

Road Interference Mapper (The RIM)

Team 35- Euiho Jung, Minh Le, Zhiyuan Zheng

ECE 445 Final Report - Fall 2019

TA: Kristina Miller

ii

Abstract

The project, the Road Interference Mapper (The RIM), was designed to reduce evitable damages to

vehicles or accidents by notifying drivers with the number of approaching interferences on the road. The

information on the designed street was collected by an ultrasonic sensor and the noise of the

interferences was filtered. The data was calculated in the microcontroller unit. The smartphone app was

developed to convey the collected information to drivers. The RIM successfully detected the

interferences at least 0.4m deep within +/-2 and alerted on the developed smartphone app. This system

has the potential to raise awareness and to reduce the rate of vehicle damages and accidents caused by

interferences on the streets.

iii

Contents

1. Introduction

 1.1 Purpose

 1.2 Functionality

 1.3 Subsystem Overview

2. Design

2.1 Power Module

2.2 Processing Module

 2.2.1 Processing Module Design Procedure

 2.2.2 Processing Module Design Details

2.3 Sensor Module

 2.3.1 Sensor Design Procedure

 2.3.2 Sensor Design Details

2.4 Smartphone Module

 2.4.1 Smartphone Design Procedure

 2.4.2 Smartphone Design Details

3. Design Verification

3.1 Power Module

3.2 Processing Module

3.3 Sensor Module

3.4 Smartphone Module

4. Cost

4.1 Parts

4.2 Labor

4.3 Schedule

5. Conclusion

5.1 Accomplishments

5.2 Uncertainties

5.3 Ethical Considerations

5.4 Future Work

References

Appendix A - Schematics of the PCB - 1

Appendix B - Schematics of the PCB - 2

Appendix C - Board of the PCB

Appendix D - Ultrasonic Sensor Spread Behavior

Appendix E - Smartphone Source Code

Appendix F - Smartphone Module R&V table

Appendix G - Reverse Geocoding Responses

Appendix H - Bluetooth Testing Source Code

Appendix I - Demonstration Environment

Appendix J - Power Module R&V Table

Appendix K - Ultrasonic Sensor R&V Table

Appendix L - Processing Module R&V Table

1

1. Introduction

1.1 Purpose

In many places, there are multiple roads one can take to get to one's desired destination

within a similar amount of time. Especially in many metropolitan cities where the road layout is a

grid, there are countless paths to a given destination. However, in many places, certain roads

are littered with potholes and debris. These roads with many interferences would ideally be

avoided but there is currently no way to tell whether or not a road contains a large number of

potholes and debris. Even government surveyors have no real way to find and count potholes

besides manually counting them.

To allow for better driving path planning and pothole detection, our product allows

government road surveyors to attach a device to their vehicle that will detect the number of

interferences on the road and send that data to a server. Consumers can then view this data on

their own smartphones using our app. Ultrasonic sensors periodically sense the average

distance to the road and any deviation in this distance within a threshold signifies the presence

of an interference. A microcontroller unit (MCU) periodically processes the distance data, and

upon detection of an obstacle, sends a signal to a smartphone app notifying the app of the

detected obstacle. The signal differs depending on if a pothole or a piece of debris was

detected. The smartphone app then increments the number of potholes or debris, depending on

the signal received, the surveyor has detected on the current road. This information is then sent

to a server where the displayed number of potholes and debris on each nearby road is an

average of all of the surveyor data on that road. All consumers using this app are able to see

the average number of interferences on each road that the surveyors detected. However, we

believed the server portion of this system was out of the scope of this class.

1.2 Functionality

 Our product has three main requirements in order to function properly. The first

requirement is that it must be able to detect potholes and debris of at least .25 m in width, .25 m

in length, and .04 m in depth. This makes sure our system does not fail to detect interferences

of a notable size. We chose these dimensions based on United Kingdom road data [1] and the

average size of a tire [2]. Secondly, our product must be able to count the number of potholes

and debris on a road within +/- 2 potholes and debris and display this data on a smartphone

app. This is to ensure we get an accurate count on each road so that the data we collect and

broadcast is useful data. Finally, the product must be able to detect potholes and debris while

moving at speeds of up to 9.5 mph. This speed was chosen to allow the surveyors to move at a

decent speed while also allowing the ultrasonic sensors to collect enough data to determine the

existence of interferences.

1.3 Subsystem Overview

The RIM requires five main electrical components for operation as shown in figure 1.3. First, a 9

V battery is needed to supply power to a processing module at all times, Second, an ultrasonic

sensor is required to detect potholes and debris on streets at speeds within 9.5 mph. Third, we

2

need a MCU to power the ultrasonic sensor and the Bluetooth module at 5 V, and to process all

data from the sensor and the Bluetooth module. Fourth, the Bluetooth module will be

a data bridge to process between the MCU and a smartphone. Fifth, a

smartphone/software is needed to exchange data with the Bluetooth module and count the

number of potholes and debris for users.

Figure 1.3 Overall Block Diagram

2. Design

2.1 Power Supply Module

9 V battery supplies power to the processing unit regulating 9 V to 5 V by a voltage regulator,

which in turn supplies power to the Bluetooth module and an ultrasonic sensor. As the voltage

regulator is a linear regulator, it converts a 9 V input power to a 5 V output which is supplied to

the input voltage on the MCU; all components and modules in our system require 5 V power

supply.

3

2.2 Processing Module

2.2.1 Processing Module Design Procedure

The design decision for MCU of the system was to add complexity in hardware to our

project, instead of just using Arduino Nano. At the beginning of consideration for our project, it

was decided that we use Arduino Nano as our MCU. However, this would simply lead our

project to just connecting and wiring modules to each other and programing the sensor, the

Bluetooth module, and the smartphone app. Also, there were some unnecessary output pins to

be removed as analog pins were not used. By designing our own MCU, only necessary pins

were drawn to be connected to our sensor and Bluetooth module. The MCU was built on Printed

Circuit Board (PCB). On the PCB, through hole components, such as resistors, capacitors, and

crystal oscillator, are used, as they were easily found in our lab. Even if the size of through hole

components are much bigger than the size of surface mount components, they were still

suitable in scale for the PCB because not too many components were placed on the PCB; the

size of the PCB is 76 mm x 67 mm in length and width, so that even with the through hole

components, the PCB still has spacious surface. On the PCB, bypass capacitor is used for the

power supply to short AC noises, so only DC signal can be delivered. The Bluetooth module

(HC-06) was used as its operating voltage is 5 V. However, voltage divider is connected to the

data-in pin on the Bluetooth module as RX pin can only receive 3.3 V, but the MCU pin supplies

5 V through the pin; as the MCU pin can read 3.3 V as HIGH, the TX pin on the Bluetooth

module can directly connected to the MCU. The first decision of the mode of the Bluetooth

module was that we intend to turn it on and off with the smartphone app. However, it would add

complexity to our system in software portion and there was no necessity as the system is turned

on and off manually by connecting and disconnecting the power source for our demonstration;

so the system can only be operated whenever in use. The bootloader (FTDI chip -

LM1117IMPX-5.0) allows the MCU to communicate with a computer through the mini-B USB

port, so the MCU can be coded to make calculations with data from the sensor and the

Bluetooth module. The MCU (ATMEGA328P-AU) is chosen to receive data from the sensor, to

make calculations of the data and to communicate with the smartphone block through the

Bluetooth module. This chip is equipped with enough digital pins required for our project.

