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1 Introduction 

1.1 Objective 

Keyboards and mice work well with simple tasks, but are not the quickest way to interact with computers. 
There are some actions people perform on a regular basis that take many mouse clicks or keyboard button 
presses, which are not only tedious but also tiring and time consuming, but could be condensed down into 
one simple press of a button. Such actions include but are not limited to opening up certain pages 
altogether in a browser, quickly adjusting volume and brightness of the PC, taking screenshots and 
sharing to social media with one click, etc. In order to increase productivity, decrease the repetitiveness of 
working on a computer, and enhance the experience and fluidity of working on a computer, we believe it 
is necessary to engineer more user-friendly hardware designs of the mentioned characteristics. 
 
We therefore propose to make a compact and portable unit with sensors, buttons and LEDs that can be 
connected and used on the three major operating systems: Windows, macOS, and most distributions of 
Linux. These buttons will perform whatever repeated actions the user assigns it, and the pad does not need 
other power supply except the output from the Universal Serial Bus (USB). Sensors and LEDs shall 
provide more advanced features that further assist the user with work. 

1.1.1 Background Research 

Macro buttons are not new and exist on some high-end keyboards and specialized keypads on the market 
[1]. Workflow of multiple actions are also existing features of many operating systems. One of our team 
members has experience using the stock Automator application of macOS, and it is still only on the 
software side with no hardware dedicated to make it easily accessible. In addition, the number of 
functions are limited and mostly only on the stock applications. 
 
Our project is different because it promises to let users customize the button functionality to their wishes 
instead of relying on forced presets, spend a much lower cost, and still keep their favorite keyboards on 
the desk while having our solution in parallel with the existing. 
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1.2 Visual Aid 

As seen in Figure 1 and 2, the PC Buttonpad has been created to offer users with several customizable 
shortcuts through a series of interactive buttons and sensors. The PC Buttonpad is connected to a PC via 
USB cable and can be placed anywhere around the computer and keyboard. The user has the capability to 
program the buttons under separate profiles such as music, internet, etc.. Profiles can be changed just by 
the swipe of a hand over the PC Buttonpad, where ultrasonic sensors will detect the motion and direction 
of the hand. The buttons themselves are metallic and sensitive to touch, so there is no need to press down 
on the buttons with force. PC volume adjustment is available through the use of a rotary encoder, on the 
left side of the PC Buttonpad, along with an array of LEDs on top for PC battery status indication. 
 
 
 

 

Figure 1. Isometric view of the PC Buttonpad with a desk set-up. 
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Figure 2. Zoomed-in isometric view of the PC Buttonpad desk set-up. 
 

1.3 High-Level Requirements 

● Buttonpad and accompanying software driver should work on the three current versions of 
mainstream PC operating systems: Windows 7+, macOS 10.11+, and recent versions of popular 
Linux distributions. 

● Button functions should be easily customizable without any specific knowledge on coding or 
hardware. Someone who only uses a computer for word documents/web browsing should have no 
problem using the driver software. 

● The rotary encoder, touch sensors and ultrasonic sensors should work responsively while the user 
intends to interact with them while staying idle, i.e. not give erroneous inputs, when one doesn’t. 
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2 Design 

2.1 Block Diagram 

 

Figure 3. Block Diagram of PC Buttonpad. 
 
As illustrated in Figure 3, the capacitive touch sensor detects button presses and sends a signal to the 
connected computer through a microcontroller and USB chip. The connected computer has drivers 
installed which decodes these signals and performs the user-assigned actions. The USB port of the user’s 
computer is expected to power the whole circuit. Additional sensors serve as part of the user interface and 
provide extended features and functionalities. 
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2.2 Physical Design 

The PC Buttonpad physical design, as shown in Figure 4a, will consist of a 3D printed, plastic shell to 
encase the PCB, sensors, USB port, and internal wiring. Figure 4b shows the completed design and 
encasement of all sensors and electronic components, including the metallic buttons. Metallic buttons will 
be used to enable the capacitive touch sensors placed below the buttons, since touching metal will lead to 
the greatest change in capacitance. The metal type for this design is to be determined, but we are planning 
to either use coins or to 3D print using Steel-PLA. This shell will be 3 ⅞” x 4 ½” and roughly 1 ½” thick 
at most. The dimensions of this design were selected to fit the sensors and maintain a ⅛” wall for 
durability. Specific dimensions of the design and sensors are displayed in Figure 5, 6 and 7.  
 
