

Automated Window Temperature Regulator
Derik Lee, Hersh Singh, Louis Wright

Team 22

Final Report for ECE 445: Senior Design

Fall 2019

December 11, 2019

Abstract

This document describes the design process undergone to produce an automated window temperature

regulator. The purpose of the window is to utilise the difference in climate inside and outside a

building to make a decision to be open or closed. We will first introduce the problem we encountered

and how we will solve the problem with our window. There will be an overview of our modules and

then go into depth on each part of our system. Testing and results will then be presented at the end.

i

1 Introduction 1

1.1 Objective 1

1.2 Background 3

1.3 High-Level Requirements List 3

2 Design 4

2.1 Block Diagram 4

2.2 Physical Design 5

2.3 Block Design 5

2.3.1 Power Module 5

2.3.2 Control Module 6

2.3.3 Motor Module 7

2.3.4 User Interface Module 9

2.3.5 Sensor Module 10

2.4 Requirements and Verification 13

2.5 Control Description 16

2.6 Tolerance Analysis 17

3 Cost and Schedule 18

3.1 Cost Analysis 18

Labor 18

Materials 19

Grand Total 19

3.2 Schedule 20

4 Conclusion 21

4.1 Discussion of Ethics and Safety 21

4.2 Future Work 21

4.3 Accomplishments 21

References 22

Appendix A 23

Appendix B 27

ii

https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.myy950o51oaw
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.9hj5igw5xfg6
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.w29ab47npj0j
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.rt1ce3ocdcih
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.hhm0oezbm59v
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.45p4ocy5i8sl
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.vwclzy7kxrbx
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.5dlt1x53so4m
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.27fvwwpo7a41
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.lldw06f5j5ea
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.kuvblwak8p2
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.5yapn6rkptr4
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.5yapn6rkptr4
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.qfgggbn72dm5
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.qfgggbn72dm5
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.dbirapflm5dq
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.amgvj2j4kbin
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.dt3jammz060i
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.5oacul9cger8
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.2oi44u7fbpdq
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.72pvoleotam
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.bp4g6yglpt6u
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.vuv3q35pmql
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.tztcmjrfr1m9
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.tztcmjrfr1m9
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.84ntnkuy6eb2
https://docs.google.com/document/d/1cldreEEmyVx-woI1D7xUhc8Og4qFJQHOfMkgPKisjrA/edit#heading=h.84ntnkuy6eb2

1. Introduction
1.1. Objective

Most houses and buildings tend to consume a lot of energy in the form of
electricity through the HVAC (Heating, Ventilating and Cooling) system. This system
is used to regulate and maintain temperature and air quality at a comfortable level for
the occupants. As the threat of climate change grows, new technology is emerging to
curb the impact of energy consumption and find alternative and efficient methods to
electricity. Efficient interior climate control can be used to limit the power
consumption HVAC systems within apartments and homes. As an alternative to using
the air conditioning system, we can harness the outside climate to help regulate the
interior temperature and air quality. This will take the strain off the HVAC system,
resulting in lower power consumption. A simple and common way for the outside
climate to enter the feedback loop between the HVAC and room is to open a window!
Opening the window a certain amount can dictate how much the exterior temperature
changes the temperature inside. Using this natural diffusion of air and temperature
allows for lower electricity consumption, as well as a natural cross-ventilation for the
room.

Our solution is to use a window (Fig. 1) that is attached to a motor that opens
and closes accordingly when given a certain desired interior temperature. The
window has sensors that measure rain, temperature, humidity, and particulate matter
in ppm which is transmitted to a microcontroller. The microcontroller then decides to
open or close the window based on these parameters. To detect obstructions, the
motor current is monitored and time it is moving.. If the current gets larger than
normal, then the window will stop moving. The system is powered by a standard 120
VAC socket, and has multiple modules for the sensors, motor, microcontroller, and
user interface.

1

Figure 1: Final product

2

1.2. Background
For a typical homeowner, energy expenditure becomes a costly monthly fee.

If people are looking to save money, most of the time they will turn off their
thermostat or match it with the outside temperature. This does help, but using heating
and cooling in a building can build up cost. The typical heating and cooling can make
“up about 42% of your utility bill” [1]. Electricity is just one part of the utility bill, as
there are water costs and sometimes natural gas costs as well. For reference, “The
average monthly residential electricity bill in Illinois is $87… and is… less than the
national average of $107 per month” [2]. By providing a way to reduce the use of
electricity and natural gas in temperature management, a homeowner could save
hundreds of dollars a year.

For cooling savings, the best time to open a window is during the evenings
and nights. If someone were to leave a window open at night, it could result in
disastrous consequences if there was a nighttime storm, high humidity, or a spike in a
particulate matter like pollen. The consequences could be damaged furniture,
damaged paper products, high AC unit work for humidity, or allergic reactions at
night and in the morning. By designing the window self-manage opening and closing
itself, leaving a window open would be inconsequential as if conditions become
undesirable, the window will close itself.

1.3. High-level requirements list
● Window should compare outside temperature and indoor temperature to open

and close under correct conditions.
● Window should stay open/closed based on the particulate matter in the air (<

30μg/m3), humidity (< 60%), and rain.
● User should be able to adjust temperature threshold for the window, and

adjust the window aperture manually if desired.
● Window should be prevented from opening or closing in the case of an

obstruction.

