Roosterband

Group 11: Junfei Gu, BumJun Kim, Jaime Ontiveros

Introduction

- A simple way to stay awake during classes
- Help people stay awake during work
- This could help prevent car accidents that are due to drowsy drivers and help truck drivers during long routes

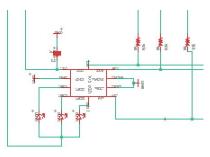
Objective

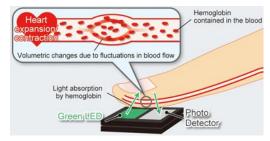
Help people who have had a poor quality of sleep get through their activities and stay awake during their work day.

Our Solution:

- WearableWristband
- Detects Sleep with Sensors
- Wakes user up with vibration
- Chargeable







Design: Pulse Sensor

- Reads blood cell Count (Pulse Oximetry)
- 2.5-3.6V
- 2 Green LED (530nm)
- 1 IR LED (770nm)
- I2C

Design: Pulse Sensor: BPM Algorithm:

Sensor Data -> Pulse Wave: Moving Average + IIR Filter ->

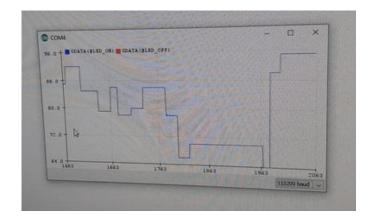

Hold:

BPM =

60/[Sampling Period*(PeakCount - CurrentCount)]

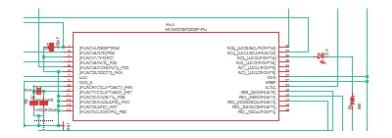
Design: Pulse Sensor: Sleep Data

BPM vs. Time (min:sec)



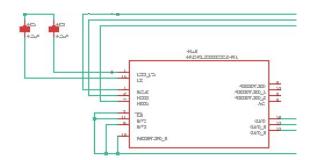
Pulse Sensor: R&V

Wake detection


- 1. Detect within 2 min whether the user is in sleep or not
- 2. System does not incorrectly declare state as "sleeping" when sensor readings get unstable
- (a)Track user with video while in a boring sedentary activity while wearing wristband. (preferably the user is already tired)
- (b) check if algorithm correctly marks state as sleep when the video shows the user is sleeping
- 2. (a) User wears the wristband
- (b) Try rapid rotational motion of the wrist for 1 min, rotational motion of the whole arm in both directions for 1 min.
- (c) Ensure the system does not incorrectly categorize state as sleep.

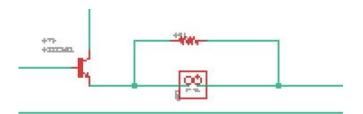
Design: Microprocessor: ATmega328p

Atmega168 Pin Mapping


Arduino function	_		Arduino function
reset	(PCINT14/RESET) PC6□1	28 PC5 (ADC5/SCL/PCINT13)	analog input 5
digital pin 0 (RX)	(PCINT16/RXD) PD0 □2	27 PC4 (ADC4/SDA/PCINT12)	analog input 4
digital pin 1 (TX)	(PCINT17/TXD) PD1 ☐3	26 PC3 (ADC3/PCINT11)	analog input 3
digital pin 2	(PCINT18/INT0) PD2 ☐ 4	≈ PC2 (ADC2/PCINT10)	analog input 2
digital pin 3 (PWM)	(PCINT19/OC2B/INT1) PD3 ☐ 5	24 PC1 (ADC1/PCINT9)	analog input 1
digital pin 4	(PCINT20/XCK/T0) PD4 ☐ 6	23 PC0 (ADC0/PCINT8)	analog input 0
VCC	VCC □7	22 ☐ GND	GND
GND	GND □ 8	21 AREF	analog reference
crystal	(PCINT6/XTAL1/TOSC1) PB6 ☐ 9	20 AVCC	VCC
crystal	(PCINT7/XTAL2/TOSC2) PB7 ☐ 10	19 PB5 (SCK/PCINT5)	digital pin 13
digital pin 5 (PWM)	(PCINT21/OC0B/T1) PD5 ☐ 11	18 PB4 (MISO/PCINT4)	digital pin 12
digital pin 6 (PWM)	(PCINT22/OC0A/AIN0) PD6 12	17 PB3 (MOSI/OC2A/PCINT3)	digital pin 11(PWM)
digital pin 7	(PCINT23/AIN1) PD7 ☐ 13	16 PB2 (SS/OC1B/PCINT2)	digital pin 10 (PWM)
digital pin 8	(PCINT0/CLKO/ICP1) PB0 ☐ 14	15 PB1 (OC1A/PCINT1)	digital pin 9 (PWM)

