

Abstract
Macro buttons are not new and exist on some high-end keyboards and specialized keypads on the market.
Workflow of multiple actions are also existing features of many operating systems. One of our team
members has experience using the stock Automator application of macOS, and it is still only on the
software side with no hardware dedicated to make it easily accessible. In addition, the number of
functions is limited and mostly only available on the stock applications.

Our project is different because it promises to enable users to customize the button functionality instead
of relying on forced presets, spend a much lower cost, and still keep their favorite keyboards on the desk
while having our solution in parallel with the existing solutions.

ii

iii

Table of Contents
1 Introduction .. 1

1.1 Purpose .. 1

1.2 Functionality .. 1

1.3 Subsystem Overview ... 2

2 Design .. 4

2.1 Software Driver and User Interface .. 4

2.2 Control Unit... 6

2.3 Sensors as User Interface ... 6

2.4 Additional Hardware User Interface ... 9

2.5 USB Power Supply .. 9

3 Design Requirements and Verification .. 10

3.1 Software Driver and User Interface .. 10

3.2 Control Unit... 10

3.3 Sensors as User Interface ... 11

3.4 Additional Hardware User Interface ... 12

3.5 USB Power Supply .. 12

4 Cost and Schedule .. 13

4.1 Cost Analysis ... 13

4.2 Schedule .. 15

5 Conclusion ... 16

5.1 Accomplishments .. 16

5.2 Uncertainties .. 16

5.3 Ethical Considerations ... 16

5.4 Future Work .. 18

References... 19

Appendix A Requirement and Verification Tables .. 20

1 Introduction

1.1 Purpose

Keyboards and mice work well with simple tasks but are not the quickest way to interact with computers.
There are some actions people perform on a regular basis that take many mouse clicks or keyboard button
presses, which are not only tedious but also tiring and time consuming to perform but could be condensed
down into one simple press of a button. Such actions include but are not limited to opening certain pages
altogether in a browser, quickly adjusting volume and brightness of the PC, taking screenshots and
sharing to social media with one click, etc. In order to increase productivity, decrease the repetitiveness of
working on a computer, and enhance the experience and fluidity of working on a computer, we strongly
recommend the engineering of more user-friendly hardware designs of the mentioned characteristics.

We therefore propose to make a compact and portable unit with sensors, buttons and LEDs that can be
connected and used on the three major operating systems: Windows, macOS, and most distributions of
Linux. These buttons will perform whatever repeated actions the user assigns it, and the pad does not need
other power supply except the output from the Universal Serial Bus (USB). Sensors and LEDs shall
provide more advanced features that further assist the user with work.

1.2 Functionality

The high-level requirements are as follows:

1. PC Buttonpad and accompanying software driver should work on the three current versions of
mainstream PC operating systems: Windows 7+, macOS 10.11+, and recent versions of popular
Linux distributions.

2. Button functions should be easily customizable without any specific knowledge on coding or
hardware. Someone who only uses a computer for word documents/web browsing should have no
problem using the driver software.

3. The rotary encoder, touch sensors and ultrasonic sensors should work responsively while the user
intends to interact with them while staying idle otherwise, i.e. not give erroneous inputs.

High-level Requirement 1 guarantees usability across a wide variety of computers. Most existing macro
keyboards have software limited to only one operating system. This is highly inconvenient for users who
do not use a mainstream operating system or users that use multiple operating systems.

High-level Requirement 2 ensures that a wide variety of users can benefit from the PC Buttonpad. Some
existing solutions require domain-specific knowledge and alienates a large percentage of users who do not
have the required knowledge to use those solutions.

High-level Requirement 3 safeguards the user from erroneous input and potentially unsafe errors. An
input device with erroneous sensors has the potential to cause a lot of damage to the user (e.g.
accidentally deleting files, sending incomplete emails, etc.).

1

1.3 Subsystem Overview

1.3.1 Block Diagram

Figure 1. Block diagram of PC Buttonpad.

As illustrated in Figure 1, the capacitive touch sensor detects button presses and sends a signal to the
connected computer through an Arduino. The connected computer has drivers installed which decodes
these signals and performs the user-assigned actions. The USB port of the user’s computer is expected to
power the whole circuit. Additional sensors serve as part of the user interface and provide extended
features and functionalities.

1.3.2 Software Driver and User Interface

The software driver and user interface, as the name implies, is a subsystem that exists entirely on the
software. It reads in signals sent by the microcontroller to perform actions and provides an interface to the
user to freely customize the actions and the buttons that they are mapped to.

1.3.3 Control Unit

Since our project is a blend of hardware and software, the main control unit will be the Arduino on the
hardware side and the driver program on the software side. These two modules communicate with each
other through the USB Serial Port and a Universal Asynchronous Receiver-Transmitter (UART) to
convey data like battery levels of the connected computer and the buttons pressed.

2

1.3.4 Sensors as User Interface

The sensors are a core part of the PC Buttonpad and will be what the user interacts with on a frequent
basis. The capacitive touch sensors under the buttons serve to detect when the user presses a button, and
ultrasonic sensors are used to detect hands-free gestures that can switch profiles or provide additional
functionality. A rotary encoder used as a turn-dial provides further functionality and ease-of-use by
allowing the user to change things like volume and screen brightness right on the PC Buttonpad.

1.3.5 Additional Hardware User Interface

In addition to the sensors mentioned above as part of the user interface, we also include an LED array to
indicate the battery level of the PC.

1.3.6 USB Power Supply

We will be using the 5 V power supply from the USB port to power the Arduino, which then provides
power to all the other subsystems.

