
1

Bike Crash Detection

ECE 445 Final Report

Brian Lin, Dhruv Mathur, and Alex Tam

Team 24

TA: Kristina Miller

12/12/19

2

Abstract

This report explains the design and implementation of the bike crash detector device that we

designed. The device will detect a crash and its severity using an IMU. After the crash is

detected, the device will send a text to the emergency contacts with the location, time, and

severity of the crash. This allows a potentially injured biker to get the help he/she needs. This

device was made to be a reliable and inexpensive such that any biker can take advantage of it.

3

ECE 445 Final Report 1

Abstract 2

1 Introduction 4

1.1 Motivation 4

1.2 Solution 4

1.3 High-Level Requirements 5

2 Design 6

2.1 Introduction and Block Diagram 6

2.2 Subsystems, Requirements, and Verifications 7

2.2.1 Power Module 7

2.2.2 Control Module 7

2.2.3 Sensor Module 8

2.2.4 Communication Module 9

2.3 Crash Thresholding 10

2.4 Software 10

2.5 Circuit Design 11

2.5.1 Schematic 11

2.5.2 PCB Layout 12

3 Cost Analysis 13

4 Conclusion 14

4.1 Ethics 14

4.2 Accomplishments 14

4.3 Future Design Elements 14

References 16

Appendix A 18

4

1 Introduction

1.1 Motivation

Biking has become a vital means of transportation. In 2017, approximately 47.5 million

Americans cycled on a regular basis [1]. In 2015, there were 467,000 reported accidents

involving bicycles [2]. Pedal cyclist fatalities in 2017 made up 2.1% of all traffic related deaths in

2017 [3]. This statistic is disproportionately high compared to the overall population of motorized

vehicle users. There have been many expensive and inexpensive innovations to increase

communication between cyclists and motor vehicles such as the Varia Rearview Radar ($200)

[4] and the Zackees Turn-Signal Gloves ($60) [5], but the overall deaths per year in motor

vehicle accidents involving pedal cyclists continues to increase [3]. Of all pedal cyclist deaths

caused by motor vehicles, 82% involved the front of the vehicle [3], indicating that visibility is not

the main issue in the crash. From 2000 to 2013 commuting rates increased 105% [6]. In these

situations, it is rare for cyclists to ride in groups. Group riding not only makes the cycler more

visible, it also allows for the rider to gain help immediately. Since this is not the situation for the

majority of riders, a device to communicate with emergency contacts in the event of a crash

would be beneficial. Cyclists lack the safety innovations that many modern cars benefit from

such as the OnStar safety and notification system. There are devices for the bicycles that detect

crashes, such as the Garmin Edge 530, one of the most inexpensive options at $300 [7].

However, there is no solo inexpensive device that offers these capabilities without the

expensive overhead of active GPS for navigation and hardware to communicate with bike

sensors or the rider’s smartphone. Our device caters directly to commuters who have no need

for expensive hardware to measure performance.

Our goal was to develop a device that can allow cyclists to have access to the critical care they

might need immediately after the accident. It would be beneficial for many bikers to have a

device that can detect when they are involved in a crash, and notify an emergency contact of

the severity of the crash via text message so that the rider can get assistance. Many current

solutions rely on devices that attach to helmets, but only 17% of all cycling fatalities involve a

helmet [8]. A no hassle solution that is guaranteed to stay on the bike will ensure that the device

is present when an accident occurs. Our solution will attach to the bike seat post and detect for

crashes based on acceleration and rotation. It will then determine the rider’s location and send a

notification to the rider’s emergency contact with the details of the accident. Our solution will be

entirely self-contained and not rely on a connection to the rider’s smartphone or other

technology on the bicycle.

1.2 Solution

Right now there are no low-cost, attached to bike solutions for accident detection and

notification. Devices on the market are traditionally attached to the helmet. However, most

cyclists do not use a helmet making it pointless to design an accident detection device on the

helmet. Attaching the device to the bicycle ensures that the device will be there when need be.

5

The device will be independent of an external cellular device to ensure that the emergency

signal is sent even if the rider is thrown far from the bike or the rider’s mobile device is broken in

the crash. Furthermore, to ensure that as many cyclists have access to it, we want to implement

a cheap and durable option. A helmet solution costs $50 or more [9] making it impractical to

purchase for most consumers.