 

 
a)       b) 

Figure 4. Isometric views of a) PC Buttonpad outer shell for 3D print and b) finished PC Buttonpad 
containing metallic buttons, LED array, ultrasonic sensors, rotary encoder, and USB cable. 
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Figure 5. Top view of the PC Buttonpad outer shell with dimensions. 
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Figure 6. Left view of the PC Buttonpad outer shell with dimensions. 

 
 

 
 

Figure 7. Back view of the PC Buttonpad outer shell with dimensions. 
 
Note that the USB port may in practice be USB-C instead of USB-A if type-C is better at power delivery. 
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2.3 Subsystems 

2.3.1 Software Driver and User Interface 

Driver Serial Port Interface: This is the piece of software that allows the microcontroller to communicate 
with the user’s computer. A press of the button or trigger of an ultrasonic sensor is passed on to the 
microcontroller and sent to the USB Serial Port of the PC, which is listened to by this piece of software. It 
carries out the relevant actions depending on the signals from the hardware. 
 

Requirements Verifications 

1. The driver should be able to receive 8-bit 
data values at a rate of 9600 baud. 

 
 
 
 

2. Receiving a byte should trigger a function 
depending on what byte is received. 

1A. Set up an Arduino to send a sequence of 
bytes at a pseudo-random interval (to 
simulate the human press of a button) and 
ensure that the driver receives those same 
sequence of bytes. 

 
2A. The same Arduino can be used to send the 

sequence of bytes and some dummy 
functions can be tested on the driver side 
to ensure that they are executed. 

 
Software Peripheral Simulator: Instead of having the hardware mimic the signals of a keyboard or mouse, 
we use the serial port interface to read a custom signal, and then use this Software Peripheral Simulator 
module to simulate the click of a mouse or typing on a keyboard. This offloads all the limitations of 
storing information for each button onto the computer instead of our hardware. It also allows further 
customizations beyond keyboard and mouse interactions such as running shell commands or specific 
libraries for certain software if required. We will use an open-source library for this module instead of 
creating this functionality from scratch. 
 

Requirements Verifications 

1. This module should be able to simulate 
single keypresses and keyboard shortcut 
combinations. 

 
 
 
 
 

2. Simulating keypresses should work on the 
stated operating systems: Windows 10, 
macOS, and mainstream Linux 
distributions. 

1A. Attempt to simulate the press of 
individual letters and ensure they are 
output. 

1B. Attempt to simulate commonly used 
keyboard shortcuts and ensure that their 
effect is visible (e.g. close window, open a 
new tab, etc.). 

 
2A. Run the above tests on all three of the 

operating systems to ensure smooth 
operation. 
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Database of User-Configured Button Functions: This is where are all saved keyboard and mouse 
shortcuts the user sets are stored. Whenever a signal is received through the serial port, this database is 
checked to find out what actually needs to be executed by the software peripheral simulator. The user 
does not have direct access to this database, but can freely and easily make changes to it through the GUI 
for User to Configure Buttons. 
 

Requirements Verifications 

1. The database can hold key combinations 
and sequences such that it can be read and 
executed by the software peripheral 
simulator module. 
 

2. Multiple key sequences must be set up to 
execute sequentially if required, but 
within reason (< 100 keys). 

1A. Store dummy key sequences in the 
database and attempt to use the software 
peripheral simulator to read and execute 
those sequences. 

 
2A. Test a dummy key sequence of around 

100 keys to ensure that this can execute 
without any glitches or crashes. 

 
GUI for User to Configure Buttons: This module is the core of customizing the buttons to the user’s 
liking. An easy to use GUI will allow the user to choose specific buttons and assign desired keyboard 
shortcuts or command line executions. 
 

Requirements Verifications 

1. The GUI should allow the user to choose 
any key combination and sequence of 
keys, within the reasonable 100-key limit. 

 
2. A selected key sequence must also be 

written to the database for further use by 
the software peripheral simulator. 

1A. Ensure that the GUI allows for easy 
editing and setting up of the key 
sequences. 
 

2A. Set a key sequence using the GUI and 
then check that the software peripheral 
simulator can correctly execute that key 
sequence from the database. 
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2.3.2 Control System 

Since our project is a blend of hardware and software, the main control system will be the Microcontroller 
on the hardware side and the driver program on the software side. These two modules communicate with 
each other through the USB Serial Port and a Universal Asynchronous Receiver-Transmitter (UART) to 
convey data like battery levels of the connected computer and the buttons pressed. 
 