3

2. Design
2.1. Block Diagram

Figure 2.1: System Block Diagram

4

2.2. Physical Design:

Figure 2.2: Physical Design

We have an 18 inch by 24 inch, vertically hung window. On the sides of the frame we have two lead
screws that turn and carry the window frame up and down. These two screws are driven by a timing
belt that is attached to a 12 V DC motor with encoder that is attached to the top of the window, on top
of the left screw in Figure 2.2. On the outside of the window at the top we have an encasement that
contains the temperature/humidity sensor and the particle matter sensor. Finally near the window we
will have the touch screen UI along with the temperature sensor and microcontroller on the inside of
the window. The sensors will be PCB mounted along with the microcontroller. The motor driver is on
the PCB with the microcontroller.

2.3. Block Design
2.3.1.Power Module

The power module is required to convert 120 VAC into 12 VDC and 5 VDC to
supply power to the motor driver, microcontroller, user interface, and sensors.

● 120VAC-12VDC adapter
To supply power to the system, we used the HitLights
PWR-12V-060-30-UK. It claims an efficiency of >85%, which,
although not ideal, is the most efficient given the budget available.

5

For details regarding power and current requirements, see tolerance
analysis (pg. 21)

Table 2.0: 120VAC to 12VDC Adapter Data

Input Voltage 120VAC

Output Voltage 12VDC

Output Current 8A

Output Power 96W

● 12VDC to 5VDC

A TPS62133RGTR buck converter by Texas Instruments is used to
supply a 5V rail to the control, sensor and user interface subsystems.
We require a steady output voltage for this component, as most
dependant components require an input voltage range of ±5%

Table 2.1: 12VDC to 5VDC Buck Converter Data

Input Voltage 3-17 V

Output Voltage 0.9 - 6 V

Output Current 3 A

Output Power 1.2 - 10 W

Figure 2.3 Buck Converter Schematic ​[11]

2.3.2. Control Module
The control module consists only of the microcontroller, which receives data
from the peripheral devices, processes this information, then decides whether to
activate the motor driver according to a set of predetermined parameters.

● Microcontroller
Our design uses the ATMEGA328-PU microcontroller by Microchip
Technology/Atmel. The microcontroller has 3 bi-directional ports
(two 8-bit and one 7-bit), which is used to interface with the various
sensors, the motor driver and the touch screen. The microcontroller
reads the data provided by rain, humidity and temperature sensors
and makes a decision as to whether to open or close the window (see
Fig. 2.4 for details). Additionally, it uses the current sense input

6

(from motor driver - pins 24 & 25 in Fig) to detect obstructions, and
to determine when the window is in the closed position. Data from
the motor encoder will then be used to determine the relative position
of the window. The IR sensors and the temperature/humidity sensor
will run off a single I2C interface.

Table 2.2: Microcontroller Data

Supply Voltage 5V

Supply Current 0.2mA

Fig 2.4: Microcontroller pinout

2.3.3. Motor Module
● Full bridge motor driver

To provide power to the motor, we used the DRV8873SPWPR full
bridge motor driver by Texas Instruments. It provides ±12V to the
motor, depending on the input from the microcontroller, at up to 10A,
which is sufficient to handle the peak motor current draw of 5.5A.
Additionally, it has a current sense data output, which goes into the
microcontroller as a detection for obstructions. If there is something

7

blocking the window, load on the motor increases, so there will be a
larger current draw from the motor driver.

Table 2.3: Motor Driver Data

Supply Voltage 4.5 - 38 V

Logic Inputs 5 V

Output Current 10 A

● 12V Brushed DC Motor

We used the motor with part number 4754 from Polulu. This motor is a 12
V brushed DC geared motor with a gear ratio of 70:1. The force required
to pull the window up is equivalent to lifting a mass of 1 kg. The gear that
is attached to the motor to go on the timing belt has a diameter of 5.5 cm.
The calculation for the minimum amount of torque is:

Torque from the screws:
Clamp force)N × μ × (

1 .8) .2 .525 18.669 N m(× 9 × 0 × 9 = * m
Convert to Kg:

8.669 .102 .9043 Kg m1 × 0 = 1 * m
For maximum efficiency, the motor can operate at a torque at or below 32
Kg*mm, and the torque needed is much less at a window weight of 1 Kg.
The friction of the window is not accounted for, but there is a very small
amount of friction pulling the window up, so it is negligible. At maximum
efficiency, the motor runs at 130 RPM, which is an appropriate speed, as
the screws move ⅛ of an inch every rotation, which is 41.275 cm every
minute. Since there is not much movement once the window is set, it does
not need to move large distances instantaneously, so this speed is
sufficient.

Table 2.4: Motor Data

Gear Ratio 70:1

No Load Speed 150 RPM

No Load Current 0.15 A

Stall Current 5.5 A

Maximum Power 10 W

Stall Torque 270 Kg*mm

Torque @ Max Efficiency 32 Kg*mm

Speed @ Max Efficiency 130 RPM

8

Figure 2.7: Performance characteristics of motor [9]

2.3.4. User Interface Module
The user interface allows the operator to either control the window position
manually or set it to automatic mode, in which case the window will open and
close according to the measurements made by the sensors.