1.3 High-Level Requirements

● The device must accurately detect a crash with over 1g of force and distinguish crashes

from simply dropping the bike or sudden controlled stops.

● The device must quickly send a message within 1 minute of the crash to emergency

contact(s) with relevant information from the accident, specifically the time, location, and

severity of the crash.

● Device must be compact enough to not be intrusive to the rider.

6

2 Design

2.1 Introduction and Block Diagram

The device has four main modules: power, control, sensor, and communication. The power

module contains the power supply, a 3.7V LiPo battery, and a voltage regulator to step down to

3.3V for supply to ICs. The control module consists solely of the microcontroller, which

interfaces with the sensors and communication module. The sensor module consists of the IMU

and GPS chips, which are used by the microcontroller to detect crashes and location. The

communication module contains the GSM chip and antenna that are used to connect to a

cellular network in order to send text messages.

7

2.2 Subsystems, Requirements, and Verifications

2.2.1 Power Module

The main power source was a 3.7 V LiPo battery. This provided power for the microcontroller,

GPS, and GSM chips and was easily accessible for recharging when the battery was out of

power. There was also a low-dropout linear voltage regulator with an output of 3.3 V. The GSM

was powered directly off of the battery, while the microcontroller, IMU, and GPS were powered

by the voltage regulator. The current requirement came from the requirements for all the chips

on the board. The microcontroller drew a max of 14 mA, the IMU drew a max of 5 mA, and the

GPS drew a max of 67 mA. The GSM drew a max of 100 mA expect when powering the

antenna to send a text message, when it drew a max of 2 A for a brief moment.

The battery we selected had a capacity of 4000mAh. Current draw during normal activity without

a crash is less than 20mA, as we only have to power the microcontroller and IMU. Therefore,

the battery was able to last at least 200 hours with no crashes before requiring recharging.

Table 1: Power Module R/V

Requirement Verification Results

Must provide ≥2 A between

3.6 V - 3.9 V for the ICs and

voltage regulator

1. Connect fully charged

battery to a fixed load and

make sure it provides more

than 200 mA

2. Discharge battery and

monitor voltage with a

voltmeter to ensure it stays

between 3.6 V - 3.9 V.

1. 3.7 V 4000 mAh LiPo

battery

2. Actual output: 3.6 V -

4.1 V

3. Actual output: > 2A

source for GSM

3.3 V regulator must provide

≥100 mA between 3 V - 3.45

V

1. Connect regulators to

battery at input, and loads at

each output and make sure it

provides more than 100 mA.

2. Discharge battery and

monitor voltage at both

outputs with a voltmeter to

ensure it stays between 3 V -

3.45 V.

1. Actual output: 3.29 V

2. Actual output: > 150

mA

2.2.2 Control Module

The microcontroller was an ATmega328P-PU, and was used to process the IMU data,

communicate with the GPS chip, and control the GSM chip. Communication with the IMU was

over SPI, and communication with the GPS and GSM chips was over software serial. The

8

microcontroller was responsible for identifying and categorizing a crash, acquiring the current

location, and packaging all the relevant information into a text message to send to the saved

emergency contact.

Table 2: Control Module R/V

Requirement Verification Results

Must support two

simultaneous software serial

connections

Connect two serial ports to

the two ICs and verify active

communication to both

1. ATmega328p satisfies

requirement

Must communicate at speeds

over 1MHz with the IMU over

SPI

Record the number of

readings in a fixed time frame

and check that the date rate

is greater than 1MHz

1. SPI communication at

8MHz

2.2.3 Sensor Module

The IMU used was the MPU 9250, containing a 3-axis accelerometer that measures ±16 g

(m/s/s scaled by Earth gravity) and a 3-axis gyroscope that measures ±2500 dps (degrees per

second). According to Stone and Broughton, fatalities on bicycles increases from 3% to 10%

when vehicle speeds 30mph to 50mph [10]. This speed correlates to 10g of acceleration in a

normal crash with an average adult male [11], which was the maximum acceleration we wanted

to measure accurately, as anything higher would automatically be categorized as a severe

crash. The data was smoothed by a software implemented moving average filter to remove any

noise in the measurements.