3

2 Design

2.1 Software Driver and User Interface

All the software modules were implemented in Electron [1] (a JavaScript framework for building desktop
applications), Vue.js [2] (JavaScript front-end framework for building reactive user interfaces), and
Python [3] (a powerful cross-platform scripting language with many third-party modules). The Electron
and Vue.js code is packaged together and forms the main part of the interface, but it also calls Python
processes to perform low-level tasks such as I/O on the serial port and handling keyboard shortcuts.

The software has been named PC Buttonpad Manager, or PCBM for short.

2.1.1 Driver Serial Port Interface

This is the piece of software that allows the Arduino to communicate with the user’s computer. A press of
the button or trigger of an ultrasonic sensor is passed on to the Arduino and sent to the USB Serial Port of
the PC, which is listened to by this piece of software. It carries out the relevant actions depending on the
signals from the hardware.

The driver serial port had many different implementation possibilities. The two main options were Node
SerialPort [4] and pySerial [5]. Node SerialPort would run within the main Electron application while
pySerial works in Python and would have to be launched as a separate process. Initial tests with SerialPort
gave lots of errors on opening communication with serial ports, so we used pySerial instead since it
satisfied the requirements.

2.1.2 Software Peripheral Simulator

Instead of having the hardware mimic the signals of a keyboard or mouse, we use the serial port interface
to read a custom signal, and then use this Software Peripheral Simulator module to simulate the click of a
mouse or typing on a keyboard. This offloads all the limitations of storing information for each button
onto the computer instead of our hardware. It also allows further customizations beyond keyboard and
mouse interactions such as running shell commands or specific libraries for certain software if required.
We will use an open-source library for this module instead of creating this functionality from scratch.

As with the driver serial port, there were a few options. Node.js has a library called kbm-robot [6] that
provides the required functionality. However, during testing, we found that this module required a lot of
other dependencies, some of which violated the cross-platform requirement. Therefore, we used keyboard
[7], a Python module that works across the required operating systems and provides identical
functionality.

2.1.3 Database of User-Configured Buttons

This is where all user-saved keyboard and mouse shortcuts are stored. Whenever a signal is received
through the serial port, this database is checked to find out what needs to be executed by the software

4

peripheral simulator. The user does not have direct access to this database but can freely and easily make
changes to it through the GUI for User to Configure Buttons.

Instead of using a separate database application to keep track of the information, we used a Node.js file
parsing library to simply save this information into a text file. Since the information stored is relatively
small (up to a few MB and not GB), this method works perfectly, and all the data can be accessed easily.
Figure 2 shows an example of macros saved by a user.

Figure 2. Screenshot of text file used to hold macros saved by the user.

2.1.4 GUI for User to Configure Buttons

This module is the core of customizing the buttons to the user’s liking. An easy-to-use GUI will allow the
user to choose specific buttons and assign desired keyboard shortcuts or command line executions. Since
it was a user-interface, many design choices had to be taken on how best to make this software as
user-friendly as possible.

The interface was split into three different tabs, namely: Home, Manage, and Assign. The Home tab
contains an introduction and helpful tips on how to use the software. The Manage tab provides the user
with an interface to create macros and actions. These created macros can then be assigned to particular
buttons in the Assign tab. Figure 3 shows the interface of the Manage tab that has the macro “Open
Chrome” created.

5

Figure 3. A screenshot of PCBM’s Manage Tab.

2.2 Control Unit

The control unit acts as a bridge between the hardware and the software. The microcontroller constantly
reads inputs from the different sensors and sends data to the user’s computer via the USB port based on
the inputs read from the sensors. The driver serial port interface decodes the data sent by the
microcontroller and performs any required actions based on the data.

We decided to use the UART protocol since this is supported by the hardware on the Arduino and can be
easily managed in code by using the Serial class. If we were using only an ATMega328, we would need
additional hardware such as a FT232R USB UART IC [8] to facilitate the communication between the
microcontroller and the computer.

2.3 Sensors as User Interface

2.3.1 Capacitive Touch Sensors

Since we do not need high resolution for each single button, it is best to build capacitive touch sensors
using surface capacitance, where “only one side of the insulator is coated with conductive material. A
small voltage is applied to this layer, resulting in a uniform electrostatic field. When a conductor, such as
a human finger, touches the uncoated surface, a capacitor is dynamically formed” [9]. We built nine of
these sensors and placed them in a 3×3 grid-fashion on the PC Buttonpad. Capacitive touch sensors
ensure that there are no mechanical parts in the buttons, making the design simpler and more durable. The
capacitive touch sensors were built from scratch including timer chips, second-order low-pass filters, and
encoders and comparators to convert analog signals to digital signals. When the finger touches a button, it
is equivalent to a capacitor and the RC time constant would increase significantly – this shall detect the
touch.

6

For the analog equivalent solution of the capacitive button, we would be using a “timer circuit to generate
a frequency that is inversely proportional to capacitance and then utilize a microcontroller to count pulses
within a given period to calculate the frequency.” Figure 4 shows the schematic design [10].

Figure 4. Digitizing the value of a capacitive sensor often involves generating a frequency that is
inversely proportional to the capacitance and counting pulses over a fixed period to determine the

frequency [10].

The frequency calculation will be performed using Equation (1) as follows [10]:

 C(R R)ln(2))f = (1 + 2 2 − 1 (1)

What we have added is basically a second-order low-pass filter at the end of each of the timer outputs to
transform the periodic pulse to DC signal. With that DC signal, we use a comparator and a reference
voltage to further transform it to high/low digital signal such that the controller knows if we are touching
or not touching the button. After testing, we decided that all capacitors used are 1 μF; choices of the
resistors R1� and R2� are both 470 kΩ; low-pass filters use 1 kΩ and 2.2 kΩ respectively.