● Touch Screen
The original idea for the user interface consisted of a simple LCD screen
with a few physical buttons, however, for a similar cost, we were able to
implement an LCD touch screen instead. The touch screen we used is the
Adafruit 2.8" and 3.2" Color TFT Touchscreen Breakout v2​. ​The
touchscreen receives data from the microcontroller using SPI and sends
data via I2C. The screen is powered by 5 V and its current draw is 220
mA.
The layout of the UI is displayed in Figure 2.5. The outside and inside
temperatures are displayed on the top with the desired temperature in a
larger font. In the middle is the toggle for auto and manual mode. In
manual mode, one can use the arrows on the left to move the window up
and down. In auto mode, one can use the set temperature arrows to the
right, which raises/lowers the desired temperature. The touch screen also
displays a warning in the case of rain, bad air quality, and/or an
obstruction in the path of the window.

9

Figure 2.5 - User Interface Layout

2.3.5. Sensor Module
The sensor module has all the sensors for our system and relays information
about the environment back to the microcontroller. The information comes from
an indoor temperature sensor, an outdoor temperature and humidity sensor,
particulate matter sensor, and rain sensor. This data is then used by the
microcontroller to make a decision as to whether the window should be open or
closed

● Temperature Sensor
We have an indoor temperature sensor, which is model mcp9808 from
Adafruit. We originally had a temperature sensor that would give us a
varying voltage analog signal that corresponds with temperature, but it
ended up giving us very high values and was unusable. We switched to a
temperature sensor that used I2C instead. Although there were a lot of
different registers in this device such as temperature thresholds, we only
used the ambient temperature register at address 0b.

Table 2.6: Temperature sensor data

Input Voltage 2.7-5.5 V

Current 200 μA

Temperature Range -40-125 C (-40-257 F)

Accuracy +/-0.5 C (0.9 F)

Output I2C

● Temperature and Humidity Sensor

For the outdoor temperature and humidity sensor, we used
HDC1080DMBR by Texas Instruments. Since indoor temperatures do not
need a humidity check since AC keeps humidity at a certain level, it is not
needed. We do however, need to check the outside humidity. Checking

10

humidity is important since humidity can do a lot of damage on property
as well as health depending on the level. High humidity will also increase
the AC run time, which would increase electricity usage. This is a good
temperature sensor because it is very accurate, only deviating by +/- 0.5 C.
The humidity sensor is very accurate as well, deviating only by +/- 2 %
Relative Humidity. Although the humidity sensor does have an age to it, it
only changes by +/-0.25 % RH per year, which is a very slow decline.

This temperature and humidity sensor is good because it has a large
operating temperature for both the temperature sensor and the humidity
sensor, having a range of -20-85 C (-4-185 F). This range is fine for
operating an automatic window, but when it is off, the range increases to
-65-150 C (-85-302 F). This chip can also run at 5V, but has a large
voltage range of 2.7 to 5.5 V. The output of the chip has an I2C serial data
line. Although there are many registers, we only used the first two
registers at 0x00 and 0x01 since those are the data registers for
temperature and humidity. The rest of the registers are used for ID and
status. This chip is connected to our own PCB, acting as a breakout board.

Table 2.7: Temperature/Humidity sensor Data

Input Voltage 5 V

Current Sleep Mode:
Average 150 nA
1 μA at highest temperature
Active Mode:
125-250 μA depending on
temperature and Vdd

Temperature Range -20-70 C (-4-158 F)

Accuracy (Humidity) +/-2 %RH

Accuracy (Temperature) When 5 C < T < 60 C:
+/-0.1 C
F: When 41 F < T < 140 F:
+/- 0.18 F

I2C Clock Frequency 10- 400 kHz

I2C Clock Low Time 1.3 μs≥

I2C Clock High Time 0.6 μs≥

● Rain Detector
The rain detector is a model a13082300ux1431 from Uxcell. Most

rain detectors have similar form of some kind of flex resistor. We chose
this rain detector because the price is low and the sensitivity can be
adjusted using a potentiometer. The rain detector is necessary because we

11

need to check to see if it is raining outside before a window can be
opened. When rain starts, humidity will not increase until a while later, so
a rain detector is a must with a humidity sensor.

This rain detector also comes with its own board, which can output a
digital switch output or an analog output. We used the analog output of the
board. The sensor sends out a high signal when no rain is detected and a
low signal when there is rain. Since the maximum recommended voltage
setting is 5 V, we run all the sensors at 5 V. Since the Arduino Uno is a ten
bit resolution for analog to digital conversion (0-1023), we designate a
value of less than 950 to be when there is rain.