Requirements Verifications 

1. The microcontroller should be able to 
send a sequence of bytes through the USB 
serial output. 
 

2. It should be able to receive valid input 
from the ultrasonic sensor and the 
capacitive sensor. 

1A. Use the driver serial interface to intercept 
bytes sent by the microcontroller and 
check for validity. 
 

2A. Check that the microcontroller receives 
the distance measurement from the 
ultrasonic sensors encoded as a number. 

2B. Ensure that the microcontroller receives 
different numbers for different buttons 
pressed on the buttonpad. 

 

2.3.3 Sensors as User Interface 

Capacitive Touch Sensor: Since we do not need high resolution for each single button, it is best to build 
capacitive touch sensors using surface capacitance, where “only one side of the insulator is coated with 
conductive material. A small voltage is applied to this layer, resulting in a uniform electrostatic field. 
When a conductor, such as a human finger, touches the uncoated surface, a capacitor is dynamically 
formed” [2]. We would build nine of these sensors and place them in a 3×3 grid-fashion on the buttonpad. 
Capacitive touch sensors ensure that there are no mechanical parts in the buttons, making the design 
simpler and more durable. Right now we have not yet figured out an analog detection mechanism for the 
touch, but as we found in the capacitive sensing library of Arduino, this would basically be using RC time 
constant of an external resistor and the capacitance of the PINs [3]. When the finger touches the foil, it is 
equivalent to a capacitor, and RC constant would increase significantly, and that shall detect the touch. 
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Figure 8. Capacitive Sensing [3] 

 
A sample Arduino code we found online is presented here: 
 
#include <CapacitiveSensor.h> 

CapacitiveSensor Sensor = 

CapacitiveSensor(4, 6); 

long val; 

int pos; 

#define led 13 

void setup() 

{ 

Serial.begin(9600); 

pinMode(led, OUTPUT); 

} 

void loop() 

{ 

val = Sensor.capacitiveSensor(30); 

Serial.println(val); 

if (val >= 1000 && pos == 0) 

{ 

digitalWrite(led, HIGH); 

pos = 1; 

delay(500); 

} 

else if (val >= 1000 && pos == 1) 

{ 

digitalWrite(led, LOW); 

pos = 0; 

delay(500); 

} 

delay(10); 

} 

Code Block 1. Sample Arduino Code for Capacitive Touch Sensors [4] 
 
What we shall do is somehow tweak this code to fit into a microcontroller; or if the number of digital pins 
on the microcontroller is not enough, find an analog equivalent schematic that does the same detection of 
RC constant. For the analog equivalent solution, we would be using a “timer circuit to generate a 
frequency that is inversely proportional to capacitance and then utilize a microcontroller to count pulses 
within a given period to calculate the frequency.” See Figure 9 for how to schematic would look like [5]. 
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Figure 9. Digitizing the value of a capacitive sensor often involves generating a frequency that is 
inversely proportional to the capacitance and counting pulses over a fixed period to determine the 

frequency [5]. 
 
And the equation to calculate frequency would be: 
 
 C R R ) n(2))f = ( · ( 1 + 2 2 · l −1  (Eq. 1) [5] 
 
 

Requirements Verifications 

1. Must detect touching situations only, i.e. 
won’t trigger unless the finger is ≤ 0.5 
mm away from the button. 

1A. Pretest this using Arduino, coins, foils, 
etc. on a breadboard, and place finger as 
close to the metal as possible without 
touching. Observe how the reading 
changes as we do so. If not desirable, 
change resistor value. 

 
Ultrasonic Sensor: This sensor really comes down to measuring how far an object is. Using the time it 
takes for sound to travel to the object and reflect back to get received, it can find the distance from the 
speed of sound through a simple multiplication. In our case, we would allow a certain range of distance 
that the user can wave his/her hand passing by two ultrasonic sensors, and this shall allow the controller to 
figure out if the movement is to the left or to the right. With this movement, the profile of the pad 
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switches and other functionalities can be activated. These sensors, as shown on the visual aids, will be 
properly arranged at the farther side of the pad such that using the buttons on the pad would not trigger 
them mistakenly. Since the ultrasonic sensors output digital signals of the distance information directly, 
no encoders or any other circuitries are needed. 
 