Alternatively, we could have chosen to use two digital pins from the Arduino for each button so that the
button designs themselves become much simpler. However, as we still need to reserve a lot of pins to the
ultrasonic sensors, LEDs, etc., we believe it is safer to use the analog solution and digitize the signals on
our own so that each button requires only one digital pin.

2.3.2 Ultrasonic Sensors

This sensor really comes down to measuring how far an object is. Using the time it takes for sound to
travel to the object and reflect to get received, it can measure the distance through a simple multiplication.
In our case, we allow a certain range of distance (≤ 15 cm) that the user can wave his/her hand passing by
two ultrasonic sensors, and this shall allow the controller to figure out if the movement is to the left or to
the right. With this movement, the profile of the PC Buttonpad switches and other functionalities can be

7

activated. These sensors will be properly arranged at the upper end of the PC Buttonpad such that using
the buttons on the design would not trigger the ultrasonic sensors mistakenly. Since the ultrasonic sensors
output digital signals of the distance information directly, no encoders or any other circuitry is needed.

Figure 5 displays the timing diagram that each ultrasonic sensor follows in order to collect data. A trigger
signal of 10 µs is sent to the trigger pin of the ultrasonic sensor and a timer is started. Once the timer is
started, eight 40 kHz ultrasonic bursts are sent out of the transmitting end of the ultrasonic sensor. Each of
these ultrasonic bursts is reflected to the receiving end of the ultrasonic sensor once an object is detected.
If an object is not detected, the ultrasonic bursts will reflect off an object in the background and noted as a
maximum distance. Once the echo is received, the timer stops and the time measured is converted into a
distance value as shown in Equation (2). This cycling period for each ultrasonic sensor can be easily
adjusted in the Arduino code.

Figure 5. Timing diagram for each ultrasonic sensor [14].

The distance (D) is calculated using the following equation, where time refers to the time measured after
each timer is stopped [14]:

 (speed of sound in air ime)/2D = × t (2)

Once both ultrasonic sensors were serially connected, Arduino code was written to allow for swipe
detections. To do this, the distances calculated for each ultrasonic sensor were compared. If the distances
were the same or within 3 cm of each other, no swipe was detected. If one distance was greater than the
other, than the swipe detection process would begin until the opposing ultrasonic sensor has a greater
distance. For multiple cycling periods, the distances would be measured and compared until the distance
of the opposing ultrasonic sensor is larger. From the order that these gaps in distance are detected, a left
swipe or right swipe can be concluded.

During the integration period of our project, the ultrasonic sensors were unable to perform at the same
level. We think that combining the ultrasonic sensor code with the rest of the software and hardware code

8

threw off the timing of the ultrasonic sensors and caused them to time out. Another potential cause for the
malfunction may be the amount of current being supplied to the ultrasonic sensors after they were
connected to the other sensors. Originally, the ultrasonic sensors were directly connected to the 5 V pin of
the Arduino and ground. In the final design, the capacitive touch sensors were connected between the
power and ultrasonic sensors. The capacitive touch sensors had changing capacitance values when
touches were detected, so the amount of current going to the ultrasonic sensors would frequently change.
A design alternative could require a separate power supply for the ultrasonic sensors that does not connect
to other sensors. This can ensure a steady current flow to each of the ultrasonic sensors. Additionally, the
Arduino code could be changed in a way that the ultrasonic sensor timing is not affected by the rest of the
design implementation.

2.3.3 Rotary Encoder

This device has one ground pin and two signal pins disconnects to the ground when it is turned. As we
produce two periodic pulses through the device, a turn in either direction is going to modulate the phases
of the two periodic pulses differently, which tells the direction of turning to the Arduino.

2.4 Additional Hardware User Interface

As for the number of LEDs, we used four green LEDs and linearly indicate the battery percentage value
to the closest proportional ceiling. For example, for four LEDs, 60% battery level would have three LEDs
on and one off as it is between 50% and 75%. We planned to use logic gates to decode the bits from the
controller to decide on which LED(s) to light up, but during the testing, some of the gates smoked and
burned down due to too much current going through them to the LEDs. In the end, we decided to connect
the LEDs with resistors directly to the Arduino and that would take four digital pins total.

2.5 USB Power Supply

Since we are using the power supply directly from the USB port, there is not much to design for this
module except the choice of port shape. Most laptops use a USB Type-A port, so we decided to use
Type-A, also for convenience of getting cables for the Arduino.

Alternatively, we could have used a battery array to power up the system, but since only a small amount
of power consumption are expected for the buttons, LEDs, etc. In that sense, we think the 5 W power
supply from a standard USB 3.0 port should be much more than enough.

Another alternative is for us to use 3.3 V because of stability issues, but we planned for a 5 V
microcontroller at the beginning and did not put the regulator into our PCB design as a result.

9

3 Design Requirements and Verification

The requirements and verification tables for each component can be found in Appendix A Tables 5–14.

3.1 Software Driver and User Interface

3.1.1 Driver Serial Port Interface

Table 5 describes the requirements and verifications for the driver serial port interface. Since we used a
pre-built Arduino, the verifications were straightforward and involved writing simple code using the
Serial library on the Arduino and the pySerial library for Python on the computer to decode the data sent
from the Arduino.

3.1.2 Software Peripheral Simulator

Requirement 1 in Table 6 was easy to verify and involved writing a short program in Python with some
test shortcuts. The tested shortcuts were “Ctrl+W” to close browser tab, “Ctrl+T” to open a new browser
tab, “Alt+Tab” to switch windows, and “Ctrl+Alt+Delete” to open task manager. All these shortcuts
carried out the desired action when run through the software simulator.

