

PC Buttonpad

Team 12 – Yicong Dong, Stephanie Jaster, and Adit Umakanth
ECE 445 Design Document – Fall 2019

TA: Mengze Sha

1 Introduction

1.1 Objective

Keyboards and mice work well with simple tasks, but are not the quickest way to interact with computers.
There are some actions people perform on a regular basis that take many mouse clicks or keyboard button
presses, which are not only tedious but also tiring and time consuming, but could be condensed down into
one simple press of a button. Such actions include but are not limited to opening up certain pages
altogether in a browser, quickly adjusting volume and brightness of the PC, taking screenshots and
sharing to social media with one click, etc. In order to increase productivity, decrease the repetitiveness of
working on a computer, and enhance the experience and fluidity of working on a computer, we believe it
is necessary to engineer more user-friendly hardware designs of the mentioned characteristics.

We therefore propose to make a compact and portable unit with sensors, buttons and LEDs that can be
connected and used on the three major operating systems: Windows, macOS, and most distributions of
Linux. These buttons will perform whatever repeated actions the user assigns it, and the pad does not need
other power supply except the output from the Universal Serial Bus (USB). Sensors and LEDs shall
provide more advanced features that further assist the user with work.

1.1.1 Background Research

Macro buttons are not new and exist on some high-end keyboards and specialized keypads on the market
[1]. Workflow of multiple actions are also existing features of many operating systems. One of our team
members has experience using the stock Automator application of macOS, and it is still only on the
software side with no hardware dedicated to make it easily accessible. In addition, the number of
functions are limited and mostly only on the stock applications.

Our project is different because it promises to let users customize the button functionality to their wishes
instead of relying on forced presets, spend a much lower cost, and still keep their favorite keyboards on
the desk while having our solution in parallel with the existing.

1

1.2 Visual Aid

As seen in Figure 1 and 2, the PC Buttonpad has been created to offer users with several customizable
shortcuts through a series of interactive buttons and sensors. The PC Buttonpad is connected to a PC via
USB cable and can be placed anywhere around the computer and keyboard. The user has the capability to
program the buttons under separate profiles such as music, internet, etc.. Profiles can be changed just by
the swipe of a hand over the PC Buttonpad, where ultrasonic sensors will detect the motion and direction
of the hand. The buttons themselves are metallic and sensitive to touch, so there is no need to press down
on the buttons with force. PC volume adjustment is available through the use of a rotary encoder, on the
left side of the PC Buttonpad, along with an array of LEDs on top for PC battery status indication.

Figure 1. Isometric view of the PC Buttonpad with a desk set-up.

2

Figure 2. Zoomed-in isometric view of the PC Buttonpad desk set-up.

1.3 High-Level Requirements

● Buttonpad and accompanying software driver should work on the three current versions of
mainstream PC operating systems: Windows 7+, macOS 10.11+, and recent versions of popular
Linux distributions.

● Button functions should be easily customizable without any specific knowledge on coding or
hardware. Someone who only uses a computer for word documents/web browsing should have no
problem using the driver software.

● The rotary encoder, touch sensors and ultrasonic sensors should work responsively while the user
intends to interact with them while staying idle, i.e. not give erroneous inputs, when one doesn’t.

3

2 Design

2.1 Block Diagram

Figure 3. Block Diagram of PC Buttonpad.

As illustrated in Figure 3, the capacitive touch sensor detects button presses and sends a signal to the
connected computer through a microcontroller and USB chip. The connected computer has drivers
installed which decodes these signals and performs the user-assigned actions. The USB port of the user’s
computer is expected to power the whole circuit. Additional sensors serve as part of the user interface and
provide extended features and functionalities.

