. 

d) Connect a 
laptop to MCU 

1) Success 
2) Success 
3) Success 
4) Success 
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circuit to 
monitor 
results. 

e) Move 
ultrasonic 
sensor array 
over a known 
number of 
interferences 
and count how 
many are 
actually 
detected. 

f) Ensure the 
number of 
actually 
detected 
interferences 
are within +/- 2 
interferences 
of the true 
value. 

3) Load a test program 
onto the arduino uno. 
Attach the Bluetooth 
chip to the correct 
pins on the Arduino 
Uno. Using a test 
smartphone app, 
attempt to send data 
from the arduino to 
the smartphone and 
measure the time it 
takes with a 
stopwatch. Ensure the 
time is within 2 
seconds +/- 5%.  

4) Load a test program 
onto the arduino uno. 
Attach the Bluetooth 
chip to the correct 
pins on the Arduino 
Uno. Using a test 
smartphone app, 
attempt to send data 
from the smartphone 
to the Arduino and 
measure the time it 
takes with a 
stopwatch. Ensure the 
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time is within 2 
seconds +/- 5%. 

 

 