Requirement 2 was somewhat harder to verify, as it required a Windows, Linux, and a macOS computer.
Our group did not have a Linux computer, so we loaded our software onto a virtual machine running
Manjaro 18.1.4 to test the peripheral simulator. All shortcuts worked except “Ctrl+Alt+Delete”, which is
Windows-specific so not expected to work on Linux.

3.1.3 Database of User-Configured Buttons

The requirements as described in Table 7 were easy to verify once the software was written. The
JavaScript object was successfully parsed from the text file and executed by the Python process.

Requirement 2 was verified by simply looking at the JavaScript object limit that is ~50 MB, which is far
more than required to hold a sequence of <100 keys.

3.1.4 GUI for User to Configure Buttons

Table 8 has requirements that were verified once the software was completed. The GUI allows the user to
choose a sequence of actions and keyboard shortcuts within the 100-key limit.

Requirement 2 can be verified by running the software, creating a sequence with the Manage tab editor,
and ensuring that the sequence has been written to the macros file on persistent storage.

3.2 Control Unit

The requirements on Table 9 became far easier to verify since forgoing the ATMega328 IC for the
Arduino instead. The Arduino has far more in-built functionality and allowed us to verify Requirement 1
simply by writing some code on the Arduino and on pySerial. Requirement 2 took longer to verify
because it needed the capacitive sensor to be built, but once that was done, the requirement was verified
by connecting the sensors to the Arduino and running code that read from those sensors and output the
values to ensure that they were within the expected ranges.

10

3.3 Sensors as User Interface

3.3.1 Capacitive Touch Sensors

For the selected resistors and capacitors, we tested both on breadboard and PCB. On PCB, the analog
voltage after the second-order low-pass filter without touching is 4.06 V; if touched and released, the
voltage is < 3.7 V; if kept pressed, the voltage is 3.43 V. Likewise, on the breadboard, the voltage when
touching reads to be 4.3 V while the voltage when not touching reads to be 3.4 V. We also found the best
reference voltage to the comparator to be 3.81 V generated from 5 V voltage division using a 10 kΩ and
33 kΩ resistor combination. Oscilloscope graphs of an earlier working capacitive button testing (not the
resistor combinations described above) are attached here as Figure 6. for reference. The voltage stays
constant unless we physically touch the buttons, so it is consistent with the requirements in Table 10.

Figure 6. Timer output signals with second-order low-pass filter untouched (left) and touched (right).

3.3.2 Ultrasonic Sensors

For both ultrasonic sensors used, there were four requirements with corresponding verifications as listed
in Table 11. The ultrasonic sensors were required to measure distances between 2 cm and 1 m to make
sure that signals were not interfering with each other. The distances of both ultrasonic sensors were
measured individually and then together. When combined, the distances were able to reach up to 170 cm
before the data started to become inaccurate. For the application of the PC Buttonpad, a distance range
between 2 cm and 15 cm was necessary – anything above 15 cm was not measured. The ultrasonic
sensors also required an angle of measurement of 15°, as explained in the datasheet [14]. The angle of
measurement could not be tested to the degree, but the point of this requirement was to make sure the
angle of measurement was not wide. If the angle was wide, then a user’s hand could be detected when
touching a button below the ultrasonic sensors. We found that our hand must be placed directly above the
ultrasonic sensors in order to detect motion and confirmed that the angle of measurement is narrow.
Another requirement was that both ultrasonic sensors should work when placed adjacently. Table 1 below
displays the test results when connecting both ultrasonic sensors together. Through these tests, we were

11

able to learn that the ultrasonic sensors must be connected in series in order to collect proper distance
measurements. This means that the data of the first ultrasonic sensor must be collected before the second
ultrasonic sensor can start to collect data. Once this connection was achieved, we were able to test the
swipe functions.

Table 1. Ultrasonic sensor pin tests.

7ULDO��� WULJ3LQ�� HFKR3LQ�� WULJ3LQ�� HFKR3LQ�� GLVWDQFH�� GLVWDQFH�� 1RWHV�

�� 9 10 Correct One sensor

�� 9 10 5 6 Correct 0 Two sensors in
parallel

�� 9 10 3 5 Correct 0 Two sensors in
parallel

�� 5 6 9 10 Correct 0 Two sensors in
parallel

�� 3 5 9 10 Correct 0 Two sensors in
parallel

�� 9 10 Correct First sensor
disconnected

�� 5 6 Correct First sensor
disconnected

�� 9 10 5 6 Correct Correct Two sensors in series

The final requirement was that the cycling period for each ultrasonic sensor must be greater than 60 ms.
The minimum cycling period value could be controlled in the Arduino code, so we set the minimum
cycling period to 75 ms to avoid overlapping signals of different cycling periods.

3.3.3 Rotary Encoder

By connecting the rotary encoder to the Arduino directly taking three pins, we printed the number in
positive or negative increments to indicate the direction, and we also managed to store the number
cumulatively if needed for any other purposes. Each turn only registered one number, and the signal is
never mistaken by the Arduino, which agrees with Table 12.

3.4 Additional Hardware User Interface

The LEDs lit up successfully without burning down according to the requirements found in Table 13. The
illumination is not verified because we do not have the equipment in the lab to make such measurement,
and in some ways the LEDs are clearly visible to naked eyes already.

3.5 USB Power Supply

We tested the power of the entire circuit using the power supply in the lab according to Table 14, and the
power consumption read on the supply is way less than 2.5 W with the voltage very stable at 5 V. We did
not take note of the current, but it was definitely no more than 10 mA, and USB 3.0 could not have any
problem with providing such power.