4

2.2 Physical Design

The PC Buttonpad physical design, as shown in Figure 4a, will consist of a 3D printed, plastic shell to
encase the PCB, sensors, USB port, and internal wiring. Figure 4b shows the completed design and
encasement of all sensors and electronic components, including the metallic buttons. Metallic buttons will
be used to enable the capacitive touch sensors placed below the buttons, since touching metal will lead to
the greatest change in capacitance. The metal type for this design is to be determined, but we are planning
to either use coins or to 3D print using Steel-PLA. This shell will be 3 ⅞” x 4 ½” and roughly 1 ½” thick
at most. The dimensions of this design were selected to fit the sensors and maintain a ⅛” wall for
durability. Specific dimensions of the design and sensors are displayed in Figure 5, 6 and 7.

a) b)

Figure 4. Isometric views of a) PC Buttonpad outer shell for 3D print and b) finished PC Buttonpad
containing metallic buttons, LED array, ultrasonic sensors, rotary encoder, and USB cable.

5

Figure 5. Top view of the PC Buttonpad outer shell with dimensions.

6

Figure 6. Left view of the PC Buttonpad outer shell with dimensions.

Figure 7. Back view of the PC Buttonpad outer shell with dimensions.

Note that the USB port may in practice be USB-C instead of USB-A if type-C is better at power delivery.

7

2.3 Subsystems

2.3.1 Software Driver and User Interface

Driver Serial Port Interface: This is the piece of software that allows the microcontroller to communicate
with the user’s computer. A press of the button or trigger of an ultrasonic sensor is passed on to the
microcontroller and sent to the USB Serial Port of the PC, which is listened to by this piece of software. It
carries out the relevant actions depending on the signals from the hardware.

Requirements Verifications

1. The driver should be able to receive 8-bit
data values at a rate of 9600 baud.

2. Receiving a byte should trigger a function
depending on what byte is received.

1A. Set up an Arduino to send a sequence of
bytes at a pseudo-random interval (to
simulate the human press of a button) and
ensure that the driver receives those same
sequence of bytes.

2A. The same Arduino can be used to send the

sequence of bytes and some dummy
functions can be tested on the driver side
to ensure that they are executed.

Software Peripheral Simulator: Instead of having the hardware mimic the signals of a keyboard or mouse,
we use the serial port interface to read a custom signal, and then use this Software Peripheral Simulator
module to simulate the click of a mouse or typing on a keyboard. This offloads all the limitations of
storing information for each button onto the computer instead of our hardware. It also allows further
customizations beyond keyboard and mouse interactions such as running shell commands or specific
libraries for certain software if required. We will use an open-source library for this module instead of
creating this functionality from scratch.

Requirements Verifications

1. This module should be able to simulate
single keypresses and keyboard shortcut
combinations.

2. Simulating keypresses should work on the
stated operating systems: Windows 10,
macOS, and mainstream Linux
distributions.

1A. Attempt to simulate the press of
individual letters and ensure they are
output.

1B. Attempt to simulate commonly used
keyboard shortcuts and ensure that their
effect is visible (e.g. close window, open a
new tab, etc.).

2A. Run the above tests on all three of the

operating systems to ensure smooth
operation.

8

Database of User-Configured Button Functions: This is where are all saved keyboard and mouse
shortcuts the user sets are stored. Whenever a signal is received through the serial port, this database is
checked to find out what actually needs to be executed by the software peripheral simulator. The user
does not have direct access to this database, but can freely and easily make changes to it through the GUI
for User to Configure Buttons.

Requirements Verifications

1. The database can hold key combinations
and sequences such that it can be read and
executed by the software peripheral
simulator module.

2. Multiple key sequences must be set up to
execute sequentially if required, but
within reason (< 100 keys).

1A. Store dummy key sequences in the
database and attempt to use the software
peripheral simulator to read and execute
those sequences.

2A. Test a dummy key sequence of around

100 keys to ensure that this can execute
without any glitches or crashes.

GUI for User to Configure Buttons: This module is the core of customizing the buttons to the user’s
liking. An easy to use GUI will allow the user to choose specific buttons and assign desired keyboard
shortcuts or command line executions.