The GPS was a NEO-6M GPS Module, that can communicate over a serial interface with the

microcontroller to report the location of the device when a crash occurs. The chip reports

location in the standard NMEA format, which can then be parsed to extract the latitude and

longitude data.

9

Table 3: Sensor Module R/V

Requirement Verification Results

Must accurately

detect accelerations

over 1g and rotations

over 45dps

Acceleration testing

can be done by

performing controlled

drops of the IMU.

Rotation testing can

be done by mounting

the IMU to a spinning

wheel.

Testing Thresholds

Fall: 1G in the X or Y

plane

Light Crash: 0.7G +

45dps

Medium Crash 1.2G

+ 75dps

Severe Crash: 1.7G +

90dps

Realistic

Thresholds

Fall: 1G in the X or Y

plane

Light Crash: 1.5G +

45dps

Medium Crash 4G +

75dps

Severe Crash: 7G +

90dps

Must provide GPS

data in NMEA format

accurate to within 10

meters

Parse the acquisition

data to ensure the

correct encoding and

manually verify

accuracy of location

data when outside

using a secondary

GPS (Google Maps).

1. Actual 6 decimals of NMEA accuracy

a. Within 1m of location

2.2.4 Communication Module

The GSM was a SIM800L module, which received serial data from the microcontroller with the

contents of a text message and the recipient. The GSM module communicated internally with

the antenna to send the message over a cellular network.

Table 4: Communication Module R/V

Requirement Verification Results

Must connect to a 2G cellular

network in populated areas

without major interfering

structures

Confirm that the SIM card

can communicate with the

network in various outside

locations around campus.

1. -80 dB 2G signal

strength outside of

buildings

Must be able to send a text

message within 1 minute of

detecting a crash

Simulate conditions for a

crash. Then measure the

time for the system to send

the notification and ensure it

is within 1 minute.

1. Text message sent in

56 seconds from

crash simulation

10

2.3 Crash Thresholding

As there are several different types of crashes and severities, we want to correctly identify the

crash. The most important crash we must detect is one that renders the rider unable to contact

anyone making the device mandatory to work. A severe crash is when a collision occurs while

the bike is travelling around 10 m/s and sends the rider flying. Assuming the acceleration from

10 m/s to 0 m/s occurs in a time frame of 0.1 s, the g’s can be calculated by dividing the

acceleration by Earth gravity. The acceleration is a = Δv / t, and Earth gravity is g = 9.81 m/s/s.

In this case, an acceleration with a change in velocity of 10 m/s over 0.1 s results in a crash with

10.2 g’s experienced during impact.

The minimum threshold for a crash is a change from 1 m/s to 0 m/s in a time frame of 0.5 s.

This crash results in 1.02 g’s experienced.

However, simply detecting a spike in acceleration is not enough to accurately detect a crash.

Accelerations of around 1.5 g’s can be expected from sharp braking and bumps in the riding

surface. Therefore, we also used the gyroscope to measure both the speed of rotation and the

absolute angle of the bicycle. Our minimum threshold for rotational speed to detect a crash was

45 degrees per second, which must be seen at the same time as a spike in acceleration.

2.4 Software

The code running on the microcontroller can be divided into two main components. First, the

controller establishes a SPI communication protocol with the IMU, and begins reading

acceleration and gyroscopic measurements. These are saved into finite length arrays used for a

moving average filter. The force data was recorded individually in the X, Y, and Z planes. 25

cycles of force data were recorded in an array, and after 25 cycles, the array was averaged.

This averaged data was converted into a vector sum which was used to detect crashes. A

similar process was performed with gyroscope data but with 5 cycles.

 Using the process T. Islam outlines in “Comparison of complementary and Kalman filter based

data fusion for attitude heading reference system” [12], the complementary system was chosen

to calculate angle. The complementary system is based on the theory that acceleration data is

only valid on the long term and gyroscope data is only valid in the short term. Using a simple

moving average, the accelerometer data is filtered and the gyroscope data will undergo

numerical integration followed by a moving average. The filtered accelerometer data is summed

with the gyroscopic data with the formula angle = .98 * (angle + gyroscopicData*dt) + .02 *

(accelerometerData). This formula combines 98% of the past angular data with 2% of the

change due to the new acceleration.