Table 2.8: Rain sensor data

Input Voltage 3.3-5 V

Input Current 15 mA≤

Output Active Low Digital Output

● Particulate Matter Sensor
The particulate matter sensor is a dust sensor (Model PPD42NS by

Shinyei Corporation). The particulate matter sensor is on the outside of the
window. The function of this sensor is to detect particulate matter levels
outside like dust and pollen, things that are detrimental to the inside
environment. This sensor was chosen because it is robust since it can
handle temperatures from 0-45 C (32-113 F). Although the values are not
very large, for extreme temperature values, this device is not expected to
be on. When off, the device can be in a range from -30-60 C (-22-140 F),
which is a range that fits most climates. It also can detect particles larger
than 1 μm, which is a good range for detecting pollen and dust (e.g. the
size of pollen is 6 μm).

The device operates in voltages between 4.5-5 V. The output of this
device goes straight into the microcontroller since it is a digital signal
(PWM). Based on the concentration of particles, the duty cycles hits a low
pulse occupancy percent up to 16%.

 ​Table 2.9: Particulate matter sensor data

Voltage Input 4.5-5.5 V DC

Current Up to 90 mA

Operating Temperature 0-45 C (32-115 F)

Output PWM wave, negative logic
High: > 4 V
Low: < 0.7 V
Unit Wave time: 30 sec

12

FIgure 2.6: Particulate matter sensor characteristics ​[4]

2.4. Requirements and Verification
A detailed requirements and verification table can be found in appendix A

2.4.1. Power Module
We tested two parts of the power module. The first one was the 120 V to 12

V converter. When we plugged the converter into the wall and attached it to the
PCB, the power line connected to the converter was probed using a multimeter.
The multimeter displayed a voltage of 11.983 V, very close to 12 V and within
specifications and requirements of this part.

The second part that we tested was the 12 V to 5 V step down converter. The
first time we tried testing the chip, we had the same voltage at the output and
input of the chip. We thought that the chip might have been blown because of the
high power that the 120 V to 12 V converter can provide. The current delivered
by the 120 V to 12 V converter has a maximum of 9 A while the 12 V to 5 V
converter can only take a maximum of 3 A, so if there was a short, it would have
blown the chip. We bought a second chip and although we did not get the same
error as the first chip, we got an output of 1-2 V instead of the 5 V that was
needed. The output, input, and ground were not shorted together and the
soldering job was fine. The issue would have been the chip, but we ran out of
time to buy more and experiment.

2.4.2. Control Module
For the microcontroller, we checked if the signals from the sensors were

being read. For the two sensors that required I2C, we used test code that just

13

called the address of the I2C device as well as read/write values to some of the
registers. This worked, so our I2C line worked fine. With our analog rain sensor,
we used analogread() on the Arduino to read the voltage coming from the board
and cross checked it with a multimeter. The two readings were correlated and we
ruled the analog signal to be working and was being read. The digital signal from
the particulate matter sensor was checked by outputting what was being sent in
the digital pin of the arduino and cross checking the output of the sensor with an
oscilloscope. When there was a high recognized by the microcontroller, there
was also a high on the oscilloscope, so the digital input to the microcontroller
worked.

Since we know the I2C line worked, we can safely assume that any errors
coming from any output of the touchscreen would not be an error with the
microcontroller, but with the hardware setup of the touchscreen itself. The SPI
interface test for the touchscreen (the display) was tested by the procedure
mentioned in the user interface module below.

2.4.3. Motor Module
The two things that we tested is the motor and the motor driver. For the

motor, we were able to hook up the power to 12 V. We tested the operation of
the motor by putting 12 V in each input. We timed the window opening and
closing, and the window was moving at a consistent time. The window
completed a full open/close in 25 seconds, which is completely reasonable. This
meets our requirement of opening/closing the window within 30 seconds.

There were three outputs that we needed to check for the motor driver. We
needed the voltage to be correct and within specifications and we needed the
current to be outputted correctly and within specifications as well. By probing
with the motor driver output with a digital multimeter, we found the voltage
coming out to be 11.856 ±0.05 V. This is completely within our requirements of
±5% of 12 V. The motor driver has two outputs that output the current the motor
driver is drawing, so we attached these two to analog inputs to the
microcontroller and printed out the current using test code. When we ran the
motor driver with the motor, the current draw was at an average of 0.53 ±0.03 A.
When tested on different resistor loads of resistances up to 80 Ω, the current
never went above 0.2 A. Given that the current should not go above 5.5 A, we
also met our requirements for voltage and current.

2.4.4. User Interface Module
For our UI interface, there were two parts that we tested. We tested the SPI

portion using test code that would change the screen to black instead of the bright
white that appears when on. The screen successfully turned completely black, so
the SPI interfacing worked with the screen.

For the touch portion, we had test code with I2C interfacing that would print
out the location of the touch if one existed. The code was able to display
locations that changed logically depending on where our finger was. There was
no response when we touched the bezel of the touch screen and every point on
the touch screen had a response. With both SPI and I2C working, we labelled the
UI Interface as working.

14

2.4.5. Sensor Module
The first sensor tested was the rain sensor. We had the rain sensor connected

to 5 V from a power supply and the analog output to a digital multimeter. When
there was no water on top, there was 4.73 V. When water was added, voltage
dropped to 0.46 V. We measured the water needed to switch the signal low, and
we needed 1 mL of water before the rain sensor recognized rain. There was a
potentiometer to adjust sensitivity, but we believed 1 mL was an acceptable
amount of rain to detect before the window closes, since a raindrop is roughly
0.05 mL, so if twenty drops of water fell on the board, it would detect rain. We
believe that is enough to detect light rain.