Requirements Verifications

1. The GUI should allow the user to choose
any key combination and sequence of
keys, within the reasonable 100-key limit.

2. A selected key sequence must also be

written to the database for further use by
the software peripheral simulator.

1A. Ensure that the GUI allows for easy
editing and setting up of the key
sequences.

2A. Set a key sequence using the GUI and
then check that the software peripheral
simulator can correctly execute that key
sequence from the database.

9

2.3.2 Control System

Since our project is a blend of hardware and software, the main control system will be the Microcontroller
on the hardware side and the driver program on the software side. These two modules communicate with
each other through the USB Serial Port and a Universal Asynchronous Receiver-Transmitter (UART) to
convey data like battery levels of the connected computer and the buttons pressed.

Requirements Verifications

1. The microcontroller should be able to
send a sequence of bytes through the USB
serial output.

2. It should be able to receive valid input
from the ultrasonic sensor and the
capacitive sensor.

1A. Use the driver serial interface to intercept
bytes sent by the microcontroller and
check for validity.

2A. Check that the microcontroller receives
the distance measurement from the
ultrasonic sensors encoded as a number.

2B. Ensure that the microcontroller receives
different numbers for different buttons
pressed on the buttonpad.

2.3.3 Sensors as User Interface

Capacitive Touch Sensor: Since we do not need high resolution for each single button, it is best to build
capacitive touch sensors using surface capacitance, where “only one side of the insulator is coated with
conductive material. A small voltage is applied to this layer, resulting in a uniform electrostatic field.
When a conductor, such as a human finger, touches the uncoated surface, a capacitor is dynamically
formed” [2]. We would build nine of these sensors and place them in a 3×3 grid-fashion on the buttonpad.
Capacitive touch sensors ensure that there are no mechanical parts in the buttons, making the design
simpler and more durable. Right now we have not yet figured out an analog detection mechanism for the
touch, but as we found in the capacitive sensing library of Arduino, this would basically be using RC time
constant of an external resistor and the capacitance of the PINs [3]. When the finger touches the foil, it is
equivalent to a capacitor, and RC constant would increase significantly, and that shall detect the touch.

10

Figure 8. Capacitive Sensing [3]

A sample Arduino code we found online is presented here:

#include <CapacitiveSensor.h>

CapacitiveSensor Sensor =

CapacitiveSensor(4, 6);

long val;

int pos;

#define led 13

void setup()

{

Serial.begin(9600);

pinMode(led, OUTPUT);

}

void loop()

{

val = Sensor.capacitiveSensor(30);

Serial.println(val);

if (val >= 1000 && pos == 0)

{

digitalWrite(led, HIGH);

pos = 1;

delay(500);

}

else if (val >= 1000 && pos == 1)

{

digitalWrite(led, LOW);

pos = 0;

delay(500);

}

delay(10);

}

Code Block 1. Sample Arduino Code for Capacitive Touch Sensors [4]

What we shall do is somehow tweak this code to fit into a microcontroller; or if the number of digital pins
on the microcontroller is not enough, find an analog equivalent schematic that does the same detection of
RC constant. For the analog equivalent solution, we would be using a “timer circuit to generate a
frequency that is inversely proportional to capacitance and then utilize a microcontroller to count pulses
within a given period to calculate the frequency.” See Figure 9 for how to schematic would look like [5].

11

Figure 9. Digitizing the value of a capacitive sensor often involves generating a frequency that is
inversely proportional to the capacitance and counting pulses over a fixed period to determine the

frequency [5].

And the equation to calculate frequency would be:

 C R R) n(2))f = (· (1 + 2 2 · l −1 (Eq. 1) [5]

Requirements Verifications

1. Must detect touching situations only, i.e.
won’t trigger unless the finger is ≤ 0.5
mm away from the button.

1A. Pretest this using Arduino, coins, foils,
etc. on a breadboard, and place finger as
close to the metal as possible without
touching. Observe how the reading
changes as we do so. If not desirable,
change resistor value.