2.2.2 Processing Module Design Details

As shown in Appendix A and Appendix B, the processing module consists of a MCU

(ATMEGA328P-AU), a bootloader chip (FT232RL), a Bluetooth module(HC-06), and a mini-B

USB port. The processing module performs critical calculations with data collected by the

ultrasonic sensor in order to determine whether or not interferences are detected; the noisy data

is filtered out. The information of the interference calculated in this module is sent to the

smartphone block to be displayed on the smartphone app for users. The Bluetooth module

operates with the Bluetooth 2.0 protocol at an operating frequency of 2.4 GHz in the ISM

frequency band [3]. As shown in Appendix B, The MCU is to communicate with ultrasonic

sensors and the Bluetooth module. The crystal oscillator connected to pin 7 and pin 8 on MCU

generates the 16MHz clock signal. The left three connectors are to connect sensors to the MCU

4

and the Bluetooth pin connector is to connect the Bluetooth module to the MCU for data

transmission with the smartphone block via digital pins on MCU.

2.3 Sensor Module

2.3.1 Sensor Design Procedure

The sensors of The RIM were chosen to achieve one objective: detect change in

distances. In the preliminary stages of design, we considered infrared, LIDAR, and ultrasonic

sensors to detect change in distances; we chose ultrasonic sensors. Although ultrasonic

sensors don’t measure distances perfectly, the low cost of the unit combined with the fact that

sound is less prone to noise than light led us to choose ultrasonic sensors over the more

expensive LIDAR and noisier infrared sensors.

 With our choice of sensors narrowed down to ultrasonic, we then shifted our focus to the

placement of the sensors, the number of sensors we were going to use, the operating speed of

the sensors, and how we were going to process the sensor readings to detect change in

distances. To find the optimal placement and number of sensors, we studied the sensor’s range

behavior and spread behavior described by equations 2.1 and 2.2 respectively. To find the

maximum speed at which a vehicle can move for the sensors to operate correctly, we studied

the sensor’s sampling rate governed by equation 2.3. Given a sampling rate, we can then

calculate the maximum operating speed of the sensors using equation 2.4. To figure out how to

use the sensor’s readings to discern changes in distances, we designed a detection algorithm

mapped out in figure 2.1

Equation 2.1 Travel time of ultrasonic sensor pulse

Equation 2.2 Ultrasonic sensor spread

Equation 2.3 Ultrasonic sensor sampling rate

Equation 2.4 Maximum Ultrasonic Sensor Operating Speed

5

Figure 2.1 Interference detection algorithm

2.3.2 Sensor Design Details

2.3.2.1 Sensor Physical Design Details

First, to determine the optimal height to mount the ultrasonic sensors, we must

understand how ultrasonic sensors use sound waves to measure distances. Sound waves

produced by an ultrasonic sensor leave through the transmitter, bounce off the closest object in

front of the sensors, and return to the ultrasonic sensor’s receiver; this process is portrayed in

figure 2.3. Time one in equation 2.1 denotes the time at which a sound wave leaves the

sensor’s transmitter and time two denotes the time at which the sound wave returns to the

receiver. The delay between time two and one gives us a sense of how far an object is from the

sensors. Ideally, the further an object is from the sensor the greater this time delay will be and

the closer an object is from the sensor the shorter this time delay will be. This time delay

depends directly on the trajectory of the sound wave being transmitted and received by the

ultrasonic sensor. In turn, trajectory is affected by the geometry of the object the sound waves

are hitting, the distance the object is from the sensor, and external sound interferences.

6

 Figure 2.2 Ultrasonic sensor side view Figure 2.3 Ultrasonic sensor top view

According to the sensor’s manufacturer’s documentation, the sensors should accurately

measure distances between 2 cm and 400 cm [4] so we initially chose to mount the sensors 40

cm above ground level corresponding to the height of the chair seat on which we tested our

device. After empirical tests explained in section 3.3.1, we found that the sensors doesn’t

operate below 40 cm and so we raised the sensors to a height of 90 cm above ground level for

the final implementation.

Next, in order to determine the optimal number of sensors to use, we applied equation

2.2 which computes the width (w) of the floor an ultrasonic sensor would be able to probe when

placed at height d above the floor given that the sensor’s measuring angle is Θ. These

parameters are illustrated in figure 2.2. Using the initial height we decided to mount the sensors

at (d=40 cm), we found that a single ultrasonic sensor unit will be able to probe a horizontal

width of w=10cm of the ground underneath it. With the goal of probing the entire width

underneath the test vehicle in mind, we initially decided to use four sensor units.

7

Figure 2.4 Realization Illustration

 After taking into account the geometry of the interferences we are trying to detect and

performing tests on the ultrasonic spread behavior described in section 3.3.2 , we realized that

only one center sensor is needed for our device to function. This realization is illustrated in

figure 2.4.

Finally, to determine the maximum velocity that the sensors can travel at for it to function

correctly, we applied equation 2.4. This equation calculates a maximum operating velocity

based on the sampling rate of the sensors and the minimum distance interval between which we

want to get samples. Using the HC-SR04’s suggested measurement cycle of 60 ms the sensors

should theoretically exhibit a sampling frequency of 17 Hz [4]. If we aim to obtain a ground-

distance reading every 0.25m, equation 2.4 tells us an ultrasonic sensor sampling at 17hz will

only be able to detect interferences under a car moving up to a velocity of 4.25 m/s. This result

assumes that every single sample the ultrasonic sensor returns is accurate. Due to noise, the

effective sampling rate is lower than 17 Hz and thus the actual operating velocity of The Rim is

below 4.25m/s.

8

Figure 2.5 Sensor phase offset illustration

To compensate for this sampling rate reduction, we could’ve placed multiple ultrasonic

sensors adjacently one behind the other (shown in figure 2.5) with a phase offset introduced

between sensors. This phase offset sensor configuration would multiply the effective sampling

rate achieved with one sensor by the new number of sensors; this solution was not

implementable due to the limitation of having only one functioning digital pulse width modulation

pin on our printed circuit board. We could've also switched to LIDAR sensors which inherently

have much higher sampling rates than ultrasonic sensors. In the end, due to monetary and time

restraints, we had to make due with one ultrasonic sensor. Consequently, The RIM in its current

state has to move at a slower speed to detect interferences. This speed is dependent on the

number of accurate data samples the ultrasonic sensor is collecting in any given timer interval.

2.3.2.1 Sensor Data Processing Design Details

After the physical design ultrasonic sensors were taken into account, we then created a

detection algorithm mapped out in figure 2.1 that would use the ultrasonic sensor’s data to

detect change in distances caused by potholes and road debris. The function of our final

detection algorithm depends on 4 main variables: constant, threshold 1, threshold 2, and flag.

Constant is set equal to 4770 µs and describes the average time delay returned by the

ultrasonic sensors when The RIM is over level ground. Threshold 2 is set equal to 100 µs and

describes the average deviation from the constant in an ultrasonic sensor’s reading when The

RIM is over level ground. Threshold 1 is set equal to 200 µs microseconds which describes the

minimum difference in sensor readings from the constant when it is 4 cm below ground level.

Flag is a binary variable that prevents double counting; when an interference is detected, flag

gets raised to 1 and isn’t lowered again to 0 until The RIM detects that it is once again over level

ground.

9

As The RIM travels along a road, it’s ultrasonic sensors constantly probes the ground and

returns data points in the form of a time delay. The detection algorithm subtracts the variable

constant from the data point and compares it to threshold 1 to decide if an interference of at

least 4 cm in thickness was present when the data point was taken. If an interference wasn’t

detected, the algorithm then compares this same difference to threshold 2 to determine if it is

back on level ground.

