zkTap: A Zero-Knowledge Trustless Authentication Protocol

Team 33: Joseph Kuo, Majdi Hassan, Lilan Yang

TA: Evan Widloski; Professor: Arne Fliflet

What Problems Do We Solve?

A readout of activity that took place on the hotel room's electronic door lock indicated that an attempt was made to reprogram al-Mabhouh's electronic door lock at this time. [citation needed] The investigators believe that the electronic lock on al-Mabhouh's door may have been reprogrammed and that the killers gained entry to his room this way.^[41] The locks in question, VingCard Locklink brand,^[42] can be accessed and reprogrammed directly at the hotel room door.

Assassination of Mahmoud al-Mabhouh

Location	Dubai, United Arab Emirates		
Date	19 January 2010		
Target	Mahmoud al-Mabhouh		
Attack type	Assassination		
Weapons	Pillow, muscle relaxant		
Deaths	1		
Perpetrators	33 people, using forged and		
	fraudulently obtained passports		

Our Solution

Security Protocol

- The tag and reader exchange public keys which is their claim of their identification
- The two systems communicate back and forth so the tag proves it is who it claims to be
- After the tag is verified, the reader grants or denies access depending if tag has privileges

Schnorr-Peeters Protocol

Blinding Factor: 0x5f7e3a0347bd0 Commitment: 0x11bc0429e6efa Tag's private key: 0xece445 Tag's public key: 0xeacf224b9d457

Reader's private key: Oxececafe Reader's public key: 0x7532a02443798 Challenge: 0xa2e169b1c335f

Shared Secret: 0x8c864f1650952 Tag's Answer to the challenge: 0xd823281e72c11

Verification: 0xeacf224b9d457

Physical Diagram

High-Level Requirements

- O7 The response given by the correct tag must be accepted by the reader with all but negligible probability (on the order of being rejected ~1\% of the time).
- O2 A user must be authenticated in under 10 seconds.
- OZ An eavesdropper must not be able to impersonate a user (except by guessing responses).

Block Diagram

Tag Subsystem

- The subsystem consists of:
 - power supply and management system
 - random number generator
 - a microcontroller with msp430 chip
 - NRF24l01 chip

- Power supply supplies power to the rest of the system and uses a battery so that it is portable
- Microcontroller manages the security protocol
- NRF24I01 enables communication via the air

Random Number Generator

- Zener diode
- Avalanche Noise
- Discretize

RNG Results & Verification

[joseph@null cpp]\$./ea_iid ../bin/rng2.bin Calculating baseline statistics... H_original: 7.868209 H_bitstring: 0.995580 min(H_original, 8 X H_bitstring): 7.868209

** Passed chi square tests

** Passed length of longest repeated substring test

Beginning initial tests... Beginning permutation tests... these may take some ** Passed IID permutation tests

[joseph@null cpp]\$./ea_non_iid ../bin/rng2.bin Running non-IID tests... Running Most Common Value Estimate... Running Entropic Statistic Estimates (bit strings only)... Running Tuple Estimates... Running Predictor Estimates... 4_original: 7.353758 4_bitstring: 0.885569

nin(H_original, 8 X H_bitstring): 7.084548

Tag Transponder

- The RFID transponder is responsible for transmitting data to the reader and receiving data from the reader
- The NRF24I01 chip allows for the tag to broadcast messages over the air
- The tag follows a security protocol implemented in msp430 and uses the random number generator to prove that the user is who it claims to be

Requirements: The data sent should resistant toward corruption

Verification: We collected 1000 messages and it was a success if 99% messages were uncorrupted

Reader Subsystem

- The reader subsystem consists of NRF24I01 chip and a msp430 board.
- The chip enables the reader to receive messages from the tag
- The msp430 verifies the tag's identification and transmits this information to the web application

Requirements: It reads data from RFID transponder

Verification: reader authenticates tag and sends information to web app. If web app displays the information, then authentication is successful

Web Application

Function as visual aid

- View all doors and users
- User can request door access
- Admin can either revoke or accept door access requests
- Alert if there's successful or failed attempts

Database

SQLite

Django administration		WELCOME, ADMIN . <u>VIEW SITE</u> / <u>CHANGE PASSWORD</u> / <u>LOG OUT</u>
Home > Catalog > Doors		
The door "Senior Design Lab" was changed s	successfully.	
Select door to change		ADD DOOR +
٩	Search	
Action: 60 0	of 4 selected	
DOOR NAME	LOCATION	DOOR PUBLIC KEY
Grainger Auditorium	ECEB 1002	ab22314136356fe1163d9321fe5719ac1dec167ea1cff48a902ab1d39f63
Instructional Clean Room	ECEB 1003	47bae8a6d57fb7b961863eefbffe10955f23a0a5586cba486e30e96a131a31
EWS Computer Lab	ECEB 2022	dfc25eb85f19cce14b991c54e52e84784637d248b81cea3c9da3d135215915
Senior Design Lab	ECEB 2070	b9eed58fcc17f78d1be4da2c74e877bfa3c96de083d216e881d28378a1a264
4 doors		

What's Our Biggest Challenge?

What's Next?

Thank you!