12

4 Cost and Schedule

4.1 Cost Analysis

Outlined in Tables 2–3 are the cost of parts used in the final PC Buttonpad design and total cost of parts
purchased throughout the semester. Labor costs and the total costs of the PC Buttonpad project are also
included in this section.

4.1.1 Parts Cost

Cost of parts purchased that actually went into our project can be found below in Table 2. Table 3
displays the total cost of all parts purchased throughout the semester.

Table 2. PC Buttonpad parts cost.

Description Manufacturer Digikey Part #
Unit Price

(Prototype)/$
Unit Price
(Bulk)/$

Quantity
Proto
Sum/$

/(' � GREEN DIFFUSED T-1 3/4
T/H

Lite-On Inc. 160-1706-ND 0.36 0.04416 9 3.24

IC GATE �25 � 1CH ���,13� SOT23-5 Texas Instruments 296-1093-1-ND 0.33 0.07107 26 8.58

IC GATE �25 � 2CH ���,13� 14SOIC Texas Instruments 296-25954-5-ND 0.49 0.1624 6 2.94

IC GATE �$1' � 1CH 2-INP SC70-5 Texas Instruments 296-8743-1-ND 0.33 0.07107 9 2.97

IC �,19(57(5 � 1CH 1-INP SC70-5 Texas Instruments 296-1090-1-ND 0.33 0.07107 5 1.65

IC OSC SGL �7,0(5 � 2.1MHZ
8-SOIC

Texas Instruments 296-1336-1-ND 0.75 0.31971 10 7.5

IC OSC �7,0(5 � �'8$/� 2.1MHZ
14-SOIC

Texas Instruments 296-1338-1-ND 1.32 0.59792 10 13.2

IC �&203$5$725 � LP �'8$/
8-SOIC

STMicroelectronics 497-1593-1-ND 0.37 0.09228 5 1.95

IC DIFF �&203�6,1*/(� SOT23-5 Texas Instruments 296-10168-1-ND 0.58 0.22403 3 1.74

527$5<�(1&2'(5
MECHANICAL 20PPR

TT Electronics/BI 987-1185-ND 0.99 0.47600 2 1.98

,&�(;75$&725� 3.08 1 3.08

CMOS �7,0(5��TLC555CP Texas Instruments 0.87 2 1.74

7RWDO� 50.57

13

Table 3. Total parts cost.

Description Manufacturer Digikey Part #
Unit Price

(Prototype)/$
Unit Price
(Bulk)/$

Quantity
Proto
Sum/$

/(' � GREEN DIFFUSED T-1 3/4
T/H

Lite-On Inc. 160-1706-ND 0.36 0.04416 9 3.24

8/75$621,&� SENSOR
DISTANC US-100

Adafruit Industries
LLC

1528-2789-ND 6.95 2 (lab) 0

USB-C �%5($.287� SparkFun
Electronics

1568-1958-ND 4.5 2 9

IC GATE �25 � 1CH ���,13� SOT23-5 Texas Instruments 296-1093-1-ND 0.33 0.07107 26 8.58

IC GATE �25 � 2CH ���,13� 14SOIC Texas Instruments 296-25954-5-ND 0.49 0.1624 6 2.94

IC GATE �$1' � 1CH 2-INP SC70-5 Texas Instruments 296-8743-1-ND 0.33 0.07107 9 2.97

IC �,19(57(5 � 1CH 1-INP SC70-5 Texas Instruments 296-1090-1-ND 0.33 0.07107 5 1.65

IC OSC SGL �7,0(5 � 2.1MHZ
8-SOIC

Texas Instruments 296-1336-1-ND 0.75 0.31971 10 7.5

IC OSC �7,0(5 � �'8$/� 2.1MHZ
14-SOIC

Texas Instruments 296-1338-1-ND 1.32 0.59792 10 13.2

IC �0&8 � 8BIT 32KB FLASH 28DIP
Microchip
Technology

ATMEGA328P-PU
-ND

2.14 1.78 2 4.28

IC REG �/,1($5����9 � 2A
20HTSSOP

Texas Instruments 296-18155-1-ND 10.81 6.13071 2 21.62

6:,7&+�527$5<� 12POS 2.5A
125V

C&K CKN10200-ND 5.97 3.85429 2 11.94

IC �&203$5$725 � LP �'8$/
8-SOIC

STMicroelectronics 497-1593-1-ND 0.37 0.09228 5 1.95

IC DIFF �&203�6,1*/(� SOT23-5 Texas Instruments 296-10168-1-ND 0.58 0.22403 3 1.74

527$5<�(1&2'(5
MECHANICAL 24PPR

TT Electronics/BI 987-1399-ND 0.81 0.39200 2 1.62

527$5<�(1&2'(5
MECHANICAL 20PPR

TT Electronics/BI 987-1185-ND 0.99 0.47600 2 1.98

,&�(;75$&725� 3.08 1 3.08

CMOS �7,0(5��TLC555CP Texas Instruments 0.87 2 1.74

Adafruit �)7',�)ULHQG � + Extras Adafruit Industries 14.87 1 14.87

$UGXLQR 3 0

*UDQG�7RWDO� 113.9

14

4.1.2 Labor Cost

Undergraduates are usually paid somewhere above 10 US Dollars/hour. Assume a 20 US Dollars/hour
salary for each of the team members, and approximately 10 hours of work per week for each person. For a
total of 16 weeks in the semester, the total labor cost would be 9,600 US Dollars.