2.4 Smartphone Module

2.4.1 Smartphone Design Procedure

 The main design decisions for the smartphone block of the system revolve around the

GPS and location mapping portions of the system. The first decision was which GPS unit to use

to get the current longitude and latitude coordinates of the user. We could have either used the

smartphone GPS capabilities or a separate GPS chip. Using a separate GPS chip would

provide a more accurate location data, however, it would have added significant complexity to

the system as well as introduce latency from the GPS chip’s necessity to communicate data to

the smartphone. We decided it would be better to use the smartphone GPS as the accuracy

was believed to be sufficient and the data would be available almost instantly. The smartphone

GPS would provide the location data necessary to map each interference detected on an

onscreen map. However, after testing the accuracy of the smartphone GPS with a public

Google play app [5], as shown in table 2.1, it was found that the smartphone GPS would not be

accurate enough to get a good mapping of the interferences detected. Also, we failed to

consider the fact that since our system would be on a moving vehicle, the location data would

be even more inaccurate as the system would move away from the location of the interference

as data propagated to mark the interference. Due to the inaccuracy of the smartphone GPS, we

decided to change the scope of the project. Instead of mapping the exact locations of each

interference, our system was changed to count the number of interferences on each road. This

change relaxed the accuracy requirements of our GPS system to require accuracy to the closest

road instead of to a specific point. It also helped to keep the complexity of this project within the

scope of our class.

 After changing the scope of the project, we had to determine the best way to get the

current road based on the users current latitude and longitude coordinates. This process of

converting latitude and longitude coordinates to road names is called reverse geocoding. There

were many reverse geocoding APIs available and we narrowed it down to four, Nominatim [6],

Google Nearest Road [7] , Geonames [8], and Mapbox [9]. The Nominatim reverse geocoding

API offered a fast response time and accurate results because of the expansiveness of the

Open Source Maps database. The responses, however, were fairly large. The Google Nearest

Road API had the largest database of the reverse geocoding options and had compact

responses. However, this was a paid service and was prone to slowdowns due to needing

verification for each request. Geonames had a smaller database than the other two

10

aforementioned APIs, however, it had customizable response parameters which allowed for

simple and easy to parse responses. Finally, Mapbox also seemed to provide accurate results

and easy to parse responses. However, the responses contained a large amount of extraneous

data that made responses take a long time. The responses for the same input in all of these

APIs are located in Appendix G. In the end, we decided to use the Nominatim reverse

geocoding API for its accuracy and speed of responses. These two factors were the most

important for ensuring the system was detecting the correct road and would change the current

road quickly if the user changed roads.

Location Moving? Error (m)

Residential House X 3.2

ECEB ✓ 4.3

Outside X 4.9

Outside ✓ 6.0 ~ 8.0

Table 2.1 Smartphone GPS Accuracy Table

2.4.2 Smartphone Design Details

 We used Java to design the smartphone app in Android Studio. The smartphone app

consists of two main components, the Bluetooth communication module, and the location

tracking module. The Bluetooth communication module allows the smartphone to communicate

with the Processing module to update the pothole and debris counts on the current road upon

the reception of a Bluetooth signal. While the location tracking module keeps track of the current

road the user is on and displays the correct pothole and debris counts according to that current

road. The source code for the smartphone app is found in Appendix E. Figure 2.6 shows the

overall flowchart for the smartphone app.

The Bluetooth communication module uses the Client Bluetooth Library [10]. This library

allowed the smartphone to connect with the Bluetooth module in the processing unit and

communicate with the module as needed. This library allowed for the synchronous reception of

a Bluetooth signal in the form of a text string. Upon receiving a text string, the smartphone app

will check whether the signal corresponds to a pothole or a piece of debris. Upon receiving the

text string “<DEB>” or “<POT>”, the app will increment the count of debris or potholes

respectively for the current street.

The location tracking module utilizes a pipeline of Google Location Manager [11], Volley

[12], Nominatim, and back to Volley. First, the app uses Google Location Manager to get the

11

current latitude and longitude coordinates of the user. Google Location Manager uses either the

network or the GPS of the smartphone get these coordinates depending on which one is more

accurate. Outside the GPS will be more accurate, and inside a building, the network will be

more accurate. Then, we use the Volley library to construct and send a Javascript Object

Notation, or JSON, request to the Nominatim API through the internet. The Volley library

properly formats the latitude and longitude coordinates received in the first step into a format the

Nominatim API can parse. After this request is sent, the app must wait for the reverse

geocoding response from Nominatim. Upon receiving a response, the Volley library will parse

the JSON response for the street name. With this information, the app can update the current

street and the current pothole and debris counts displayed to the user. The app repeats this

process periodically to ensure the user has not changed roads. The workflow for the location

tracking feature of the smartphone is found in figure 2.7.

These modules allow the smartphone app to display and update the number of potholes

and debris on the current road upon receiving each Bluetooth signal sent from the processing

module.

Figure 2.6 Smartphone App Flowchart

12

Figure 2.7 Smartphone Location Tracking Flowchart

3. Design Verification

3.1 Power Module

For a successful project, constantly supplying power would be the most critical process

to be done. As shown in figure 3.1, the top red led on the right hand side lights up when the

power is supplied to the PCB after regulation through the voltage regulator. Another method to

check if the power is supplied is to simply connect the Bluetooth module or the ultrasonic

sensor; if the Bluetooth module blink the light on itself or if the MCU receives data from the

sensor, it means that the power is being supplied.

Figure 3.1 Top view of the PCB

This voltage regulator has a low efficiency which is about 46.9% by using the equation 3.1.

𝑉𝑖𝑛 = 8.0𝑉 𝐼𝑖𝑛 = 1.2𝐴 𝑉𝑜𝑢𝑡 = 5.0𝑉 𝐼𝑜𝑢𝑡 = 0.9𝐴

13

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟

𝐼𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟
× 100 =

𝑉𝑜𝑢𝑡 × 𝐼𝑜𝑢𝑡

𝑉𝑖𝑛 × 𝐼𝑖𝑛
× 100

Equation 3.1 Efficiency of the Voltage Regulator

3.2 Processing Module

In order for this processing module to perform its role in the system, all the requirements

should be met. First, the distance data from the ultrasonic sensor should be collected in the

MCU. Second, the interference detection algorithm on the MCU should detect the number of the

interference on a given street within +/-2 interference. Third, The Bluetooth chip should receive

all signals from the MCU and send them to the smartphone app within 2 second. Fourth, The

Bluetooth chip should receive all signals from the smartphone app and send them to MCU

within 2 seconds. In other words, the communications between the MCU and the sensor, and

between the MCU and the smartphone through the Bluetooth module. To verify this, the system

should be actually run and ultimately should be able to display the number of potholes and

debris respectively, as shown in figure 3.2.

Figure 3.2 Picture of Smartphone App Display

14

3.3 Sensor Module

3.3.1 Ultrasonic Sensor Range Behavior

Figure 3.3 Ultrasonic Sensor Range Behavior

To test the ultrasonic sensor’s range behavior, an ultrasonic sensor was moved from 1

cm to 120 cm away from the ground in 2 cm intervals. The echo duration output (difference

between the time the transmitter sent a signal and the time the receiver collected an echo) was

recorded at each of these distance intervals and plotted in figure 3.3. From the sensor module’s

requirement and verification table, we originally required the ultrasonic sensors to function

between a range of 2-400cm. However, after empirical tests, the sensors were found to be noisy

to the point of being unusable below ranges of 34 cm. In addition, the ultrasonic sensors

readings had a margin of error of up to +/- 100 µs at all distances which limits the sensor’s

accuracy as well as resolution.

