POTD - Problem-based Alarm

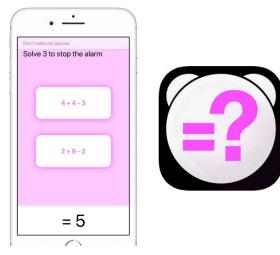
Group 16: Sherry Wu Shirley Xu Charlene Zheng

Getting up on time has always been a problem

Problems

Turned off too easily

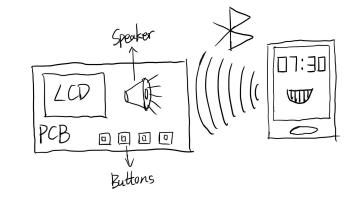
Battery dies in the middle of the night



Known solutions

Would "run away" from people

Definitely gets you up!


Mathe Alarm

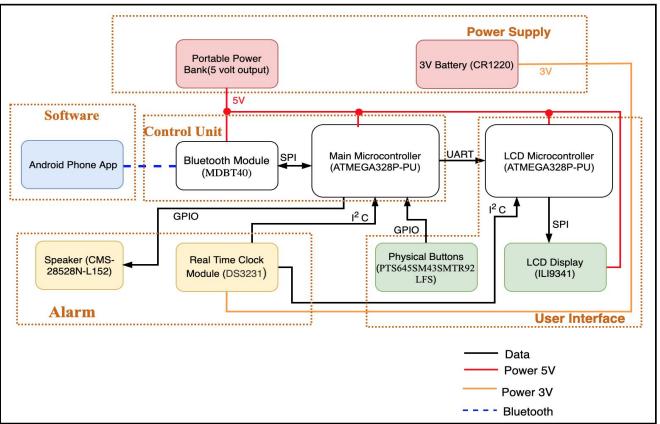
Our Solution: Problem-based alarm clock

- Answer multiple choice questions to turn off
- Customizable problems via Android app
- Feedback available

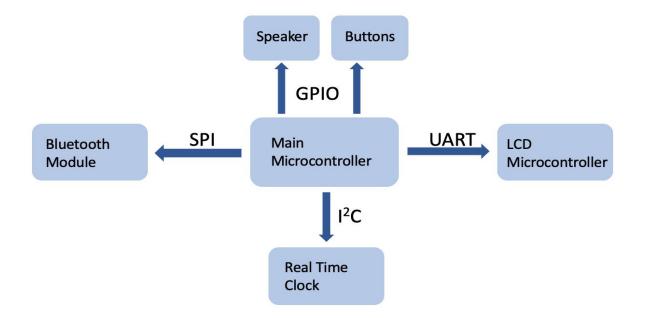
High level objectives

- Functions as an actual alarm clock
 - Display time
 - Beep at alarm time
- Displays questions and interacts with users.
- Communicates with Android app.
 - Set alarm time and questions
 - Review wake up time and "quiz performance"

How it works

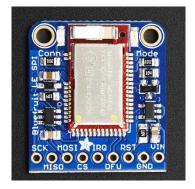


Σ



Block Diagram

Control Unit - Main Microcontroller

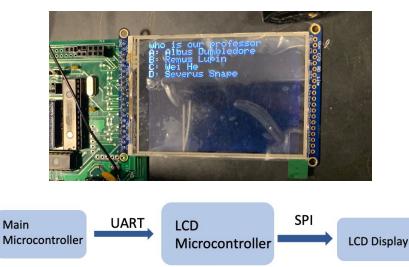


Control Unit - Bluetooth

- Adafruit Bluefruit LE SPI Friend (MDBT40)
- Connect microcontroller and Android app
- Send data back and forth

Power Supply

- 5V-10000mAh portable power bank
 - Original Design: two 9v Alkaline Batteries
 - Backlight current for LCD: ~ 80mAh
 - Duration :
 - 1160mAh/ 80mAh ~ about 14.5 hours
 - 10000mAh/80mAh ~ about 5.3 days
 - Connected via mini USB port
- Button battery for Real Time Clock
 - Continuous timekeeping when alarm is off