4.1.3 Total Cost

As mentioned in Table 3, the total cost for parts of this project is 113.90 US Dollars while the labor cost is
9,600 US Dollars which would equal 9,713.90 US Dollars total for this project. However, as design
components changed for this project some of the parts listed in Table 3 were not used for the final
prototype. The final PC Buttonpad prototype cost would be 50.57 US Dollars, ass seen in Table 2, and
9,650.57 US Dollars including the labor cost.

4.2 Schedule

The schedule that the team planned for the semester is found below in Table 4.

Table 4. Schedule with work distribution.

Week Adit Stephanie Yicong

10/07/19
Working on GUI and assisting

with hardware prototyping
Hardware prototyping; figure out ultrasonic sensor spacing issues

10/14/19
Refining the GUI and assisting

with Eagle CAD
Complete Eagle CAD design for early PCB order

10/21/19
Choosing and setting up database
depending on requirements and

constraints of different DB engines

Continue testing hardware
components, finalize CAD files for

3D printing, submit button
requirements to Machine Shop

Continue testing hardware
components and order parts

10/28/19 IPR
3D print physical design and

modifications; IPR
Test PCB with components; IPR

11/04/19
Link GUI to database and start

creating functionality of software
peripherals

Complete third version of Eagle CAD design

11/11/19 Prepare for mock demo

11/18/19
Write USB serial code for

connection between USB port and
microcontroller

Solder components to PCB and test

11/25/19 (Break)

12/02/19 Final stages of software and hardware integration testing

12/09/19 Prepare for final presentation and complete final report

15

5 Conclusion

5.1 Accomplishments

The PC Buttonpad ended up having many successful features that have been shown to fellow classmates,
TAs, and professors. Major accomplishments include the establishment of cross-platform software,
capacitive sensing buttons, data communication through an Arduino, and the customization of functions
performed. The software GUI was able to run on Windows, macOS, and Linux operating systems as
outlined in the high-level requirements. Additionally, the capacitive sensing circuit built from scratch
along with second-order low-pass filters designed for optimal voltage drop detection was able to perform
with no touch detection disruptions. As a main component of the PC Buttonpad, the capacitive touch
sensors were crucial for the success of the PC Buttonpad. Part of this success comes from the use of an
Arduino as a microcontroller that connected through USB to the PC in use. The Arduino could properly
read the data sent by the hardware components and forward their signals to the PC to perform
accordingly. The Arduino also supplied 5 V power through the USB to the rest of the hardware system.
The achievement that gives the PC Buttonpad its purpose is the customization of button functions. Several
actions of the user’s choice could be assigned to any button and performed immediately by the touch of a
capacitive touch button.

5.2 Uncertainties

Some of the less successful components of this project included the ultrasonic sensor functionality and the
LED logic in the PCB design. The ultrasonic sensors ultimately did not work in the final product due to
timing alterations with the rest of the codes. The ultrasonic sensors worked properly by detecting swipes
in the ultrasonic sensor Arduino code, but could not achieve the same performance when connected to the
rest of the project. Ultrasonic sensors are very time-specific to the millisecond and we believe that, with
other codes running, the sensors could have timed out due to the amount of lag created with the rest of the
software. This was the main integration failure of our project. The LED array worked with the Arduino
but was originally supposed to operate solely through the PCB. On the second and final PCB designs we
created, we included the LED array and logic. When this was tested, two of the smaller logic gates
smoked – too much current was being passed through the gates. Some of the uncertainties in this project
could have been easily fixed with additional time: we could have found a library that could set PC
functionalities to the rotary encoder and used larger gates for the LED logic that could withstand larger
current flow.

5.3 Ethical Considerations

Abiding to IEEE ethics, we are responsible for implementing and maintaining professional and ethical
standards by which we follow throughout our design process and afterwards. As a team, we have ensured
that all data and communications are truthful, following #3 of the IEEE Code of Ethics [11]. This includes
communications between each other, professors, TAs, classmates, and future users. It is with utmost
importance that we are honest and straightforward with all affected parties, especially regarding safety as

16

that is our highest priority in this process. Clarity and guidance will result if a party misunderstands the
makeup of our design, technical and physical, the purpose of our product or its safety concerns.

To create a safe working environment for our team and future users, we were aware of our individual
technical skillset and did not attempt technical tasks that we did not feel qualified to complete. Assistance
was required in these cases to avoid any unsafe practices that would violate #6 of the IEEE Code of Ethics
[11].

Our team values our compliance with the IEEE Code of Ethics through honesty, safety, and our technical
work output. We have upheld #7 of the IEEE Code of Ethics to stay true to each other and our individual
accountability and contributions within the project [11]. We are each responsible for our individual work
and would have faced proper consequences for discrediting another’s ideas or causing extreme setback for
our team’s progression.

We are also in agreement with the ACM Code of Ethics and Professional Conduct. While this code
similarly reflects that of the IEEE Code of Ethics, it points out leadership responsibilities that we as a
team must display. Our top priority is to ensure the safety and well-being of all users as listed in #3.1 of
the ACM Code of Ethics and Professional Conduct [12]. As leaders, we take complete ownership of our
product and strive toward creating a safe and educational environment.

Our continuous display of commitment to the ethical and professional standards outlined will remain after
our project design and implementation.

Our project contains safety hazards that are important to the awareness of all users. The user interface
includes several sensors which should be kept dry at all times. Moisture and other types of liquid have the
potential to leak into the interior of the PC Buttonpad and could cause damage to the circuitry inside.
Corrosion, mechanical failure, electrical shortages, or the creation of fire may occur in this instance. If
any liquid leak is suspected, immediately shut off the PC and unplug the device from the PC. To prevent
this from happening, we created a physical model that will seal any gaps between the interior circuitry
and exterior of the device.