Ultrasonic Sensor: This sensor really comes down to measuring how far an object is. Using the time it
takes for sound to travel to the object and reflect back to get received, it can find the distance from the
speed of sound through a simple multiplication. In our case, we would allow a certain range of distance
that the user can wave his/her hand passing by two ultrasonic sensors, and this shall allow the controller to
figure out if the movement is to the left or to the right. With this movement, the profile of the pad

12

switches and other functionalities can be activated. These sensors, as shown on the visual aids, will be
properly arranged at the farther side of the pad such that using the buttons on the pad would not trigger
them mistakenly. Since the ultrasonic sensors output digital signals of the distance information directly,
no encoders or any other circuitries are needed.

Requirements Verifications

1. Distance range for motion detection must
be between 2 cm and 1 m.

2. Angle of measurement is within 15°.

3. Two adjacent ultrasonic sensors must
individually collect data to perform the
profile swipe function.

4. Measurement cycle period should exceed
60 ms.

1A. Test accuracy of data around lower
distance threshold at 2 cm and ensure that
accuracy is maintained up to 1 m. Data
collected between 2 cm to 12 cm will be
most important for the uses of this design.

2A. Test hand placement above sensor at
several angles, including 15°, and
compare the data. If 15° is too tight of an
angle for motion detection, the physical
design will be modified to slightly angle
the ultrasonic sensor more towards the
user.

3A. Take and record data from a single
ultrasonic sensor. Test two ultrasonic
sensors, side by side, to see if their signals
interfere or cause any discrepancy in the
data compared to the data of a single
ultrasonic sensor.

4A. We will set the cycling period to 70 ms in
the microcontroller before sending the
following 10 µs TTL pulse.

13

Rotary Switch: This is nothing but a switch that has 12 ON/OFF states, instead of just one ON/OFF.
Voltage signal from the rotary switch will take only one of the 12 pins of outputs. By encoding 12
decimal numbers to their corresponding 4-digit binary numbers, we can tell the controller that the switch
is being rotated clockwise or counterclockwise. Refer to Figure 10 for the encoding.

Figure 10. Rotary switch with binary encoder schematics.

Note that here we used ELMA-01-1X12 for the schematic only, and this is subject to change. We are
likely going to use what is listed in the parts of the cost analysis. Same for the OR gates. Four input OR
gates require more voltage than the 3.3 V supply in a lot of cases, so we would use different ones.

14

Requirements Verifications

1. Must output at least 95% of the input
voltage, i.e. if 3.3 V goes in, about 3.2 V
should come out.

2. Must be able to register the correct binary
number of decimal 1~12.

1A. Use a multimeter to measure the voltage
coming out of all 12 positions.

2A. Use an Arduino to read the binary outputs

and print to the screen so as to check if the
encoding is correct.

2.3.4 Additional Hardware User Interface

In addition to sensors mentioned above as part of the user interface, we could also include an LED array
to indicate the battery level of the PC. This can be achieved with the design of a 2-to-4 binary decoder
that receives two digit binary signals from the PC, and lights up the corresponding LEDs in the array. As
for the number of LEDs, we may use four or five LEDs of the same color, and linearly indicate the battery
percentage value to the closest proportional ceiling. For example, for four LEDs, 60% battery level would
have a digital signal of “10” coming from the controller, and have three LEDs on and one off as it is in
between 50% and 75%. A schematic is illustrated in the figure below with input signal being “11”, where
voltage supply PIN1 and PIN2 are really just the signals from the controller, i.e. not independent power
supply. We put voltage sources here for simulation purposes only.

Figure 11. LED array schematics.

The model of LEDs simulated is AOT-2015, which has a forward current maximum of 20 mA and
breakdown voltage of 5V thereby being quite representative of indicator LEDs. We would tend to use

15

different ones instead in the actual circuit as seen in parts table of cost analysis, but this is subject to
change due to actual availability.