Once a crash has been identified and categorized, the microcontroller begins communicating

with the GPS chip. It waits for the chip to obtain 5 consecutive readings to ensure that the

location has stabilized and is accurate. The latitude and longitude are then saved, and

11

communication with the GSM begins. The controller configures the chip into SMS mode, and

then sends the phone number the text should be sent too. Finally, the message is sent,

containing the category of the crash, the GPS location, and other strings to create a coherent

message. The full code can be found in Appendix A.

SPI was chosen due to its faster clock cycle and the ability to test the IMU while normally

powering the Arduino with the normal 5V. The device was tested extensively with SPI

connection. However, when testing with the PCB, the SPI pins of the PCB seemed to be

malfunctioning and communication with the IMU ceased. In an effort to fix the problem without

removing all components on the PCB, it was decided to switch to I2C and solder the backup

IMU to through hole to communicate with the Arduino. This solution worked and allowed us to

seamlessly communicate with the IMU.

2.5 Circuit Design

2.5.1 Schematic

Figure 2: Circuit Schematic

Figure 2 contains the circuit schematic for our PCB. The design was chosen to be as modular

as possible. The voltage regulator (IC2) outputs the 3.3 V supply to the microcontroller, IMU,

12

and GPS chips. The microcontroller (IC3) has a pull-up resistor (R1) on pin 1 (reset), an

oscillator (X1) and two capacitors to ground (C1, C2) on pins 9 and 10 (XTAL), and power and

ground connections. The other three chips are all on separate breakout boards, requiring only

connections for power and communication. These can be found at the bottom of the schematic

for the IMU, GPS, and GSM in order from left to right.

2.5.2 PCB Layout

Figure 3: Data Circuit Schematic

Figure 3 contains the PCB layout design. The PCB was designed to be compact yet large

enough to easily handle for simulating crashes. The connection to the battery and the voltage

regulator are in the bottom left, and the resistor, capacitors, and oscillator SMDs are located to

the left of the microcontroller. All four ICs are connected with through hole pads. For debugging

purposes, each pin of the microcontroller is also connected to a second through hole pad. All

traces are the standard 6 mil width, with the exception of the power and ground connections to

the GSM. These are 30 mil traces to accommodate for the occasional 2 A surge drawn by the

antenna when sending a text message. Our final board size was 70 x 90 mm, which can be

reduced in the future by removing unnecessary through hole pads and reorganizing the

locations of components.

13

3 Cost Analysis
Table 5: Cost Analysis

Part # Mft Description Module Price Qty Total

Breakout

MPU-9250 InvenSense

6-axis MotionTracking device

that combines a 3-axis

gyroscope, 3-axis

accelerometer Sensor $ 11.96 1 $ 11.96

ATmega328 Atmel 8-bit AVR microcontroller Control $ 11.85 1 $ 11.85

SIM800L SIM Tech Quad-band Mini GPRS GSM

Communic

ation $ 12.73 1 $ 12.73

Neo-6M Ublox 6 GPS module ROM, crystal

Communic

ation $ 5.75 1 $ 5.75

TLV70033D

DCR

Texas

Instruments

LDO Voltage Regulators

200mA Low IQ Power $ 0.34 1 $ 0.34

LD1117V33

STMicroelec

tronics

IC REG LINEAR 3.3V 800MA

TO220AB Power $ 0.55 1 $ 0.55

YDL 3.7V

4000mAh

LiPo YDL

3.7V 4000mAh LiPo Battery

with JST connector Power $ 13.39 1 $ 13.39

Labor UIUC

3 students for 10 weeks at 10

hours/week Labor $ 10.00 300 $ 3,000.00

Total $ 3,056.57

14

4 Conclusion

4.1 Ethics

As our device transmits data to external sources, we must respect privacy as stated in the ACM

Code of Ethics 1.6 [13]. This means that we must only collect the minimum amount of

information to make our device work. Our device requires a name, emergency contacts, and

current location. The last piece of personal information, location, will only be tracked after the

device is activated after a crash is detected which protects the rider’s privacy.

ACM Code of Ethics 1.2 [13], states that the device should do no harm. The device does not

directly contact Emergency Services which mitigates any false alarms. The device instead

contacts emergency contacts which allows for a human intermediate to first make the decision

whether emergency services is needed.

Lastly, we should “be honest and realistic in stating claims or estimates based on the available

data,” according to ACM Code of Ethics 1.3 [13]. As we are detecting data from our gyroscope

and accelerometer, we need to provide accurate guidelines and limits for crash detection.