Following this, we tested the temperature sensors. We brought in a digital
thermometer and tested both temperature sensors using our microcontroller to
display the values from I2C. The temperature sensors differed from the
thermometer by a maximum of 0.37 C, which is well in the specifications.

The particulate matter sensor did not have an exact test, as it is very hard to
classify particulate density in the current air without using another sensor. We
tested this matter sensor with sample code that would output the density of
particulate matter in thirty second cycles. We dusted the air with blackboard
erasers for thirty seconds and noticed an increase of particulate density. At the
beginning, the density never rose above 1000 ppm, but with the chalk dust, the
sensor consistently hit over 17000 ppm.

We had two testing verifications that were completely off specifications. One
of them was the IR sensors that we had originally planned to use in our design
document. The IR sensors were supposed to give a value that differed based on
how far away an obstruction was. By using test code to output the distance from
the I2C output, we only got random values. The values were varied and did not
change variance when we tried to put an obstruction in front of the IR sensors.
We tested three IR sensors with no luck, and wrote them off as completely
broken.

The other sensor that ended up completely off the requirements was our
original temperature sensor. It was supposed to be voltage analog signal that
differed based off of temperature, but when we connected the voltage, we got a
voltage of 1.5-2 V, which corresponds to around a temperature range of 55-80 C
(131-176 F) (Fig. 7). Since we measured this at room temperature, this data
proved the sensor did not work and the sensor was replaced.

Figure 2.7: Original Temperature Sensor Voltage Data

15

2.5. Control Description

Figure 2.8: System operational flow diagram

16

In our design (Figure 2.8), there are two different modes that can be processed by the
microcontroller. For the first mode (automatic), we set a desired temperature on the
UI, then get data from both the inside and outside temperature sensors. Depending on
if the desired temperature is more or less than what we desire, we either close or open
the window. If there is precipitation outside then the entire system goes and keeps the
window closed to make sure that the water is not entering the facility. If there is no
precipitation, the control module continues on. If it is colder outside than it is inside
and the temperature we want is less than the current inside temperature we will open
the window, if it is warmer outside than inside then we will close the window. On the
other hand if the desired temperature set is more than the current if it is warmer inside
than outside we will close the window and if it is warmer outside than it is inside, we
will open the window. Through this entire process we will keep track of the position
of the window. This way we can detect if the window is at the maximum or minimum
position and we can stop the motor from moving the frame. Finally, another check we
constantly will be doing is that if if the IR detects and obstruction on the window,
then we will halt all processes and stop the motor from running and moving any
direction. We plan to send data to the UI to show that there is obstruction, stopping
the window from moving up or down.

2.6. Tolerance Analysis
The power module of this system is critical to its success, as all other modules rely on
it to function. Additionally, the main purpose of the system is to save energy, and the
largest source of power loss will be in the 120VAC to 12VDC adapter, so it is
essential that this component satisfies efficiency requirements.
The 120VAC to 12VDC adapter is rated to 8A. If the current draw exceeds this
rating, it would be detrimental to the system, causing potential overheating, which
may be a fire hazard.

Table 2.10: System current draw breakdown

Subsystem Current Required (mA)

Sensors 0.03

User Interface 220

Motor 530

Microcontroller 2

Total: 752

As seen in Table 2.10, the maximum total system current draw is 752 mA, which is
7.248 below the power adapters’ maximum rating of 8A. This gives us a margin for
error of 93%. Table 2.10 contains a breakdown of the power consumption of all major
system components.

17

Table 2.11: System power consumption breakdown

Component Power Consumption (W)

120 VAC to 12 VDC adapter 0.02*

Sensors 0.15e-3

User Interface 1.1

Motor 8e-3**

Microcontroller 0.01

Total 1.2

 *Assuming motor is activated on average 4 times a day for 30 seconds (to fully open or close),
drawing an average of 0.500A (up) and 0.560A (down) the power consumption of the adapter is given
by: (1 - efficiency)*(VI​active​T​active​ ​+ VI​idle​T​idle​)/24 hours
 **Assuming motor is activated on average 4 times a day for 30 seconds (to fully open or close), the
power consumption is given by: VI​active​T​active​/24 hours

A typical HVAC system functioning in fan only mode will use up to 500 W [10], and
runs for an average of 9 hours a day [11]. The total daily energy usage, based on these
numbers, comes to 4.5 kWh. In comparison, the window system uses a total of 0.0288
kWh a day, resulting in a reduction of 4.47 kWh. The HVAC system will still use its
cooling and heating functions, as this is beyond the capabilities of the window
system, so the heating and cooling will still have a sizeable contribution to total
household energy consumption. However, based on an average monthly electricity
consumption of 767 kWh [11], the use of the automated window system results in a
reduction of 17% of a household electricity bill, a saving of around $15 a month.