Requirements Verifications

1. Illumination of at least 10 mcd at the
designed angle of 50° for our LEDs
chosen, which translates to about half of
the 19 mcd specification.

2. Does not burn out due to exceeding the
tested power limit, in this case ≤ 2.6 V, 20
mA is the limit we would be aiming for.

1A. Make sure that the current through the
LEDs is at least more than half of the
current limit, i.e. ≥ 10 mA for each LED
is expected such that the brightness will
be somewhere more than 10 mcd. This
can be measured using a multimeter when
a 3.3 V power supply goes to PIN1 and
PIN2 from the schematics above, and all
four LEDs are on at the same time,
drawing the largest amount of current.

2A. Make sure that the current through the
LEDs is strictly less than 20 mA, which
again can be measured with a multimeter
when 0V goes to PIN1 and PIN2, and
only one LED is on.

Simulations gave the same current of 18.1307 mA through the active LED(s) regardless of whether one is
on or all are on, which is somewhere pretty close to the 20 mA limit. The real case operating points will
need more testing at this moment. As before, parts are subject to changes.

Figure 12. LED array simulation results.

2.3.5 USB Power Supply

We will be using the 5 V power supply from the USB 3.0 ports of a laptop, and use a USB-C breakout to
separate power and data. For the power lines, we plan to use a 3.3 V linear voltage regulator such that the
voltage works better with the sensors.

16

Requirements Verifications

1. The output voltage is no less than 3 V,
and the capability of outputting current is
no less than 500 mA.

1A. Use a multimeter to measure the output
from the regulator when connected
with/without load.

2.4 Tolerance Analysis

2.4.1 Capacitive Touch Sensors

The tolerance of the analog capacitive sensing circuit would be of overriding importance if we choose to
do it because the touch buttons are the key inputs to our system and the major way users interact with the
product. Using what we have from Eq. 1, we could analyze the deviation of the frequency from the ideal
situation by accounting for the tolerance of the resistors in the manufacturing process. Using the example
values of of 56 kΩ and 470 kΩ as shown in Figure 9, we could assume a typical 5% tolerance for both
resistors. We then have the minimum, standard, and maximum frequency calculated below.

Table 1. Tolerance Analysis of Capacitive Sensing Frequency due to Resistance

 Minimum Standard Maximum

R1 (kΩ) 53.2 56 58.8

R2 (kΩ) 446.5 470 493.5

f (Hz) 0.000001525/C 0.000001448/C 0.000001380/C

This essentially tells us that there would only be a 10% change in the ultimate frequency for a given
capacitance of human fingers whereas our threshold of the detection frequency would always be on the
order of multiple times of difference, so there is no issues here.

In addition, we must also acknowledge the possible effects of fluctuating voltage source on this timer
circuit. Timer 555 has a minimum supply voltage of 4.5 V, so it would work fine if our USB port voltage
output is no less than 90% of the 5 V standard. The 5 V would in many cases be unstable, but in most
cases it would certainly be above 4.5 V, so we should be on the safe side of things.

2.4.2 Ultrasonic Sensors

The ultrasonic sensors make up an important hardware feature for our project; they will detect hand
motion by the user to swipe between profiles. In order to create the swipe functionality, two ultrasonic
sensors are required with each including separate transmitters and receivers. The problem with this is that
either of the ultrasonic sensors could potentially pick up the motion signal coming from the opposing
ultrasonic sensor. This diagram is shown in Figure 14a, while the diagram of height d required for
potential signal interference is shown in Figure 14b.

17

Figure 14. Ultrasonic sensor measurements from a) physical design dimensions and b) distance

measurements.

With a measuring angle of 15° and distance of 1 ⅞” separating the two transmitters of the ultrasonic
sensors, we can calculate the height d of the signal where interference may start to occur. The height d can
be solved using Eq. 2.