Digital Pins 11,12 & 13 are used by the ICSP header for MOSI, MISO, SCK connections (Atmega168 pins 17,18 & 19), Avoid low-impedance loads on these pins when using the ICSP header.

- 3.3V
- 1 I2C
- Multiple SPI
 - Arduino


Design: Accelerometer

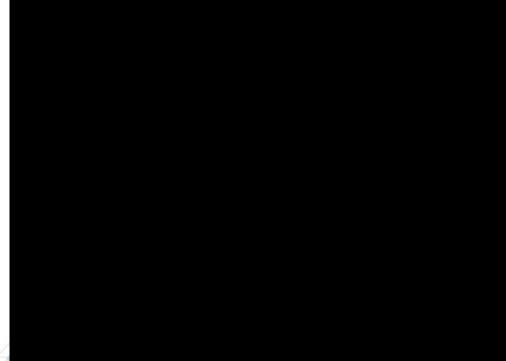
- Threshold in change of acceleration
- Being still for a long time = high chance of being asleep
- Temperature function redundant

Vibration motor

- Powered from battery
- Controlled via transistor
- 12000 RPM
- 100mA

Design: Power

Power Subsystem

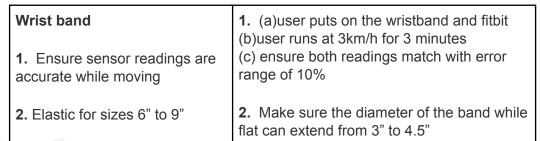

- 1. Run without charge in silent for 6 hrs.
- Run without charge with vibration motor on for 30 mins.
- Lithium battery recharges when 3.7V- 4.2V is constantly provided
- (a) Calculate the power drain of circuit then construct a mock circuit with same power drain when the vibration motor is not active.
- (b) power the circuit with the battery and check if device still runs after 6 hrs.
- (a) Modify circuit to match power drain when vibration motor is running.
 (b) turn device on and check if device still runs after 30 mins.
- (a) Drain battery(b) Set up the recharging circuit

Design: Power

- 3.7v, 400mAh Battery
- Power consumption without motor: 0.0958W
 - 155mAh for 6 hours silent runtime
- Power consumption with motor: 0.39583W
 - 641mAh for 6 hours active runtime
 - 3v, 100mA Vibration motor

30 Minute battery Active runtime

Design: Power


3.3v Linear regulator

- Charging capability included
 - 100mA charging current

Challenges

- Solder
- PCB parts integrity
- Eagle file mismatch on voltage regulator
- Ahead planning for sensor value communication

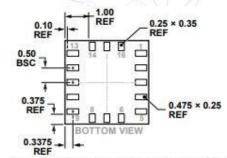


Figure 53. 16-Terminal Land Grid Array [LGA] (CC-16-4)

Dimensions shown in millimeters

Conclusions and Further Work

- Pulse Sensor can detect pulse, reacts properly to the bpm drop
- Accelerometer can detect movement, triggers vibration motor reliable
- Communication with the microcontroller tested and verified on PCB

- Fine-tune the pulse sensor program for sleep detection
- Adding more User Interface for debugging and ease of use
 - LED, button, LCD