Therefore, we must find the threshold in our data set that distinguishes between a crash and

normal usage of the bike. This device does not replace a rider’s responsibility to call 911 in the

event of a severe crash.

4.2 Accomplishments

The project met all the high-level requirements set at the beginning of the project. The device

was able to accurately detect a crash with over 1g of force and distinguish crashes from simply

dropping the bike or sudden controlled stops. Secondly, the device was able to quickly send a

message within 1 minute of the crash to emergency contact(s) with relevant information from

the accident, specifically the time, location, and severity of the crash. On average we were able

to receive the text in 56 seconds. Finally, we were able to create a compact device that would

allow it to be mountable on most bikes.

4.3 Future Design Elements

 Due to the budget and time constraints of the project, our team decided to pursue

electrical engineering aspects rather than the physical design of crash detection. Because of

this, no crash resistant box was formulated and parts were not ordered in duplicate in case one

of the components broke during crash testing. This led to us being unable to generate true

severe crash level forces in the constraints of the lab. Ultimately, to adequately demo our

project, the team decided to lower the force thresholds to detect various crashes. This allowed

us to continue testing our device without the fear of breaking a non-replaceable component. In

15

the future, we will work with the machine shop to design an enclosure for our device that will be

strong enough to protect the components without inhibiting the signal of the GSM and GPS.

Future iterations of this design will utilize Bluetooth to connect the device to a simple mobile

app. This app will allow for easier modification of the emergency contact list as well as contains

an indicator for the battery to tell the consumer when the device must be recharged. The app

will also contain settings like a virtual bike lock setting that would automatically text the location

of the bike every 2 minutes to the user in the event that their bike was moved without their

knowledge. The lock will automatically be disabled when the user is within 5 feet of their bike.

This is determined using Bluetooth’s direction capabilities.

16

References

[1] Gough, C. (2018). Cycling - Statistics & Facts. [online] Statista. Available at:

https://www.statista.com/topics/1686/cycling/ [Accessed 19 Sep. 2019].

[2] Napoli Shkolnik PLLC, “How many people are killed or injured riding bikes?,” Lexology,

11-Jun-2018. [Online]. Available:

https://www.lexology.com/library/detail.aspx?g=f7666791-e58d-41bb-9551-

9e73423b2f79. [Accessed: 18-Sep-2019].

[3] National Center for Statistics and Analysis, “Bicyclist and Pedestrian Safety - nhtsa.gov,”

NHTSA. [Online]. Available:

https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/14046-

pedestrian_bicyclist_safety_resources_030519_v2_tag.pdf. [Accessed: 18-Sep-2019].

[4] Garmin and Garmin Ltd., “Varia™ Rearview Radar: Bike Radar,” Garmin. [Online].

Available: https://buy.garmin.com/en-US/US/p/518151. [Accessed: 18-Sep-2019].

[5] “Zackees Turn Signal Gloves for Cycling,” Zackees. [Online]. Available:

https://zackees.com/. [Accessed: 18-Sep-2019].

[6] C. Szczepanski, “Bicycle Commuting Data,” League of American Bicyclists, 15-Jun-2013.

[Online]. Available: https://bikeleague.org/commutingdata. [Accessed: 18-Sep-2019].

[7] Garmin and Garmin Ltd., “Garmin Edge® 530: Bike Computer with Performance Insights,”

Garmin. [Online]. Available: https://buy.garmin.com/en-US/US/p/621224. [Accessed: 18-

Sep-2019].

[8] “The Stats Behind The Bicycle Helmet,” Bicycle Universe, 18-Jan-2019. [Online].

Available: https://bicycleuniverse.com/stats-behind-bicycle-helmet/. [Accessed: 18-Sep-

2019].

[9] “ANGi Crash Sensor,” Specialized Bicycle Components USA. [Online]. Available:

https://www.specialized.com/us/en/angi-crash-sensor/p/170203. [Accessed: 18-Sep-

2019]

[10] Stone, M. and Broughton, J. (2013). Getting off your bike: cycling accidents in Great

Britain in 1990–1999. [online] ScienceDirect. Available:

https://www.sciencedirect.com/science/article/pii/S0001457502000325?via%3Dihub

[Accessed 19 Sep. 2019].