15

3.3.2 Ultrasonic Sensor Spread Behavior

Edge of Book (cm) Sensor 1 (µs) Sensor 2 (µs) Sensor 3 (µs)

30 4770 4800 4990

31 4800 4820 5010

32 4780 4810 5010

33 4790 4790 5000

34 4810 4800 4810

35 4820 4770 4810

36 4790 4800 4820

37 4810 4810 4790

38 5000 4800 4810

39 4950 4820 4810

40 5020 4790 4800

41 5010 4810 4800

Table 3.1 Ultrasonic sensor spread behavior test results

To test the ultrasonic sensor’s spread behavior, we placed three ultrasonic sensor units

along the edge of a table as they would be mounted on The RIM. We then moved a styrofoam

block 2”x4”x12” across the width of the bottom of the chair in 1 cm intervals and recorded the

sensor’s reading for each position as illustrated in figure 3.3 which can be found in Appendix D.

The results are shown in table 3.1. Based on the data in table 3.1, no matter what position the

interference is at, two sensors are able to detect its presence. Furthermore, the center sensor

16

will be able to detect the interference at all positions if the interference is fully underneath the

test vehicle.

3.3.3 Ultrasonic Sensor Sampling Rate

Time interval number: Samples Collected

1 180

2 183

3 162

4 179

5 170

6 186

7 165

8 167

9 179

10 183

Average number of samples/ second 17.54

 Table 3.2 Ultrasonic sensor sampling rate test results

We test the ultrasonic sensor’s sampling rate using a counter that kept track of the number of

readings the Arduino UNO received from the HC-SR04 ultrasonic sensors in 10 seconds. We

recorded the number of readings collected over ten, ten second intervals in table 3.2. Based on

the data in table 3.2, we found that the sensors delivered, on average, 17.54 readings every 10

seconds. In the sensor modules requirement and verification table, we required that the sensors

achieve a sampling rate of 17 Hz so that any vehicle The RIM is attached to can travel up to

4.25 m/s. Even though the ultrasonic sensors achieved a sampling rate of 17 Hz, not all the

samples were accurate data points that could be used for interference detection which implies

the effective sampling rate of the ultrasonic sensors is actually below 17Hz.

17

3.4 Smartphone Module

 In order for the system to function, the smartphone app had to meet requirements on the

two main modules, the Bluetooth communication module and the location tracking module.

These requirements and verifications are shown in Appendix F. The Bluetooth communication

module had to receive signals quickly and without mistakes. We tested this with a test program

loaded onto an Arduino Uno, shown in Appendix H. We sent multiple text strings of different

lengths to the smartphone through the Bluetooth module connected to the Arduino and

observed the time it took to receive the signal. With each string, the time to receive the signal

was near instant, less than 0.5 seconds. With this response time, the Bluetooth communication

module on the smartphone app is effective at vehicle speeds much greater than required. This

means the Bluetooth communication will not be a hindrance to the efficacy of the project.

 We also needed the location tracking module to identify the current road the user was on

with a high degree of accuracy. To test this, we added a modification to the app that allowed us

to update the displayed current road after pushing a button. This is the “GET COORDINATES”

button shown in the smartphone UI, located in figure 3.2. We then tested the app at various

locations and observed the response time and the accuracy of the current street. Table 3.3

shows the results of our testing. The results show that the location tracking module is accurate

to the closest street almost every time. However, when testing on smaller streets, it was found

that the location tracking would display a nearby major street rather than the small street we

were on from time to time. Since our system works for all other cases a vast majority of the time,

we feel that this accuracy is suitable for the project. To improve this accuracy we would have to

implement a separate GPS module with a higher accuracy and use a more premium reverse

geocoding API. At that point, it would be more beneficial to implement the original goal of the

project, mapping the exact locations of each pothole and debris. Finally, we found the response

time for the location tracking module to be far under our requirement.

 With all requirements for the smartphone block of our system met, the smartphone

portion of the system works flawlessly when implemented with the rest of the system. When we

test our system over our constructed environment, the app counts each pothole and debris

when given a Bluetooth signal from the processing unit. The app is also able to display the

current road the user is on and update the number of potholes and debris displayed depending

on the current road.

 Location Tracking Testing

True Location Displayed Location Response Time (s)

Green St. Green St. 2.6

Springfield Ave. Springfield Ave. 2.4

18

S. Busey Ave. S. Busey Ave. 3.0

Wright St. Wright St. 2.5

W. High St. W. High St. 2.7

1st St. Green St. 2.1

2nd St. 2nd St. 3.1

Table 3.3 Smartphone Location Tracking Verification

4. Cost

4.1 Parts

Description Manufacturer Part # Quantit
y

Unit
Price($)

MCU Unit Microchip Technology ATMEGA328P-AU 1 2.14/ea

Bootloader FTDI FT232RL-REEL 1 4.50/ea

Bluetooth Module DSD Tech HC-06 1 7.99/ea

Ultrasonic Sensor Adafruit Industries LLC HC-SR04 (4007) 4 3.95/ea

PCB PCBway 1 5.00/10
items

Adhesive 3M 1 9.29/ea

9V Battery Energizer 1 3.10/ea

9V Battery clip Gonioa 2.1mmx5.5mm 1 0.58/ea

9V Battery
Adapter

Duttek 1 6.99/ea

19

Mini-B USB port CUI 490-UJ2-MBH-1-SMT 1 0.49/ea

Speaker Grill
Cloth

The Wire Zone 1(6ftx3ft
)

10.95/ea

Plastic Box Saim 1 1.80/ea

Voltage Regulator Texas Instruments 926-LM1117IMPX50NOPB 1 1.10/ea

Schottky Diode Vishay Semiconductor
Diodes Division

SS1P3L-M3/84AGICT-ND 1 0.45/ea

Resonator Murata Electronics CSTCR6M00G53Z-R0 1 0.46/ea

1k Ohm Resistor EDGELEC E10P004 1 0.80/10
items

100nF Capacitor BOJACK B07X5 1 0.80/10
items

1uF Capacitor LATTECH B074LZWRV5 1 0.70/5 items

Green LED Kingbright APT2012SGC 2 0.37/ea

Yellow LED Kingbright APT2012YC 1 0.37/ea

Red LED Kingbright APT2012SRCPRV 1 0.41/ea

Total Cost 74.09

Table 4.1 Cost Analysis of the Components

4.2 Labor

Team Member Hourly Wage Weekly Hours Number of
Weeks

Cost per member

Michael $35 15 hours 14 weeks $7,350

20

Minh $35 15 hours 14 weeks $7,350

Ethan $35 15 hours 14 weeks $7,350

Total Cost $22,050

Table 4.2 Cost Analysis of the Labor

4.3 Schedule

Week Michael’s task Minh’s task Ethan’s Task

10/7 Test ultrasonic
sensor spread and
sampling rate

Created rough draft
of detection algorithm

Create schematic and
board for PCB

10/14 Calibrate sensors;
Research how to
interface sensors with
an app we will create

Interfaced Bluetooth
with microcontroller

Research how to
interface the phone’s
gps with an Android app
we will create

10/21 Mount hardware on
PCB

Interfaced app with
Bluetooth module

Create demonstration
environment

10/28 Test power and
sensor modules

Tested smartphone
app Bluetooth
capabilities to count
interferences

Test processing module

11/4 Interface hardware
with software

Begin smartphone
app location tracking

Interface hardware with
software

11/11 Test product and
make necessary
adjustments

Implemented current
road software on
smartphone app

Test product and make
necessary adjustments

11/18 Make adjustments
based on mock demo
feedback

Interfaced hardware
with software

Make adjustments
based on mock demo
feedback

Table 4.3 Schedule of Team Members

21

5. Conclusion

5.1 Accomplishments

 As shown in the previous sections, most of our modules met all of our requirements. The

power module functions as designed and adequately provides power to all of the other modules

without damaging any components. The smartphone module receives all incoming Bluetooth

signals from the processing module and updates the pothole or debris count corresponding to

the type of Bluetooth signal received. The smartphone module is also able to identify the current

road the user is on with a high degree of accuracy for major roads. The app also properly

updates the number of potholes and debris displayed when the current road changes. The

processing module PCB works perfectly. The processing moduleis able to receive all incoming

sensor data, use the sensor data in the detection algorithm to determine if there is a pothole or

debris present ,and send Bluetooth signals to the smartphone when an interference is detected.