The metallic buttons are connected to capacitive touch sensors which can malfunction if pressed with too
much pressure or if excess layers of dirt, grease, etc. are accumulated on the surface. Excessive forces
placed upon these buttons can result in damages, disconnections, and loss in overall functionality of this
product. To prevent the occurrence of these instances, the buttons are placed on a ledge within the 3D
model for additional support. However, this does not completely avoid the damaging of our product
through forcible touch – disconnections are still possible. The capacitive touch sensors rely on the
detection of capacitance change measured across the metallic buttons. If these buttons accumulated thin
layers of dirt on their surfaces, the capacitive difference would decrease and eventually make it hard to
tell the difference between a touch and no touch. Standard hygiene measures are recommended for the
user, such as washing hands, to maximize the button efficiency. In the case that buttons do get damaged,
do not disassemble the device, as one incorrect wire placement could lead to overheating elements.

17

Overheating could occur if 5 V of power was not provided to the design components. This could also
happen if more than 5 V of power is provided through the USB port to the PCB. Each module of our
device is designed around a 5 V power input from the USB. Since the device relies on PC power, there is
no worry that the voltage through the USB port will exceed 5 V. It is important for the user to plug the
device into the correct USB port at 5 V when connecting it to the PC monitor.

The accompanying software will be made open-source, and anyone will have access to the code. This
provides a guarantee to users or potential users that there is no malicious code or data collection. It is also
likely that users with a programming background can bring awareness to any unintentional security issues
or bad programming practices, making the software safer and more stable for everyone else.

Our team successfully completed the Lab Safety Training required for access to any lab. Following
campus policy #RB-13, Campus Environmental Health and Safety, we have been responsible for
maintaining a healthy and safe environment for ourselves and the rest of the University of Illinois at
Urbana-Champaign community [13].

5.4 Future Work

As with any short-term project, there are many things to improve upon and features that could be added.
The software can be made more user-friendly by adding tutorials and examples on how to use macros and
actions.

There are few main improvements that can be made to the hardware. Moving away from the Arduino
prototype and using only an ATMega328 microcontroller instead would dramatically decrease the cost
and reduce the physical dimensions of the circuitry. Using an integrated circuit for the capacitive sensors
could also reduce the area of the PCB and allow us to reduce the dimensions of the PC Buttonpad to
increase portability. Integrating the ultrasonic sensors with the other sensors and adding additional
functionality to the swipe gestures is another improvement that can be made.

18

References�

[1] “Electron,” Electron. [Online]. Available: https://electronjs.org/. [Accessed Dec. 10, 2019]

[2] “The Progressive JavaScript Framework,” Vue.js . [Online]. Available: https://vuejs.org/.
[Accessed Dec. 10, 2019]

[3] “Welcome to Python.org,” Python. [Online]. Available: https://www.python.org/. [Accessed Dec.
10, 2019]

[4] “Node SerialPort,” Node SerialPort. [Online]. Available: https://serialport.io/. [Accessed Dec. 10,
2019]

[5] “pySerial Documentation,” pySerial. [Online]. Available: https://pythonhosted.org/pyserial/.
[Accessed Dec. 10, 2019]

[6] “GitHub - kbm-robot,” Kyle Paulsen. [Online]. Available:
https://github.com/kylepaulsen/kbm-robot. [Accessed Dec. 10, 2019]

[7] “GitHub - keyboard,” boppreh. [Online]. Available: https://github.com/boppreh/keyboard.
[Accessed Dec. 10, 2019]

[8] “FT232R USB UART IC,” Future Technology Devices . [Online]. Available:
https://cdn-shop.adafruit.com/datasheets/DS_FT232R.pdf. [Accessed Dec. 10, 2019]

[9] “Capacitive sensing,” Wikipedia, Aug. 16, 2019. [Online]. Available:
https://en.wikipedia.org/wiki/Capacitive_sensing. [Accessed Sep. 16, 2019]

[10] “Use Analog Techniques to Measure Capacitance in Capacitive Sensors,” ElectronicDesign.
[Online]. Available:
https://www.electronicdesign.com/analog/use-analog-techniques-measure-capacitance-capacitive-
sensors . [Accessed Oct. 2, 2019]

[11] “7.8 IEEE Code of Ethics,” IEEE. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed Sep. 15, 2019]

[12] “ACM Code of Ethics and Professional Conduct,” Code of Ethics . [Online]. Available:
https://www.acm.org/code-of-ethics . [Accessed Sep. 15, 2019]

[13] “Campus Environmental Health and Safety,” Campus Administrative Manual. [Online].
Available: https://cam.illinois.edu/policies/rp-13/. [Accessed Sep. 19, 2019]

[14] “HC-SR04 Datasheet,” Maker Pro. [Online]. Available:
https://maker.pro/custom/tutorial/hc-sr04-ultrasonic-proximity-sensor-datasheet-highlights .
[Accessed December 8. 2019]

19

https://electronjs.org/
https://vuejs.org/
https://www.python.org/
https://serialport.io/
https://pythonhosted.org/pyserial/
https://github.com/kylepaulsen/kbm-robot
https://github.com/boppreh/keyboard
https://cdn-shop.adafruit.com/datasheets/DS_FT232R.pdf
https://en.wikipedia.org/wiki/Capacitive_sensing
https://www.electronicdesign.com/analog/use-analog-techniques-measure-capacitance-capacitive-sensors
https://www.electronicdesign.com/analog/use-analog-techniques-measure-capacitance-capacitive-sensors
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics
https://cam.illinois.edu/policies/rp-13/
https://maker.pro/custom/tutorial/hc-sr04-ultrasonic-proximity-sensor-datasheet-highlights

Appendix A Requirement and Verification Tables

Table 5. Driver serial port interface requirements and verifications.