[11] Schmidt, J. (2019). Collision Reconstruction Concepts (A Series) | DJS Associates.

[online] DJS Associates. Available: https://www.forensicdjs.com/blog/collision-

reconstruction-concepts-a-series/ [Accessed 19 Sep. 2019].

17

 [12] T. Islam, M. S. Islam, M. Shajid-Ul-Mahmud, and M. Hossam-E-Haider, “Comparison of

complementary and Kalman filter based data fusion for attitude heading reference system,” AIP

Conference proceedings, 2017.

[13] “ACM Code of Ethics and Professional Conduct,” ACM. [Online] Available :

https://www.acm.org/code-of-ethics [Accessed 19 Sep. 2019].

[14] GitHub. (2019). MPU9250. [online] Available at: https://github.com/bolderflight/MPU9250

[Accessed 3 Dec. 2019].

[15] GitHub. (2019). TinyGPSPlus. [online] Available at:

https://github.com/mikalhart/TinyGPSPlus [Accessed 3 Dec. 2019].

18

Appendix A

Included in this appendix is the software programmed to the microcontroller. There are two

libraries included to interface with the IMU and GPS. The first is MPU9250 by bolderflight [14],

which allows us to simply instantiate the IMU SPI connection and request readings of

acceleration and gyroscope whenever we need to. The second is TinyGPSPlus by mikalhart

[15], which simplifies the process of parsing the NMEA data returned by the GPS to get the

latitude and longitude information.

#include "MPU9250.h"

#include <TinyGPS++.h>

#include <SoftwareSerial.h>

// an MPU9250 object with the MPU-9250 sensor on SPI bus 0 and chip select

pin 10

//MPU9250 IMU(SPI,10);

//int status;

MPU9250 IMU(Wire,0x68);

int status;

float lat = 0.0;

float lng = 0.0;

int gps_count = 0;

bool gsm_ready = 0;

// Create a TinyGPS++ object

TinyGPSPlus gps;

// Create a software serial port called "gpsSerial"

SoftwareSerial gpsSerial(5, 6);

SoftwareSerial gsmSerial(7, 8);

const int numSample = 25;

const int numSampleShort = 5;

const float beta = .98;

const int dt = 1;

int clearCounter = 5* numSample;

float accelXArray [numSample];

float accelYArray [numSample];

float accelZArray [numSample];

float gyrXArray [numSampleShort];

float gyrYArray [numSampleShort];

float gyrZArray [numSampleShort];

bool start =0;

int i =0;

int k=0;

19

float totalX =0;

float avgX =0;

float totalY =0;

float avgY =0;

float totalZ =0;

float avgZ =0;

float totalXGyr =0;

float avgXGyr =0;

float totalYGyr =0;

float avgYGyr =0;

float totalZGyr =0;

float avgZGyr =0;

float curX=0;

float curY=0;

float curZ=0;

float curXGyr=0;

float curYGyr=0;

float curZGyr=0;

float angle = 0;

float anglePrev =0;

float magAcc = 0;

float magRot = 0;

void setup() {

 // serial to display data

 Serial.begin(115200);

 while(!Serial) {}

 // start communication with IMU

 status = IMU.begin();

 if (status < 0) {

 Serial.println("IMU initialization unsuccessful");

 Serial.println("Check IMU wiring or try cycling power");

 Serial.print("Status: ");

 Serial.println(status);

 while(1) {}

 }

 Serial.println("IMU Connected");

 float gxb = 0.001; // gyro bias of 0.001 rad/s

 IMU.setGyroBiasX_rads(gxb);

 float gyb = 0.001; // gyro bias of 0.001 rad/s

 IMU.setGyroBiasY_rads(gyb);

 float gzb = 0.001; // gyro bias of 0.001 rad/s

 IMU.setGyroBiasZ_rads(gzb);

 gpsSerial.begin(9600);

 gsmSerial.begin(9600);

20

}

void loop() {

 // read the sensor

 IMU.readSensor();

 if (start) {

 avgX =totalX/numSample;

 avgY =totalY/numSample;

 avgZ =totalZ/numSample;

 magAcc= pow(((avgX*avgX) + (avgY*avgY) +(avgZ*avgZ)),.5)/9.8;

 magRot = pow(((curXGyr*curXGyr) + (curYGyr*curYGyr)