Requirements Verifications 

1. Distance range for motion detection must 
be between 2 cm and 1 m. 

 
 
 

2. Angle of measurement is within 15°. 
 
 
 
 
 
 

3. Two adjacent ultrasonic sensors must 
individually collect data to perform the 
profile swipe function. 

 
 
 

4. Measurement cycle period should exceed 
60 ms. 

1A. Test accuracy of data around lower 
distance threshold at 2 cm and ensure that 
accuracy is maintained up to 1 m. Data 
collected between 2 cm to 12 cm will be 
most important for the uses of this design. 

2A. Test hand placement above sensor at 
several angles, including 15°, and 
compare the data. If 15° is too tight of an 
angle for motion detection, the physical 
design will be modified to slightly angle 
the ultrasonic sensor more towards the 
user. 

3A. Take and record data from a single 
ultrasonic sensor. Test two ultrasonic 
sensors, side by side, to see if their signals 
interfere or cause any discrepancy in the 
data compared to the data of a single 
ultrasonic sensor. 

4A. We will set the cycling period to 70 ms in 
the microcontroller before sending the 
following 10 µs TTL pulse. 
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Rotary Switch: This is nothing but a switch that has 12 ON/OFF states, instead of just one ON/OFF. 
Voltage signal from the rotary switch will take only one of the 12 pins of outputs. By encoding 12 
decimal numbers to their corresponding 4-digit binary numbers, we can tell the controller that the switch 
is being rotated clockwise or counterclockwise. Refer to Figure 10 for the encoding. 
 

 
Figure 10. Rotary switch with binary encoder schematics. 

 
Note that here we used ELMA-01-1X12 for the schematic only, and this is subject to change. We are 
likely going to use what is listed in the parts of the cost analysis. Same for the OR gates. Four input OR 
gates require more voltage than the 3.3 V supply in a lot of cases, so we would use different ones. 
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Requirements Verifications 

1. Must output at least 95% of the input 
voltage, i.e. if 3.3 V goes in, about 3.2 V 
should come out. 

2. Must be able to register the correct binary 
number of decimal 1~12. 

1A. Use a multimeter to measure the voltage 
coming out of all 12 positions. 

 
2A. Use an Arduino to read the binary outputs 

and print to the screen so as to check if the 
encoding is correct. 

 

2.3.4 Additional Hardware User Interface 

In addition to sensors mentioned above as part of the user interface, we could also include an LED array 
to indicate the battery level of the PC. This can be achieved with the design of a 2-to-4 binary decoder 
that receives two digit binary signals from the PC, and lights up the corresponding LEDs in the array. As 
for the number of LEDs, we may use four or five LEDs of the same color, and linearly indicate the battery 
percentage value to the closest proportional ceiling. For example, for four LEDs, 60% battery level would 
have a digital signal of “10” coming from the controller, and have three LEDs on and one off as it is in 
between 50% and 75%. A schematic is illustrated in the figure below with input signal being “11”, where 
voltage supply PIN1 and PIN2 are really just the signals from the controller, i.e. not independent power 
supply. We put voltage sources here for simulation purposes only. 
 

 
Figure 11. LED array schematics. 

 
The model of LEDs simulated is AOT-2015, which has a forward current maximum of 20 mA and 
breakdown voltage of 5V thereby being quite representative of indicator LEDs. We would tend to use 
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different ones instead in the actual circuit as seen in parts table of cost analysis, but this is subject to 
change due to actual availability. 
 

Requirements Verifications 

1. Illumination of at least 10 mcd at the 
designed angle of 50° for our LEDs 
chosen, which translates to about half of 
the 19 mcd specification. 

 

 

 

 
 
 

2. Does not burn out due to exceeding the 
tested power limit, in this case ≤ 2.6 V, 20 
mA is the limit we would be aiming for. 

1A. Make sure that the current through the 
LEDs is at least more than half of the 
current limit, i.e. ≥ 10 mA for each LED 
is expected such that the brightness will 
be somewhere more than 10 mcd. This 
can be measured using a multimeter when 
a 3.3 V power supply goes to PIN1 and 
PIN2 from the schematics above, and all 
four LEDs are on at the same time, 
drawing the largest amount of current. 

 

2A. Make sure that the current through the 
LEDs is strictly less than 20 mA, which 
again can be measured with a multimeter 
when 0V goes to PIN1 and PIN2, and 
only one LED is on. 