 .121" 8.087 cmd = 15/16"

tan(7.5) = 7 ≈ 1 (Eq. 2)

Given that the range of an ultrasonic sensor is between 2 cm and 4 m, it is clear that motion signal
interference may occur within this range. However, with motion signal interference occurring at
approximately 18.087 cm above the sensors, there should be no data distortion when the user waves their
hand above the sensors. In this design, it is unlikely that users will wave their hand more than 18 cm away
from the PC Buttonpad.

If the user decides to wave their hand more than 18 cm above the ultrasonic sensors, motion signal
interference can be prevented by controlling the cycle period duration of each sensor. Data collection is
initiated by sending a 10 µs TTL pulse to the trigger input, which then outputs a cycle of eight 40 kHz
ultrasonic bursts. An echo output signal is received and measures the time of travel, proportional to the
distance traveled. The cycle period contains the trigger input signal, ultrasonic bursts, and echo output
signal. The length of the cycle period must be greater than 50 ms, so that there is a delay before the next
generated 10 µs TTL pulse.We can set the delays for each sensor so that they measure data at slightly
different times.

18

3 Cost and Schedule

3.1 Cost Analysis

3.1.1 Labor Cost

Undergraduates are usually paid somewhere above 10 US Dollars/hour. Assume a 20 $/hr salary for each
of the team members, and approximately 10 hours of work per week for each person. For a total of 16
weeks in the semester, the total labor cost would be 9,600 US Dollars.

3.1.2 Parts Cost for a Single Prototype

Table 2. List of Parts in the Project

Description Manufacturer Digikey Part # Unit Price
(Prototype)/$

Unit Price
(Bulk)/$ Quantity Proto

Sum/$

LED GREEN DIFFUSED
T-1 3/4 T/H Lite-On Inc. 160-1706-ND 0.36 0.04416 4 1.44

SWITCH ROTARY
12POS 2.5A 125V C&K CKN10200-ND 5.97 3.85429 1 5.97

ULTRASONIC SENSOR
DISTANC US-100 Adafruit Industries LLC 1528-2789-ND 6.95 N/A 2 13.9

USB-C BREAKOUT SparkFun Electronics 1568-1958-ND 4.5 N/A 1 4.5

IC GATE OR 1CH 2-INP
SOT23-5 Texas Instruments 296-1093-1-ND 0.33 0.07107 24 7.92

IC GATE AND 1CH 2-INP
SC70-5 Texas Instruments 296-8743-1-ND 0.33 0.07107 4 1.32

IC INVERTER 1CH
1-INP SC70-5 Texas Instruments 296-1090-1-ND 0.33 0.07107 2 0.66

IC OSC SGL TIMER
2.1MHZ 8-SOIC Texas Instruments 296-1336-1-ND 0.75 0.31971 9 6.75

IC MCU 8BIT 32KB
FLASH 28DIP Microchip Technology ATMEGA328P-

PU-ND 2.14 1.78 1 2.14

IC REG LINEAR 3.3V 2A
20HTSSOP Texas Instruments 296-18155-1-ND 10.81 6.13071 1 10.81

Total 55.41

Note that PCB costs and 3D printing are accounted for separately, and we plan to spend budgets on
building two prototypes in case one gets damaged accidentally. Parts are still subject to changes after the
completion of this document. Resistors and capacitors are not included.

19

https://www.digikey.com/products/en?keywords=%20160-1706-ND
https://www.digikey.com/product-detail/en/c-k/A11203RNCQ/CKN10200-ND/2043155
https://www.digikey.com/product-detail/en/adafruit-industries-llc/4019/1528-2789-ND/9808308
https://www.digikey.com/product-detail/en/sparkfun-electronics/BOB-15100/1568-1958-ND/9770720
https://www.digikey.com/product-detail/en/texas-instruments/SN74AHC1G32DBVR/296-1093-1-ND/276361
https://www.digikey.com/product-detail/en/texas-instruments/SN74AHC1G08DCKR/296-8743-1-ND/373799
https://www.digikey.com/product-detail/en/texas-instruments/SN74AHC1G04DCKR/296-1090-1-ND/276358
https://www.digikey.com/product-detail/en/texas-instruments/TLC555CDR/296-1336-1-ND/404959
https://www.digikey.com/product-detail/en/microchip-technology/ATMEGA328P-PU/ATMEGA328P-PU-ND/1914589
https://www.digikey.com/product-detail/en/microchip-technology/ATMEGA328P-PU/ATMEGA328P-PU-ND/1914589
https://www.digikey.com/product-detail/en/texas-instruments/TPS75233QPWPREP/296-18155-1-ND/773330