The detection algorithm maintains our required accuracy of +/- 2 potholes and debris when

counting interferences of at least .25 m in length, .25 m in width, and .04 m in depth. The

sensors are able to get semi-accurate distance data, however, the effective sample rate is much

lower than expected. The sensors still give enough reliable data to detect potholes and debris

within our size requirement and only affect the speed at which we can detect interferences.

 The full system is able to detect potholes and debris of our required size when moving at

4 mph or less on our test environment. The final count of potholes and debris on each run over

our test environment is always within the +/- 2 potholes and debris bound, barring outliers.

Overall, our product will accurately count the number of potholes and debris on the current road

when the system is moving at speeds of up to 4 mph.

5.2 Uncertainties

 The biggest uncertainty surrounding The RIM is the behavior of its ultrasonic sensors.

The RIM depends on its detection algorithm to detect interferences. The detection algorithm

needs accurate data from the sensors to correctly indicate whether a pothole or road

interference is present. The ultrasonic sensor’s limited resolution, periodic inaccuracy, and

limited sampling rate described in section 3.3 are all sources of uncertainty that prevent The

RIM from operating consistently and quickly.

5.3 Ethical Considerations

There are a few ethical and safety concerns with our project. The sensor mount could

fall off of the vehicle and potentially damage the vehicle or other vehicles if it becomes

completely unattached. Extensive stress testing and a strong adhesive or mountain apparatus

will remedy this potential hazard. Also, in accordance with Illinois state laws, the sensor mount

will not at all obstruct the view of the front license plate [13].

First, as with all batteries, the 9V battery used to power the system could overheat or

melt due to an electrical short. First, the circuit was carefully designed as to prevent shorts.

Then every component of the circuit was extensively tested to ensure there are no potential

shorts in the circuitry of the system.

22

Secondly, our app could be a potential distraction for the driver and may cause

accidents. To mitigate this, our app reminds the users to pay attention to their surroundings

while using the app. This will dissuade users from putting too much focus on the app when

driving.

Finally, if given to consumers, they could use the app to generate false interferences and

deter others from using those roads. This would also give a false flag for necessary repairs on

roads that may not need them. This would go against #9 of the IEEE code of ethics [14]. To

solve this we only allow government surveyors to input data into the app. This way, malicious

persons will not be able to tamper with the data.

Our solutions to potential safety and ethics concerns follow #1 of the IEEE code of

ethics, “to hold paramount the safety, health, and welfare of the public, to strive to comply with

ethical design and sustainable development practices, and to disclose promptly factors that

might endanger the public or the environment;” [14]. There are many potential risks in a product

that is to be used while operating an automobile, but we feel that our mitigations allow the

benefits to outweigh the potential problems with such a system.

5.4 Future Work

 The sampling rate and noisiness of the ultrasonic sensors are a significant detriment in

the efficacy of our project. The sensors output unreliable data a large amount of the time which

renders most samples useless. This lowers the effective sampling rate to a point that the

product becomes ineffective at high speeds. In order to improve this we have two options. The

first option is to continue using the ultrasonic sensors and instead put them in an array. If we set

up the sensors out of phase with each other we should be able to improve our effective

sampling rate. This could allow the product to function at higher speeds. However, this would

also increase the complexity of the detection algorithm. The increase in hardware complexity

and incoming data could slow down the detection algorithm and the system as a whole. The

other option is to use a more expensive and effective sensor, for example a LIDAR sensors.

This would allow us to keep the number of sensors and incoming data to the detection algorithm

low while increasing the sampling rate and accuracy of our sensor module. This would also

significantly increase the speed our system could function at. However, this would make the

product much more expensive.

 Another improvement to the project would be to implement the original goal of mapping

the exact location of each pothole and debris and displaying those locations to the user. In order

to achieve this we would need to use a better GPS chip. We could use a more accurate GPS

chip to get more accurate latitude and longitude coordinates and perform the calculations

required to pinpoint the location of the interference. This would add a significant amount of

complexity to the project, but it would be a huge improvement in the usefulness of our product.

 Finally, we would have to scale up our project for commercial use. This would require

widening the array of sensors and adjusting the detection algorithm to take the data of multiple

sensors as input. If the above improvements are implemented, the current microcontroller may

be able to support all the necessary components, however, we may have to replace

23

microcontroller with one with more pins to support the addition of new components and sensors.

 Also, with the increase in input data, we may need to utilize a microcontroller with a

faster computing speed in order to keep the system fast. Lastly, it would be beneficial to

upgrade the power system to support all the new components. We could replace the 9 V battery

with a connection straight to the vehicles power source. Then we would replace the linear

voltage regulator with a more efficient option to match the upgraded power source.

 With these improvements, our product will be commercially viable and a valuable

resource for drivers and government agencies looking to improve road conditions.

24

References

[1] “Council response times to potholes,” RAC Foundation RSS2, 18-Jan-2019. [Online].

 Available: https://www.racfoundation.org/research/mobility/council-response-times

[2] https://tireguides.com, 2019. [Online]. Available:

 https://tireguides.com/TireTips/TireDocument/11 [Accessed: 12- Oct- 2019]

 -to-potholes [Accessed: 13-Oct-2019].

[3] Olimex.com, 2019. [Online]. Available:

 https://www.olimex.com/Products/Components/RF/BLUETOOTH-SE

 RIAL-HC-06/resources/hc06.pdf. [Accessed: 19- Sep- 2019].

[4]Cdn.sparkfun.com, 2019. [Online]. Available:

 https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf.

 [Accessed: 19- Sep- 2019].

[5] https://play.google.com, “GPS Status & Toolbox”, 2019. [Online]. Available:

 https://play.google.com/store/apps/details?id=com.eclipsim.gpsstatus2

 [Accessed: 29- Sep- 2019].

[6] https://nominatim.openstreetmap.org, “Nominatim”, 2019. [Online]. Available:

 https://nominatim.openstreetmap.org/ [Accessed: 12- Nov- 2019].

[7] https://developers.google.com, “Nearest Roads”, 2019. [Online]. Available:

 https://developers.google.com/maps/documentation/roads/nearest

 [Accessed: 12- Nov- 2019].

[8] https://www.geonames.org/, “Geonames”, 2019. [Online]. Available:

 https://www.geonames.org/ [Accessed: 12- Nov- 2019].

[9] https://www.mapbox.com/, “Mapbox”, 2019. [Online]. Available:

 https://docs.mapbox.com/api/search/ [Accessed: 12- Nov- 2019].