3. Cost and Schedule
3.1. Cost Analysis

3.1.1. Labor
Based on an average graduate salary of $76,079 [7] for UIUC electrical
engineering graduates, our hourly rate is estimated to be $35/hour per person.
Assuming 10 hours of labor per person per week, and 16 weeks of
development, the total labor cost will be:

35 0 hours/week 10 weeks 2.5 3 members 26 250 $ * 1 * * * = $

18

3.1.2. Materials
Table 3.1: Material cost breakdown

Description Manufacturer Part No. Quantity Cost

Sensor Subsystem

Board Mount Temperature Sensor Adafruit A​dafruit MCP9808

1 $4.95

Board Mount Humidity and Temperature
Sensor

Texas Instruments HDC1080DMBR 1 $2.80

Rain Sensor Uxcell a13082300ux1431 1 $14.16

Particulate Matter Sensor Seeed Studio 101020012 1 $18.50

Motor Subsystem

DC Geared Motor with 64-bit Encoder Polulu 4754 1 $39.95

Full Bridge Motor Driver Texas Instruments DRV8873SPWPR 1 $4.04

Control Subsystem

Microcontroller Microchip Technology ATMEGA328-PU 1 $1.95

Power Subsystem

120VAC - 12VDC Converter HitLights PWR-12V-060-30-UK 1 $26.69

12V - 5V DC Buck Converter Texas Instruments TPS62133 1 $2.15

User Interface

LCD Touch Screen Adafruit N010-0554-T703 1 $29.99

Other

Window* - - 1 $80.00

Mechanical Parts* - - - $20.00

Miscellaneous Electrical Parts - - - $10.00

PCBs - - 3 $30.00

TOTAL $267.71

* Window and mechanical part costs are covered by the machine shop, and thus are estimated to give a more
accurate material cost.

3.1.3. Grand Total
Taking into account both the labor and material costs, the grand total for this
project will be $26517.71

19

https://learn.adafruit.com/adafruit-mcp9808-precision-i2c-temperature-sensor-guide/overview

3.2. Schedule
Table 3.2: Project Schedule

Week Derik Hersh Louis

9/16 Research Sensors Research Motors Research Power

Research component
specifications

Research component
Specifications

Research window and
motor specifications

9/23 Research component
specifications

Research component
specifications

Research window and
motor specifications

Start design documentation Start design documentation Start design documentation

9/30 Finish design
documentation

Finish design
documentation

Finish design
documentation

Place Parts Order Find exact parts to order Find exact parts to order

10/7 Research PCB TTL chips Order all leftover parts Test any parts in this week

10/14 Start PCB design Start PCB design Start PCB design

If applicable, start PCB
assembly
If not, Test new
components

Test motor subsystem on
window

Test all of the new
components

10/21 Finish motor system on
window

Finish PCB assembly Start adding sensors to the
window

10/28 Add user layout to the
window

Program the
microcontroller

Finish adding all the
sensors

11/4 Test user layout on window
and systems

Program the user layout Start debug of sensors and
motor subsystem

11/18 Debug programs, sensors,
and motors

Debug programs, sensors,
and motors

Debug programs, sensors,
and motors

11/25 Thanksgiving Break Thanksgiving Break Thanksgiving Break

12/2 Final Demo Preparation Final Demo Preparation Final Demo Preparation

12/9 Final Report Final Report Final Report

20

4. Conclusion
4.1. Discussion of Ethics and Safety

We ensured that our project will take into account the safety and concerns of the user.
The ethical side of our project will be to maintain the veracity of our claims that this
project will help save energy. Because this is an automated system which runs
unsupervised, we are transparent with safety issues and warn the user to follow the
IEEE code of ethics; more specifically, the first point where we “disclosed promptly
factors that ​might endanger the public or the environment,” [5]. Another IEEE Code
of Ethics point that we will follow is “avoid injuring others, their property, reputation,
or employment by false or malicious action,” [5]. We ensured that the window had
sensors and overrides any action to stop movement in case of obstruction.

Another safety concern we had is the sensors we have are electronic and may be exposed
to hazardous weather. Water can cause the circuitry to short circuit, which presents a fire
hazard and risk of electrocution, which could cause damage to the home, window and
anyone close by. We made sure that all circuits and sensors are properly shielded from
any potential situations that could lead to this concern.

Another ethics concern we saw whether our promise of reducing energy consumption in
homes is true. We want “to be honest and realistic in stating claims or estimates based on
the available data;” [5]. Our main goal was to make an environmentally friendly window
system to reduce power consumption homes and advertise the product as such only if it
truly does curb wasted energy. Considering that the typical HVAC unit uses up to 5000W
[10], and this system uses an average of 0.12W (see tolerance analysis for detail, pg. 22),

4.2​ Future Work
For future work we wanted to encase all the sensors and microcontroller in a container so
that it couldn’t be damaged by hazardous weather. We would also make sure that the
motor is not as noisy to reduce noise pollution in homes while the window was moving
up and down. Our main goal of this project was to implement it into an HVAC system or
smart home system. What this allows us to do is connect to the fan and heater in the
HVAC and make sure that it shuts off in accordance to our control flow. THis would
allow the home to save even more energy and money. Finally, we would like to make
sure that our microcontroller gets of the arduino and on another PCB, as this was one of
the requirements we could not fulfill. Instead we had to opt to keep the microcontroller on
the arduino development board.