3.1.3 Total Cost for Two Prototypes

As per the table above, two prototypes would cost $110.82, or $9,710.82 with labor taken into
consideration. But since most parts can be reused, the testing budget will definitely not exceed that
number. For parts in bulk, each button pad could be built for $40.15, a fair reduction from the $55.41 cost
per prototype.

20

3.2 Schedule
Table 3. Schedule with Work Distribution

Week Adit Stephanie Yicong

08/26/19

09/02/19

09/09/19

09/16/19

09/23/19

09/30/19 Work on the design document

10/07/19
Working on GUI and

assisting with hardware
prototyping

Hardware prototyping; figure out ultrasonic sensor
spacing issues

10/14/19 Refining the GUI and
assisting with Eagle CAD Complete Eagle CAD design for early PCB order

10/21/19

Choosing and setting up
database depending on

requirements and constraints
of different DB engines

Continue testing
hardware components,
finalize CAD files for
3D printing, submit

button requirements to
Machine Shop

Continue testing
hardware components

and order parts

10/28/19 IPR
3D print physical

design and
modifications; IPR

Test PCB with
components; IPR

11/04/19
Link GUI to database and

start creating functionality of
software peripherals

Complete third version of Eagle CAD design

11/11/19 Prepare for mock demo

11/18/19
Write USB serial code for
connection between USB
port and microcontroller

Solder components to PCB and test

11/25/19 (Break)

12/02/19 Final stages of software and hardware integration testing

12/09/19 Prepare for final presentation and complete final report

21

4 Ethics and Safety

Abiding to IEEE ethics, we are responsible for implementing and maintaining professional and ethical
standards by which we follow throughout our design process and afterwards. As a team, we will ensure
that all data and communications are truthful, following #3 of the IEEE Code of Ethics [6]. This includes
communications between each other, professors, TAs, classmates, and future users. To create a safe
working environment for our team and future users, we are aware of our individual technical skillset and
will not take on technical tasks that we are not qualified to complete. Assistance will be required in these
cases to avoid any unsafe practices that would violate #6 of the IEEE Code of Ethics [6].

Our team values our compliance with the IEEE Code of Ethics through honesty, safety, and our technical
work output. We will uphold #7 of the IEEE Code of Ethics to stay true to each other and our individual
accountability and contributions within the project [6]. We are each responsible for our individual work
and will face proper consequences for discrediting another’s ideas or causing extreme setback for our
team’s progression.

According to #1 and #2 of the IEEE Code of Ethics, we agree to be transparent with any party affected by
our work whether it regards safety, our design, or conflicts of interest [6]. It is with utmost importance
that we are honest and straightforward with all affected parties, especially when it comes to safety as that
is our highest priority in this process. Clarity and guidance will result if a party misunderstands the
makeup of our design, technical and physical, the purpose of our product or its safety concerns.

We are also in agreement with the ACM Code of Ethics and Professional Conduct. While this code
similarly reflects that of the IEEE Code of Ethics, it points out leadership responsibilities that we as a
team must display. Our top priority is to ensure the safety and well-being of all users as listed in #3.1 of
the ACM Code of Ethics and Professional Conduct [7]. As leaders, we take complete ownership of our
product and strive toward creating a safe and educational environment.

Our display of commitment to the ethical and professional standards outlined will continue during and
after our project design and implementation.