User Interface - LCD Microcontroller

- Atmega328p as LCD controller
- Receive questions from the Main microcontroller via UART
- Constantly read time from RTC and display
- Send questions to LCD at alarm time

I²C

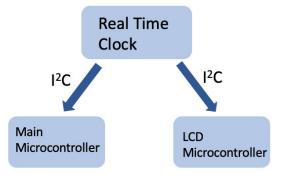
Real Time Clock

User Interface - LCD Display


- Used ILI9341 LCD display
- Receive data from LCD controller via SPI
- Display data on screen

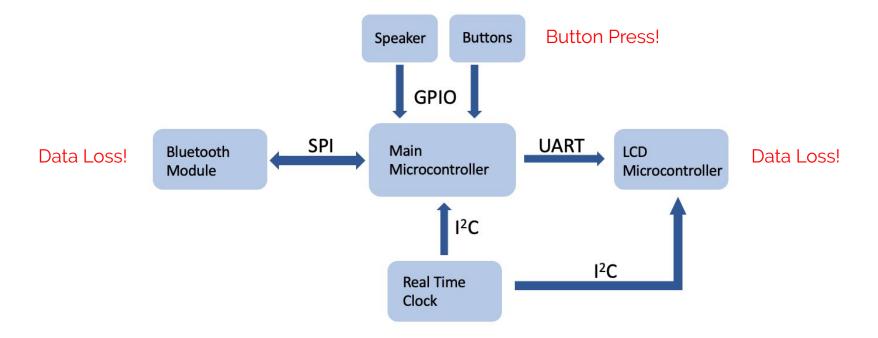
User Interface - Button

- Four buttons(PTS810 SJM 250 SMTR LFS)
- Send signal to Main microcontroller when pressed

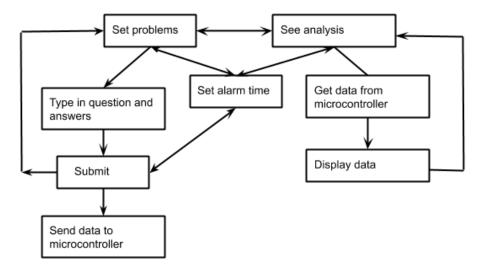

Alarm - RTC (Real TIme Clock)

- DS3231
- Tracks time
 - Backup battery for continuous timekeeping
- Send time data to both microcontrollers via I²C.
 - Pull-up resistors

Alarm - Speaker


 Connected to Main Microcontroller via GPIO

System Integration Challenges



ECE ILLINOIS

Android Mobile Application

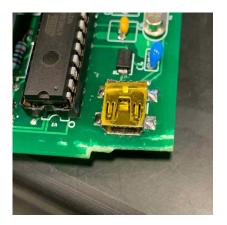
- Connects to Bluetooth module
- Send and receive data to and from the microcontroller
- Found:
 - BLE could not send > 20 Bytes
 - Resolved by sending substrings

Android Mobile Application

- Set alarm time
- Input questions
- Review data

← BluetoothLE	BluetoothLE
When did the world war II start?	
A. 1919	10:10 ADD TIME
B. 1929	
C. 1939	
D. 1949	
Correct C 💌	BluetoothLE
ADD CONFIRM	Wake up took 110 secs
	Correctly answered questions 3 / 5
	GET DATA
TIME QUESTIONS REPORT	SHOW DATA
5 0 đ	

Conclusion


- Integrated all subsystems correctly & on schedule
- PCB & system design
- Having all subsystems work (on breadboard)
- System integration on PCB
- Implementing and testing the Android app

- ~2 weeks
- ~2 weeks
- ~1 week
- ~1 week

Further Work

- Re-design PCB (position of mini usb)
- Implement IOS version of app
- Different alarm ringtones
- Multiple alarm times
- Better physical wrapping

Questions?