[10] https://github.com, “Client Bluetooth Library”, 2019. [Online]. Available:

 https://github.com/OmarAflak/Bluetooth-Library [Accessed: 22- Oct- 2019].

https://www.racfoundation.org/research/mobility/council-response-times-to-potholes
https://tireguides.com/
https://tireguides.com/TireTips/TireDocument/11
https://www.racfoundation.org/research/mobility/council-response-times-to-potholes
https://www.olimex.com/Products/Components/RF/BLUETOOTH-SE
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
https://play.google.com/
https://play.google.com/store/apps/details?id=com.eclipsim.gpsstatus2
https://nominatim.openstreetmap.org/
https://nominatim.openstreetmap.org/
https://developers.google.com/
https://developers.google.com/maps/documentation/roads/nearest
https://www.geonames.org/
https://www.geonames.org/
https://www.mapbox.com/
https://docs.mapbox.com/api/search/
https://github.com/
https://github.com/OmarAflak/Bluetooth-Library

25

[11] https://developer.android.com, “Google Location Services”, 2019. [Online]. Available:

 https://developer.android.com/reference/android/location/LocationManager

 [Accessed: 12- Nov- 2019].

[12] https://github.com, “Volley”, 2019. [Online]. Available:

 https://github.com/google/volley [Accessed: 12- Nov- 2019].

[13] https://www.cyberdriveillinois.com, 2019. [Online]. Available:

 https://www.cyberdriveillinois.com/publications/pdf_publications/vsd7001.pdf

 [Accessed: 06- Oct- 2019].

[14] Ieee.org, "IEEE IEEE Code of Ethics", 2016. [Online].

 Available:http://www.ieee.org/about/corporate/governance/p7-8.html.

 [Accessed: 19- Sep- 2019].

https://developer.android.com/
https://developer.android.com/reference/android/location/LocationManager
https://github.com/
https://github.com/google/volley
https://www.cyberdriveillinois.com/
https://www.cyberdriveillinois.com/publications/pdf_publications/vsd7001.pdf
http://www.ieee.org/about/corporate/governance/p7-8.html

26

Appendix A Schematics of the PCB - 1

27

Appendix B Schematics of the PCB - 2

28

Appendix C Board of the PCB

29

Appendix D Ultrasonic Sensor Spread Behavior

30

Appendix E Smartphone Source Code

package com.example.rim_test_counter;

import androidx.appcompat.app.AppCompatActivity;

import androidx.core.app.ActivityCompat;

import android.Manifest;

import android.content.Context;

import android.content.pm.PackageManager;

import android.location.Criteria;

import android.os.Bundle;

import android.util.Log;

import android.util.Pair;

import android.widget.TextView;

import android.widget.Button;

import android.view.View;

import android.content.Intent;

import android.widget.AdapterView;

import android.location.Location;

import android.location.LocationManager;

import android.location.LocationListener;

import android.bluetooth.BluetoothDevice;

import me.aflak.bluetooth.Bluetooth;

import me.aflak.bluetooth.interfaces.BluetoothCallback;

import me.aflak.bluetooth.interfaces.DiscoveryCallback;

import me.aflak.bluetooth.interfaces.DeviceCallback;

import java.util.ArrayList;

import java.util.List;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import com.android.volley.Request;

import com.android.volley.RequestQueue;

import com.android.volley.Response;

import com.android.volley.VolleyError;

import com.android.volley.toolbox.StringRequest;

import com.android.volley.toolbox.Volley;

import com.google.gson.Gson;

import com.google.gson.JsonObject;

31

import com.google.gson.JsonParser;

import java.util.HashMap;

import org.json.*;

public class MainActivity extends AppCompatActivity {

 // Local Variables

 public TextView counter;

 public TextView streetText;

 public TextView counterStreet2;

 public TextView counterStreet;

 public Button counter_button;

 public Button scan_button;

 public Button reset_button;

 public Button green;

 public Button spring;

 public Button wright;

 public Button gps;

 public TextView coordinates;

 private Bluetooth bluetooth;

 private ArrayList<BluetoothDevice> scannedDevices;

 public boolean scanning = false;

 int tempCount;

 public ListView listView;

 HashMap<String, Pair<Integer,Integer>> streetCounts = new HashMap<>();

 Location currLoc;

 String currentStreet = "Green St.";

 String msg;

 ArrayAdapter adapter;

 String url = "www.google.com";

 // Instantiate the RequestQueue.

 RequestQueue queue;

 // Request a string response from the provided URL.

 StringRequest stringRequest = new StringRequest(Request.Method.GET, url,

 new Response.Listener<String>() {

 @Override

 public void onResponse(String response) {

 // Display the first 500 characters of the response string.

 streetText.setText("Response is: "+ response.substring(0,500));

 }

 }, new Response.ErrorListener() {

32

 @Override

 public void onErrorResponse(VolleyError error) {

 streetText.setText("That didn't work!");

 }

 });

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 queue = Volley.newRequestQueue(this);

 streetCounts.put("Green St.", Pair.create(0,0));

 streetCounts.put("Springfield", Pair.create(0,0));

 streetCounts.put("Wright St.", Pair.create(0,0));

 // Ask for permissions

 int MY_PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION = 1;

 ActivityCompat.requestPermissions(this,

 new String[]{Manifest.permission.ACCESS_FINE_LOCATION},

 MY_PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION);

 int MY_PERMISSIONS_REQUEST_ACCESS_INTERNET = 1;

 ActivityCompat.requestPermissions(this,

 new String[]{Manifest.permission.ACCESS_WIFI_STATE},

 MY_PERMISSIONS_REQUEST_ACCESS_INTERNET);

 // Setup Bluetooth Library

 setContentView(R.layout.activity_main);

 bluetooth = new Bluetooth(this);

 bluetooth.setBluetoothCallback(bluetoothCallback);

 bluetooth.setDiscoveryCallback(discoveryCallback);

 bluetooth.setDeviceCallback(devicecallBack);

 // Setup list of devices

 listView = findViewById(R.id.device_list);

 adapter = new ArrayAdapter<String>(this,

 R.layout.activity_listview, new ArrayList<String>());

 if (listView != null) {

 listView.setAdapter(adapter);

 listView.setOnItemClickListener(onScanListItemClick);

 }

 super.onCreate(savedInstanceState);

 // Initialize counter button and textview

 counter = findViewById(R.id.textView);

 counterStreet2 = findViewById(R.id.counterStreet2);

 counterStreet = findViewById(R.id.counterStreet);

33

 counter_button = findViewById(R.id.btn_count);

 scan_button = findViewById(R.id.scan_btn);

 counterStreet.setText(String.valueOf(0));

 // Set up counter button

 counter_button.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 tempCount = streetCounts.get(currentStreet).first;

 tempCount += 1;

 streetCounts.put(currentStreet, Pair.create(tempCount,

streetCounts.get(currentStreet).second));

 counterStreet.setText(String.valueOf(tempCount));

 }

 });

 // Setup Bluetooth Scan Button

 scan_button.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 bluetooth.startScanning();

 scanning = true;

 }

 });

 // Setup Reset Button

 reset_button = findViewById(R.id.resetBTN);

 reset_button.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 for (String name : streetCounts.keySet())

 streetCounts.put(name, Pair.create(0,0));

 counterStreet.setText(String.valueOf(0));

 counterStreet2.setText(String.valueOf(0));

 }

 });

 // Setup current street text

 streetText = findViewById(R.id.streetText);

 green = findViewById(R.id.greenSt);

 spring = findViewById(R.id.Springfield);

 wright = findViewById(R.id.wright);

 green.setOnClickListener(new View.OnClickListener() {

34

 @Override

 public void onClick(View view) {

 currentStreet = "Green St.";

 tempCount = streetCounts.get(currentStreet).first;

 counterStreet.setText(String.valueOf(tempCount));

 tempCount = streetCounts.get(currentStreet).second;

 counterStreet2.setText(String.valueOf(tempCount));

 streetText.setText(currentStreet);