The project proposed contains safety hazards that all users must be aware of. The user interface includes
several sensors which should be kept dry at all times. Moisture and other types of liquid have the potential
to leak into the interior of the PC Buttonpad and could cause damage to the circuitry inside. Corrosion,
mechanical failure, electrical shortages, or the creation of fire may occur in this instance. If any liquid
leak is suspected, immediately shut off the PC and unplug the device from the PC. To prevent this from
happening, we plan on creating a physical model that will seal any gaps between the interior circuitry and
exterior of the device.

The metallic buttons are connected to capacitive touch sensors which can malfunction if pressed with too
much pressure or if excess layers of dirt, grease, etc. are accumulated on the surface. Excessive forces

22

placed upon these buttons can result in damages, disconnections, and loss in overall functionality of this
product. To prevent the occurrence of these instances, the buttons are placed on a ledge within the 3D
model for additional support. However, this does not completely avoid the damaging of our product
through forcible touch - disconnections are still possible. The capacitive touch sensors rely on the
detection of capacitance change measured across the metallic buttons. If these buttons accumulated thin
layers of dirt on their surfaces, the capacitive difference would decrease and eventually make it hard to
tell the difference between a touch and no touch. Standard hygiene measures are recommended for the
user, such as washing hands, to maximize the button efficiency. In the case that buttons do get damaged,
do not disassemble the device, as one incorrect wire placement could lead to overheating elements.

Overheating can also occur if 3.3 V of power is not provided to the design components. This can also
happen if more than 5 V of power is provided through the USB port to the voltage regulator. Each
module of our device is designed around a 3.3 V power input from the USB, so any more or less voltage
could affect the current flowing through the system. Since the device relies on PC power, there is no
worry that the voltage through the USB port will exceed 5 V. It is important for the user to plug the
device into the correct USB port at 5V when connecting it to the PC monitor. A voltage conversion from
5 V to 3.3 V will be made to ensure that there is no fluctuation in the voltage.

Our team has successfully completed the Lab Safety Training required for access to any lab. Following
campus policy #RB-13, Campus Environmental Health and Safety, we take full responsibility for
maintaining a healthy and safe environment for ourselves and the rest of the University of Illinois at
Urbana-Champaign community [8].

23

References

[1] “Keyboard with Macro Keys,” Amazon, 2019. [Online]. Available:
https://www.amazon.com/slp/keyboard-with-macro-keys/gnyyx93vhu2484f. [Accessed Sep. 20,
2019]

[2] “Capacitive sensing,” Wikipedia, Aug. 16, 2019. [Online]. Available:
https://en.wikipedia.org/wiki/Capacitive_sensing. [Accessed Sep. 16, 2019]

[3] P. Badger. “Capacitive Sensing Library,” Arduino. [Online]. Available:
https://playground.arduino.cc/Main/CapacitiveSensor/. [Accessed Oct. 2, 2019]

[4] “How to Make a Capacitive Touch Sensor Switch out of Anything Metal Using an Arduino,”
Z-HUT. [Online]. Available: http://thezhut.com/?page_id=1081. [Accessed Oct. 2, 2019]

[5] “Use Analog Techniques To Measure Capacitance In Capacitive Sensors,” ElectronicDesign.
[Online]. Available:
https://www.electronicdesign.com/analog/use-analog-techniques-measure-capacitance-capacitive-
sensors. [Accessed Oct. 2, 2019]

[6] “7.8 IEEE Code of Ethics,” IEEE. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed Sep. 15, 2019]

[7] “ACM Code of Ethics and Professional Conduct,” Code of Ethics. [Online]. Available:
https://www.acm.org/code-of-ethics. [Accessed Sep. 15, 2019]

[8] “Campus Environmental Health and Safety,” Campus Administrative Manual. [Online].
Available: https://cam.illinois.edu/policies/rp-13/. [Accessed Sep. 19, 2019]

24