4.3 Accomplishments
We learned a lot about how to work as a team and brainstorm an idea and make it come to
fruition, We were able to get a window that safely opened and closed and also responded
to readings from all our sensors. There were some troubles as we couldn’t get the IR
sensor or motor encoder to work. Thankfully due to some quick thinking we were able to
use the current draw to make the window safe and secure. We were unable to get out
microcontroller PCB working nor the 12 V to 5 V converter and had to resort to using the
entire Arduino UNO and it’s 5 V pin to make sure our window worked. We learned a lot
about different forms of communication and electrical engineering principles.

21

References
[1]​ ​Energy.gov. (2019). ​Home Heating Systems​. [online] Available at:

https://www.energy.gov/energysaver/heat-and-cool/home-heating-systems​ [Accessed 12 Sep.
2019].

[2]​ ​Electricity Local. (2019). ​Champaign, IL Electricity Rates​. [online] Available at:
https://www.electricitylocal.com/states/illinois/champaign/​ [Accessed 12 Sep. 2019].

[3]​ ​Texas Instruments. (2019). ​TMP23x Low-Power, High-Accuracy Analog Output Temperature
Sensors. ​[online] Available at: ​http://www.ti.com/lit/ds/symlink/tmp235.pdf​ [Accessed 01
Oct. 2019]

[4] ​ ​Seeed Studio. (2019) ​Grove - Dust Sensor. ​[online] Available at:
https://www.seeedstudio.com/Grove-Dust-Sensor-PPD42NS.html​ [Accessed 01 Oct. 2019]

[5]​ ​IEEE.org. (2019). ​IEEE Code of Ethics​. [online] Available at:
https://www.ieee.org/about/corporate/governance/p7-8.html [Accessed 13 Sep. 2019].

[6]​ ​US EPA. (2019). ​Particulate Matter (PM) Basics | US EPA​. [online] Available at:
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics​ [Accessed 16 Sep. 2019].

[7]​ Illini Success, (2018), ​Illini Success Annual Report 2017-2018​, pg. 19. [online]. Available at:
https://uofi.app.box.com/s/ml9oh48vawrhm7e019kw5ix4j91j605p​ [Accessed 28 Sep. 2019]

[8]​ Elegoo.com. (2019) ​ELEGOO UNO R3 2.8 Inches TFT Touch Screen​. ​[online] Available
at:​https://www.fujitsu.com/downloads/MICRO/fcai/touchpanels/control-board-single-input.pd
f​ [Accessed 01 Oct. 2019]

[9]​ Pololu Robotic & Electronics. (2019). ​37D Metal Gearmotors, ​[online] Available at:
https://www.pololu.com/file/0J1706/pololu-37d-metal-gearmotors.pdf​ [Accessed 10 Oct.
2019]

[10] USInspect. (2019. ​Can Running the HVAC Fan Continuously Save Energy?. ​[online] Available at:
https://www.usinspect.com/blog/can-running-hvac-fan-continuously-save-energy-costs-part-1-
3/​ [Accessed 9 Dec. 2019]

[11] EnergyUseCalculator.com. (2019). ​Electricity Usage of a Central Air Conditioner, ​[online]
Available at: ​http://energyusecalculator.com/electricity_centralac.htm​ [Accessed 16 Sep.
2019]

[12] TI.com. ​(2019) TPS6213x 3-V to17-V, 3-A Step-Down Converter In 3x3 QFN Package​, [online]
Available at: ​https://www.ti.com/lit/ds/symlink/tps62133.pdf​ [Accessed 3 Oct. 2019]

22

https://www.energy.gov/energysaver/heat-and-cool/home-heating-systems
https://www.electricitylocal.com/states/illinois/champaign/
http://www.ti.com/lit/ds/symlink/tmp235.pdf
https://www.seeedstudio.com/Grove-Dust-Sensor-PPD42NS.html
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics
https://uofi.app.box.com/s/ml9oh48vawrhm7e019kw5ix4j91j605p
https://www.fujitsu.com/downloads/MICRO/fcai/touchpanels/control-board-single-input.pdf
https://www.fujitsu.com/downloads/MICRO/fcai/touchpanels/control-board-single-input.pdf
https://www.pololu.com/file/0J1706/pololu-37d-metal-gearmotors.pdf
https://www.usinspect.com/blog/can-running-hvac-fan-continuously-save-energy-costs-part-1-3/
https://www.usinspect.com/blog/can-running-hvac-fan-continuously-save-energy-costs-part-1-3/
http://energyusecalculator.com/electricity_centralac.htm
https://www.ti.com/lit/ds/symlink/tps62133.pdf

Appendix A

Module Requirements Verification

120V-12V Converter Convert 120VAC to 12VDC from
a wall plug with ≥85% efficiency

1. Connect adapter to wall
outlet

2. Measure input and output
voltage and current using
DMM

3. Calculate efficiency

12V-5V Converter Converts 12VDC to 5VDC with
≥95% efficiency

1. Connect converter to 12VDC
supply

2. Measure input and output
voltage and current using
DMM

3. Calculate efficiency

Maintains steady output under all
load conditions (within 5% 5V at
output)

1. Attach variable load to
output

2. Observe output behaviour on
oscilloscope with varying
load, including during startup
and shut down (simulated by
switching power source on
and off)