 }

 });

 spring.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 currentStreet = "Springfield";

 tempCount = streetCounts.get(currentStreet).first;

 counterStreet.setText(String.valueOf(tempCount));

 tempCount = streetCounts.get(currentStreet).second;

 counterStreet2.setText(String.valueOf(tempCount));

 streetText.setText(currentStreet);

 }

 });

 wright.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 currentStreet = "Wright St.";

 tempCount = streetCounts.get(currentStreet).first;

 counterStreet.setText(String.valueOf(tempCount));

 tempCount = streetCounts.get(currentStreet).second;

 counterStreet2.setText(String.valueOf(tempCount));

 streetText.setText(currentStreet);

 }

 });

 gps = findViewById(R.id.gps);

 coordinates = findViewById(R.id.coordinates);

 gps.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

35

 currLoc = getLocationWithCheckNetworkAndGPS(view.getContext());

 String Lat, Long;

 Lat = String.valueOf(currLoc.getLatitude());

 Long = String.valueOf(currLoc.getLongitude());

 coordinates.setText(Lat+","+Long);

 url =

"https://nominatim.openstreetmap.org/reverse?&format=jsonv2&lat="+Lat+"&lon="+Long;

 StringRequest stringRequest = new StringRequest(Request.Method.GET, url,

 new Response.Listener<String>() {

 @Override

 public void onResponse(String response) {

 // Display the first 500 characters of the response string.

 JsonObject jsonObject = new

JsonParser().parse(response).getAsJsonObject();

 jsonObject = jsonObject.get("address").getAsJsonObject();

 streetText.setText(""+ jsonObject.get("road"));

 currentStreet = jsonObject.get("road").getAsString();

 if (!streetCounts.containsKey(currentStreet)){

 streetCounts.put(currentStreet, Pair.create(0,0));

 }

 tempCount = streetCounts.get(currentStreet).first;

 counterStreet.setText(String.valueOf(tempCount));

 tempCount = streetCounts.get(currentStreet).second;

 counterStreet2.setText(String.valueOf(tempCount));

 }

 }, new Response.ErrorListener() {

 @Override

 public void onErrorResponse(VolleyError error) {

 streetText.setText(error.getMessage());

 }

 });

 queue.add(stringRequest);

 }

 });

 }

 @Override

 protected void onStart() {

 super.onStart();

36

 bluetooth.onStart();

 if(bluetooth.isEnabled()){

 String message = "Bluetooth Enabled";

 counter.setText(message);

 } else {

 bluetooth.enable();

 }

 }

 @Override

 protected void onStop() {

 super.onStop();

 bluetooth.onStop();

 }

 @Override

 protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 bluetooth.onActivityResult(requestCode, resultCode);

 }

 private BluetoothCallback bluetoothCallback = new BluetoothCallback() {

 @Override public void onBluetoothTurningOn() {}

 @Override public void onBluetoothTurningOff() {}

 @Override public void onBluetoothOff() {}

 @Override

 public void onBluetoothOn() {

 // doStuffWhenBluetoothOn() ...

 }

 @Override

 public void onUserDeniedActivation() {

 // handle activation denial...

 }

 };

 private DiscoveryCallback discoveryCallback = new DiscoveryCallback() {

 public void onDiscoveryStarted() {

 scannedDevices = new ArrayList<>();

 }

 @Override public void onDiscoveryFinished() {}

37

 @Override public void onDeviceFound(BluetoothDevice device) {

 String message = "Device Found";

 counter.setText(message);

 scannedDevices.add(device);

 adapter.add(device.getAddress()+" : "+device.getName());

 }

 @Override public void onDevicePaired(BluetoothDevice device) {}

 @Override public void onDeviceUnpaired(BluetoothDevice device) {}

 @Override public void onError(int errorCode) {

 }

 };

 private DeviceCallback devicecallBack = new DeviceCallback() {

 @Override public void onDeviceConnected(BluetoothDevice device) {

 String message = "Device Connected";

 }

 @Override public void onDeviceDisconnected(BluetoothDevice device, String

message) {}

 @Override public void onMessage(byte[] message) {

 msg = new String(message);

 Log.d("myTag", msg);

 if (msg.equals("<POT>")){

 tempCount = streetCounts.get(currentStreet).first;

 tempCount += 1;

 streetCounts.put(currentStreet, Pair.create(tempCount,

streetCounts.get(currentStreet).second));

 }

 else if (msg.equals("<DEB>")){

 tempCount = streetCounts.get(currentStreet).second;

 tempCount += 1;

 streetCounts.put(currentStreet,

Pair.create(streetCounts.get(currentStreet).first, tempCount));

 }

 runOnUiThread(new Runnable() {

 @Override

 public void run() {

 setStatus(msg);

 counterStreet.setText(String.valueOf(streetCounts.get(currentStreet).first));

 counterStreet2.setText(String.valueOf(streetCounts.get(currentStreet).second));

 }

38

 });

 }

 @Override public void onError(int errorCode) {}

 @Override public void onConnectError(BluetoothDevice device, String message) {}

 };

 private void setStatus(String message){

 counter.setText(message);

 }

 private AdapterView.OnItemClickListener onScanListItemClick = new

AdapterView.OnItemClickListener() {

 @Override

 public void onItemClick(AdapterView<?> adapterView, View view, int i, long l) {

 if (scanning) {

 bluetooth.stopScanning();

 }

 // Pair

 bluetooth.pair(scannedDevices.get(i));

 String message = "Device Paired";

 setStatus(message);

 bluetooth.connectToDevice(scannedDevices.get(i));

 message = "Device Connected";

 setStatus(message);

 listView.setVisibility(View.GONE);

 }

 };

 // Location Get

 public static Location getLocationWithCheckNetworkAndGPS(Context mContext) {

 /*

 LocationManager lm = (LocationManager)

 mContext.getSystemService(Context.LOCATION_SERVICE);

 assert lm != null;

 boolean isGpsEnabled = lm.isProviderEnabled(LocationManager.GPS_PROVIDER);

 boolean isNetworkLocationEnabled =

lm.isProviderEnabled(LocationManager.NETWORK_PROVIDER);

 Location networkLocation = null, gpsLocation = null, finalLoc = null;

 if (isGpsEnabled)

 if (ActivityCompat.checkSelfPermission(mContext,

Manifest.permission.ACCESS_FINE_LOCATION) !=

39

PackageManager.PERMISSION_GRANTED &&

ActivityCompat.checkSelfPermission(mContext,

Manifest.permission.ACCESS_COARSE_LOCATION) !=

PackageManager.PERMISSION_GRANTED) {

 return null;

 }gpsLocation = lm.getLastKnownLocation(LocationManager.GPS_PROVIDER);

 if (isNetworkLocationEnabled)

 networkLocation =

lm.getLastKnownLocation(LocationManager.NETWORK_PROVIDER);

 if (gpsLocation != null && networkLocation != null) {

 //smaller the number more accurate result will

 if (gpsLocation.getAccuracy() > networkLocation.getAccuracy())

 finalLoc = networkLocation;

 else

 finalLoc = gpsLocation;

 } else {

 if (gpsLocation != null) {

 finalLoc = gpsLocation;

 } else if (networkLocation != null) {

 finalLoc = networkLocation;

 }

 }

 */

 LocationManager lm =

(LocationManager)mContext.getSystemService(Context.LOCATION_SERVICE);

 assert lm != null;

 if (true)

 if (ActivityCompat.checkSelfPermission(mContext,

Manifest.permission.ACCESS_FINE_LOCATION) !=

PackageManager.PERMISSION_GRANTED &&

ActivityCompat.checkSelfPermission(mContext,

Manifest.permission.ACCESS_COARSE_LOCATION) !=

PackageManager.PERMISSION_GRANTED) {

 return null;

 }

 Location loc = lm.getLastKnownLocation(LocationManager.NETWORK_PROVIDER);

 return loc;

40

 }

};

Appendix F Smartphone Module R&V table

Requirement Verification Verified?