Requirements Verifications Verified?

1. The driver should be able to
receive 8-bit data values at a rate
of 9600 baud.

2. Receiving a byte should trigger a
function depending on what byte
is received.

1A. Set up an Arduino to send a sequence
of bytes at a pseudo-random interval
(to simulate the human press of a
button) and ensure that the driver
receives those same sequence of
bytes.

2A. The same Arduino can be used to
send the sequence of bytes and some
dummy functions can be tested on
the driver side to ensure that they are
executed.

Y

Y

Table 6. Software peripheral simulator requirements and verifications.

Requirements Verifications Verified?

1. This module should be able to
simulate single keypresses and
keyboard shortcut combinations.

2. Simulating keypresses should
work on the stated operating
systems: Windows 10, macOS,
and mainstream Linux
distributions.

1A. Attempt to simulate the press of
individual letters and ensure they are
output.

1B. Attempt to simulate commonly used
keyboard shortcuts and ensure that
their effect is visible (e.g. close
window, open a new tab, etc.).

2A. Run the above tests on all three of
the operating systems to ensure
smooth operation.

Y

Y

Y

20

Table 7. Database of user-configured button functions requirements and verifications.

Requirements Verifications Verified?

1. The database can hold key
combinations and sequences such
that it can be read and executed
by the software peripheral
simulator module.

2. Multiple key sequences must be
set up to execute sequentially if
required, but within reason (< 100
keys).

1A. Store dummy key sequences in the
database and attempt to use the
software peripheral simulator to read
and execute those sequences.

2A. Test a dummy key sequence of
around 100 keys to ensure that this
can execute without any glitches or
crashes.

Y

Y

Table 8. GUI requirements and verifications.

Requirements Verifications Verified?

1. The GUI should allow the user to
choose any key combination and
sequence of keys, within the
reasonable 100-key limit.

2. A selected key sequence must
also be written to the database for
further use by the software
peripheral simulator.

1A. Ensure that the GUI allows for easy
editing and setting up of the key
sequences.

2A. Set a key sequence using the GUI and

then check that the software
peripheral simulator can correctly
execute that key sequence from the
database.

Y

Y

21

Table 9. Control unit requirements and verifications.

Requirements Verifications Verified?

1. The Arduino should be able to
send a sequence of bytes through
the USB serial output.

2. It should be able to receive valid
inputs from the ultrasonic sensor
and the capacitive sensor.

1A. Use the driver serial interface to
intercept bytes sent by the Arduino
and check for validity.

2A. Check that the Arduino receives the
distance measurement from the
ultrasonic sensors encoded as a
number.

2B. Ensure that the Arduino receives
different numbers for different
buttons pressed on the PC Buttonpad.

Y

Y

Y

Table 10. Capacitive touch sensor requirements and verifications.

Requirements Verifications Verified?

1. Must detect touching situations
only, i.e. would not trigger unless
the finger is ≤ 0.5 mm away from
the button.

1A. Pretest this using Arduino, coins,
foils, etc. on a breadboard, and place
finger as close to the metal as
possible without touching. Observe
how the reading changes as we do
so. If not desirable, change resistor
value.

Y

22

Table 11. Ultrasonic sensor requirements and verifications.

Requirements Verifications Verified?

1. Distance range for motion
detection must be between 2 cm
and 1 m.

2. Angle of measurement is within
15°.

3. Two adjacent ultrasonic sensors
must individually collect data to
perform the profile swipe
function.

4. Measurement cycle period should
exceed 60 ms.

1A. Test accuracy of data around lower
distance threshold at 2 cm and ensure
that accuracy is maintained up to 1
m. Data collected between 2 cm to
12 cm will be most important for the
uses of this design.

2A. Test hand placement above sensor at
several angles, including 15°, and
compare the data. If 15° is too tight
of an angle for motion detection, the
physical design will be modified to
slightly angle the ultrasonic sensor
more towards the user.

3A. Take and record data from a single
ultrasonic sensor. Test two ultrasonic
sensors, side by side, to see if their
signals interfere or cause any
discrepancy in the data compared to
the data of a single ultrasonic sensor.

4A.We will set the cycling period to 70
ms in the Arduino code before
sending the following 10 µs TTL
pulse.

Y

Y

Y

Y

Table 12. Rotary encoder requirements and verifications.

Requirements Verifications Verified?

1. Must register each turn as either
+1 or -1 in the signal print out.

1A. Print on screen using Arduino. Y

23

Table 13. LED array requirements and verifications.

Requirements Verifications Verified?

1. Illumination of at least 10 mcd at
the designed angle of 50° for our
LEDs chosen, which translates to
about half of the 19 mcd
specification.

2. Does not burn out due to
exceeding the tested power limit,
in this case ≤ 2.6 V, 20 mA is the
limit we would aim to attain.

1A. Make sure that the current through
the LEDs is at least more than half of
the current limit, i.e. ≥ 10 mA for
each LED is expected such that the
brightness will be somewhere more
than 10 mcd. This can be measured
using a multimeter when a 3.3 V
power supply goes to PIN1 and PIN2
from the schematics above, and all
four LEDs are on at the same time,
drawing the largest amount of
current.

2A. Make sure that the current through
the LEDs is strictly less than 20 mA,
which again can be measured with a
multimeter when 0 V goes to PIN1
and PIN2, and only one LED is on.

N

Y

Table 14. USB power supply requirements and verifications.

Requirements Verifications Verified?

1. The output voltage is no less than
4.7 V, and the capability of
outputting current is no less than
500 mA.

1A. Use a multimeter to measure the
output from the regulator when
connected with/without load.

Y

24