Microcontroller Responds correctly to all given
input combinations

● Temperature
● Humidity
● Rain
● Obstructions (IR sensors)
● Current window position

1. Check logic using computer
simulations on code

2. Connect input pins to
relevant simulated interfaces
(I2C, Analogue, PWM)

3. Connect oscilloscope to
motor driver output pin

4. Vary inputs according to
Table A.1 and measure
output using DMM

5. Check that output matches
control flowchart

Interfaces correctly with touch
screen

1. Connect touch screen to
microcontroller via I2C
interface

2. Check logical response at
output of microcontroller for
any functional touch inputs

23

Temperature Sensor (indoor) Measures temperature to within
±1 ​°C

1. Place sensor in small air

conditioned room
2. Allow AC to reach

thermostat set temperature
3. Measure output of

temperature sensor using
oscilloscope

4. Vary AC temperature to
extremes

5. Check sensor matches
thermostat temperature

Temperature/Humidity Sensor
(outdoor)

Measures temperature to within
±1 ​°C

1. Place sensor in small air
conditioned room

2. Allow AC to reach
thermostat set temperature

3. Measure output of
temperature sensor using
oscilloscope

4. Vary AC temperature to
extremes

5. Check sensor matches
thermostat temperature

Measures humidity to within ±5% 1. Place sensor in various
environments of different
humidity levels (e.g. outside,
room with HVAC, sauna)

2. Measure actual humidity
using sensor of known
accuracy

3. Read data from I2C interface
and compare to measured
value

Rain Sensor Detects light rain with accuracy
≥80%

1. Spray sensor with spray
bottle on mist setting

2. Check output with DMM

Detects heavy rain with accuracy
≥95%

1. Drop single drop of water
onto sensor

2. Check output with DMM

Particulate Matter Sensor Measures particulate matter
content to within ±5µg/m3

1. Place sensor in various
environments of different
known PM levels

2. Measure actual PM
concentration using sensor of
known accuracy

3. Read data from I2C interface
and compare to measured
value

24

Motor Driver Outputs ±12V (within ±5%)
current up to 5.5A (stall current of
motor)

1. Attach driver to 12VDC
source

2. Attach variable load to
output

3. Apply logic inputs for
forward, reverse and brake
functions

4. Vary load between 2.2Ω and
80Ω to simulate different
motor operating modes

5. Use oscilloscope to observe
output

Motor Opens and closes window 25cm in
30 seconds

1. Attach motor to power
supply and window set up

2. Measure time taken for
window to fully open from
closed position

3. Measure time taken for
window to return to closed
position

Touch Screen Displays information described in
Figure 2.6

1. Configure display with
power source and
microcontroller

2. Check spacing and color of
display

Responds to touches accurately 1. Configure display with
power source and
microcontroller

2. Touch all buttons and check
output to see if it matches

3. Touch all non functional
parts of the screen, ensure no
response

Table A.1 - Microcontroller testing

Inputs Outputs

Pin Description Value Pin Description Value

 Inside Temperature
Outside Temperature
Desired Temperature
Humidity
Rain
Motor Current 1
Motor Current 2

25 ​°C
28 °C
25 °C
0%
No
0 A
0 A

 Motor nSleep:
Motor Enable:

Motor PWM 1:
Motor PWM 2:

LOW
HIGH
LOW
HIGH

25

 Inside Temperature
Outside Temperature
Desired Temperature
Humidity
Rain
Motor Current 1
Motor Current 2

28 ​°C
25 °C
25 °C
0%
No
0 A
0 A

 Motor nSleep:
Motor Enable:

Motor PWM 1:
Motor PWM 2:

LOW
HIGH
HIGH
LOW

 Inside Temperature
Outside Temperature
Desired Temperature
Humidity
Rain
Motor Current 1
Motor Current 2

25 ​°C
25 ​°C
25 ​°C
70%
No
0 A
0 A

 Motor nSleep:
Motor Enable:

Motor PWM 1:
Motor PWM 2:

LOW
HIGH
LOW
HIGH

 Inside Temperature
Outside Temperature
Desired Temperature
Humidity
Rain
Motor Current 1
Motor Current 2

25 ​°C
25 ​°C
25 ​°C
0%
Yes
0 A
0 A

 Motor nSleep:
Motor Enable:

Motor PWM 1:
Motor PWM 2:

LOW
HIGH
LOW
HIGH

 Inside Temperature
Outside Temperature
Desired Temperature
Humidity
Rain
Motor Current 1
Motor Current 2
NB: Motor opening

25 ​°C
25 ​°C
25 ​°C
0%
No
500 mA
0 A

 Motor nSleep:
Motor Enable:

Motor PWM 1:
Motor PWM 2:

HIGH
LOW
LOW
LOW

 Inside Temperature
Outside Temperature
Desired Temperature
Humidity
Rain
Motor Current 1
Motor Current 2
NB: Motor closing

25 ​°C
25 ​°C
25 ​°C
0%
No
0 A
500 mA

 Motor nSleep:
Motor Enable:

Motor PWM 1:
Motor PWM 2:

HIGH
LOW
LOW
LOW

26

Appendix B

27