1) The smartphone app
should process
signals and update
the number of
interferences on the
current road within 4
seconds of receiving
the signal.

2) The smartphone app
should receive and
recognize the
Bluetooth signal from
the MCU within 1
second.

3) The smartphone app
should update the
current road within 3
seconds of changing
roads at speeds of up
to 10 mph.

4) The GPS data must
be able to tell the
current road and
nearby roads within
100m.

1) Create a test app that
marks the location of
an interference
without using a
Bluetooth signal.
Measure the time
from start to the
updating of the
interference count
with a stopwatch.
Verify the time is less
than 4 seconds.

2) After implementing all
of the parts of the
main loop of the app,
display which box in
the flowchart we are
currently in. Then,
send a bluetooth
signal from the
microcontroller and
measure how long it
takes to go to the
signal detected state.
Verify the time is less
than 1 second.

3) Create a test app that
displays the current
road. Drive around
and change roads
with the app open.
Have a passenger
measure the time it
takes for the current
road to change with a

1) Success

2) Success

3) Success

4) Success (Only current
road detected)

41

stopwatch and ensure
the time is below 3
seconds.

4) Create app to tell the
name of the current
road. Verify the
results are correct.

Appendix G Reverse Geocoding Responses

Geonames

Google Nearest Road

42

Mapbox

Nominatim

43

Appendix H Bluetooth Testing Source Code

#include <SoftwareSerial.h>

SoftwareSerial BTserial(2, 3); // RX | TX

// Connect the HC-06 TX to the Arduino RX on pin 2.

// Connect the HC-06 RX to the Arduino TX on pin 3 through a voltage divider.

bool start_cmd = false;

bool end_cmd = false;

char cmd[8];

int cmd_idx = 0;

void setup()

{

 Serial.begin(9600);

 Serial.println("Enter AT commands:");

 // HC-06 default serial speed is 9600

 BTserial.begin(9600);

}

void loop()

{

 // Keep reading from HC-06 and send to Arduino Serial Monitor

 if (BTserial.available())

 {

 type_command();

 if(end_cmd){

 parse_command();

 }

 }

 // Keep reading from Arduino Serial Monitor and send to HC-06

 if (Serial.available())

 {

 BTserial.write("<DET>\n");

 }

}

void type_command(){

 char current_rec;

44

 if (BTserial.available()){

 current_rec = BTserial.read();

 if (current_rec == '<'){

 start_cmd = true;

 }

 else if (current_rec == '>'){

 end_cmd = true;

 }

 if (start_cmd){

 cmd[cmd_idx] = current_rec;

 cmd_idx++;

 }

 else{

 Serial.write(current_rec);

 Serial.write('\n');

 }

 }

}

void parse_command(){

 if (strcmp(cmd, "<hello>") == 0){

 Serial.write("Goodbye\n");

 }

 else if (strcmp(cmd, "<green>") == 0){

 Serial.write("Blue\n");

 }

 else{

 Serial.write("Unknown Command\n");

 }

 start_cmd = false;

 end_cmd = false;

 cmd_idx = 0;

}

45

Appendix I Demonstration Environment

46

Appendix J Power Module R&V Table

Requirements Verifications Verified?

1) The input of the LDO
voltage regulator must
sink 9 V+/-67%.

2) The output of the LDO
voltage regulator must
source 5 V +/-1%.

1) Using a digital
multimeter:

a) Connect the
red port of the
dmm to the
input pin of the
voltage
regulator.

b) Connect the
black port of
the dmm to the
ground pin of
the voltage
regulator.

c) Check the
voltage
reading is 9 V
+/- 67%.

2) Using a digital
multimeter:

a) Connect the
red port of the
dmm to the
output pin of
the voltage
regulator.

b) Connect the
black port of
the dmm to
ground pin of
the voltage
regulator.

c) Check the
voltage
reading is 5 V
+/- 1%.

1) Success (The input
voltage is 8V)

2) Success

47

Appendix K Ultrasonic Sensor R&V Table

Requirements Verifications Verified?

1) The distance between
the ground and the
underside of the
vehicle the sensors
are mounted
underneath must be
between 2 cm-400
cm.

2) The sensors should
achieve a sampling
rate of at least 17 Hz
at a distance of 1m
from the surface.

1) Measure distance to
the ground from
sensors with a meter
stick or ruler to ensure
values are within the
specified 2 cm-400
cm range.

2) Verification for Item 2:
a) Load test

program on to
an Arduino
Uno to probe
and read the
data from a
single
ultrasonic
sensor.

b) Connect a
laptop to
monitor the
sampling rate
of the sensor.

c) Connect one
ultrasonic
sensor to the
Arduino Uno.

d) Connect power
to the Arduino
Uno

e) Observe the
sample rate is
at least 10 Hz
using the test
program with
the surface 1m
away.

1) Sensor didn’t work
below 40cm

2) After filtering noise
out, the sampling rate
was cut in half to 9Hz

48

Appendix L Processing Module R&V Table

Requirements Verifications Verified?

1) The MCU should
receive distance data
from the ultrasonic
sensors.

2) The interference
detection algorithm on
the MCU should
detect the number of
interferences on a
given road within +/- 2
interferences

3) The Bluetooth chip
should receive all
signals from the MCU
and send them to the
smartphone app
within 2 seconds +/-
5%.

4) The Bluetooth chip
should receive all
signals from the
smartphone app and
send them to the
MCU within 2 seconds
+/- 5%.

1) Verification for Item 1:
a) Connect each

ultrasonic
sensor to the
MCU circuit.

b) Connect power
to MCU and
ultrasonic
sensors.

c) Create a test
program to
send and
receive the
required
signals to get
distance data
from the
ultrasonic
sensors.

d) Ensure
accurate
distance data
is being
received with a
ruler.

2) Verification for Item 3:
a) Load

interference
detection
algorithm onto
the MCU.

b) Connect each
ultrasonic
sensor to the
MCU circuit.

c) Connect power
to MCU circuit
and ultrasonic
sensors.

d) Connect a
laptop to MCU

1) Success
2) Success
3) Success
4) Success

49

circuit to
monitor
results.

e) Move
ultrasonic
sensor array
over a known
number of
interferences
and count how
many are
actually
detected.

f) Ensure the
number of
actually
detected
interferences
are within +/- 2
interferences
of the true
value.

3) Load a test program
onto the arduino uno.
Attach the Bluetooth
chip to the correct
pins on the Arduino
Uno. Using a test
smartphone app,
attempt to send data
from the arduino to
the smartphone and
measure the time it
takes with a
stopwatch. Ensure the
time is within 2
seconds +/- 5%.

4) Load a test program
onto the arduino uno.
Attach the Bluetooth
chip to the correct
pins on the Arduino
Uno. Using a test
smartphone app,
attempt to send data
from the smartphone
to the Arduino and
measure the time it
takes with a
stopwatch. Ensure the

50

time is within 2
seconds +/- 5%.