+(curZGyr*curZGyr)),.5);

 if ((abs(1-magAcc)>2)&&(abs(magRot)>60)){

 Serial.print("Bad crash");

 Serial.print("\n");

 start = 0;

 i=0;

 k=0;

 crash_notification(3);

 }

 else if ((abs(1-magAcc)>1.2)&&(abs(magRot)>22)){

 Serial.print("Medium crash");

 Serial.print("\n");

 start = 0;

 i=0;

 k=0;

 crash_notification(2);

 }

 else if((abs(1-magAcc)>.07)&&(abs(magRot)>10)){

 Serial.print("Mild crash");

 Serial.print("\n");

 start = 0;

 i=0;

 k=0;

 crash_notification(1);

 }

 else if (abs(avgY)>7.5){

 Serial.print("Fall");

 Serial.print("\n");

 start = 0;

 i=0;

 k=0;

 crash_notification(0);

 }

 avgXGyr =totalXGyr/numSampleShort;

 avgYGyr =totalYGyr/numSampleShort;

 avgZGyr =totalZGyr/numSampleShort;

 curX = (IMU.getAccelX_mss()/avgX)-1;

 curY = (IMU.getAccelY_mss()/avgY)-1;

 curZ = (IMU.getAccelZ_mss()/avgZ)-1;

21

 curXGyr = (IMU.getGyroX_rads()/avgXGyr)-1;

 curYGyr = (IMU.getGyroY_rads()/avgYGyr)-1;

 curZGyr = (IMU.getGyroZ_rads()/avgZGyr)-1;

 }

 totalX = totalX - accelXArray[i];

 accelXArray [i] = IMU.getAccelX_mss();

 totalX = totalX + accelXArray[i];

 totalY = totalY - accelYArray[i];

 accelYArray [i] = IMU.getAccelY_mss();

 totalY = totalY + accelYArray[i];

 totalZ = totalZ - accelZArray[i];

 accelZArray [i] = IMU.getAccelZ_mss();

 totalZ = totalZ + accelZArray[i];

 totalXGyr = totalXGyr - gyrXArray[k];

 gyrXArray [k] = IMU.getGyroX_rads();

 totalXGyr = totalXGyr + gyrXArray[k];

 totalYGyr = totalYGyr - gyrYArray[k];

 gyrYArray [k] = IMU.getGyroY_rads();

 totalYGyr = totalYGyr + gyrYArray[k];

 totalZGyr = totalZGyr - gyrZArray[k];

 gyrZArray [k] = IMU.getGyroZ_rads();

 totalZGyr = totalZGyr + gyrZArray[k];

 i=i+1;

 if (i>=numSample)

 {

 i=0;

 start=1;

 }

 k=k+1;

 if (k>=numSampleShort)

 {

 k=0;

 }

 anglePrev = angle;

 angle = (beta*(anglePrev+curXGyr*dt)) + ((1-beta)*(curX));

 delay(100);

}

void crash_notification(int cat)

 {

 gpsSerial.listen();

 while (gps_count < 5) {

 while (gpsSerial.available() > 0) {

 if (gps.encode(gpsSerial.read())) {

22

 if (gps.location.isValid()) {

 lat = gps.location.lat();

 lng = gps.location.lng();

 gps_count++;

 delay(100);

 }

 }

 }

 }

 gsmSerial.listen();

 gsmSerial.println("AT");

 delay(500);

 gsmSerial.println("AT+CMGF=1"); // Configuring TEXT mode

 delay(500);

 gsmSerial.println("AT+CMGS=\"+019134499583\"");

 delay(500);

 switch (cat){

 case 0:

 gsmSerial.print("Bike Fall");

 delay(500);

 break;

 case 1:

 gsmSerial.print("Mild Crash");

 delay(500);

 break;

 case 2:

 gsmSerial.print("Medium Crash");

 delay(500);

 break;

 case 3:

 gsmSerial.print("Bad Crash");

 delay(500);

 break;

 }

 gsmSerial.print(" at Location: "); //text content

 delay(500);

 gsmSerial.print(lat, 6);

 delay(500);

 gsmSerial.print(", ");

 delay(500);

 gsmSerial.print(lng, 6);

 delay(500);

 gsmSerial.write(26); // end text content

 }