 
Simulations gave the same current of 18.1307 mA through the active LED(s) regardless of whether one is 
on or all are on, which is somewhere pretty close to the 20 mA limit. The real case operating points will 
need more testing at this moment. As before, parts are subject to changes. 
 

 
Figure 12. LED array simulation results. 

2.3.5 USB Power Supply 

We will be using the 5 V power supply from the USB 3.0 ports of a laptop, and use a USB-C breakout to 
separate power and data. For the power lines, we plan to use a 3.3 V linear voltage regulator such that the 
voltage works better with the sensors. 
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Requirements Verifications 

1. The output voltage is no less than 3 V, 
and the capability of outputting current is 
no less than 500 mA. 

1A. Use a multimeter to measure the output 
from the regulator when connected 
with/without load. 

 
2.4 Tolerance Analysis 

2.4.1 Capacitive Touch Sensors 

The tolerance of the analog capacitive sensing circuit would be of overriding importance if we choose to 
do it because the touch buttons are the key inputs to our system and the major way users interact with the 
product. Using what we have from Eq. 1,  we could analyze the deviation of the frequency from the ideal 
situation by accounting for the tolerance of the resistors in the manufacturing process. Using the example 
values of of 56 kΩ and 470 kΩ as shown in Figure 9, we could assume a typical 5% tolerance for both 
resistors. We then have the minimum, standard, and maximum frequency calculated below. 
 

Table 1. Tolerance Analysis of Capacitive Sensing Frequency due to Resistance 

 Minimum Standard Maximum 

R1 (kΩ) 53.2 56 58.8 

R2 (kΩ) 446.5 470 493.5 

f (Hz) 0.000001525/C 0.000001448/C 0.000001380/C 

 
This essentially tells us that there would only be a 10% change in the ultimate frequency for a given 
capacitance of human fingers whereas our threshold of the detection frequency would always be on the 
order of multiple times of difference, so there is no issues here. 
 
In addition, we must also acknowledge the possible effects of fluctuating voltage source on this timer 
circuit. Timer 555 has a minimum supply voltage of 4.5 V, so it would work fine if our USB port voltage 
output is no less than 90% of the 5 V standard. The 5 V would in many cases be unstable, but in most 
cases it would certainly be above 4.5 V, so we should be on the safe side of things. 

2.4.2 Ultrasonic Sensors 

The ultrasonic sensors make up an important hardware feature for our project; they will detect hand 
motion by the user to swipe between profiles. In order to create the swipe functionality, two ultrasonic 
sensors are required with each including separate transmitters and receivers. The problem with this is that 
either of the ultrasonic sensors could potentially pick up the motion signal coming from the opposing 
ultrasonic sensor. This diagram is shown in Figure 14a, while the diagram of height d required for 
potential signal interference is shown in Figure 14b. 
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Figure 14. Ultrasonic sensor measurements from a) physical design dimensions and b) distance 

measurements. 

With a measuring angle of 15° and distance of 1 ⅞” separating the two transmitters of the ultrasonic 
sensors, we can calculate the height d of the signal where interference may start to occur. The height d can 
be solved using Eq. 2. 
 
 .121" 8.087 cmd = 15/16"

tan(7.5) = 7 ≈ 1 (Eq. 2)

Given that the range of an ultrasonic sensor is between 2 cm and 4 m, it is clear that motion signal 
interference may occur within this range. However, with motion signal interference occurring at 
approximately 18.087 cm above the sensors, there should be no data distortion when the user waves their 
hand above the sensors. In this design, it is unlikely that users will wave their hand more than 18 cm away 
from the PC Buttonpad. 

If the user decides to wave their hand more than 18 cm above the ultrasonic sensors, motion signal 
interference can be prevented by controlling the cycle period duration of each sensor. Data collection is 
initiated by sending a 10 µs TTL pulse to the trigger input, which then outputs a cycle of eight 40 kHz 
ultrasonic bursts. An echo output signal is received and measures the time of travel, proportional to the 
distance traveled. The cycle period contains the trigger input signal, ultrasonic bursts, and echo output 
signal. The length of the cycle period must be greater than 50 ms, so that there is a delay before the next 
generated 10 µs TTL pulse.We can set the delays for each sensor so that they measure data at slightly 
different times. 
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3 Cost and Schedule 

3.1 Cost Analysis 

3.1.1 Labor Cost 

Undergraduates are usually paid somewhere above 10 US Dollars/hour. Assume a 20 $/hr salary for each 
of the team members, and approximately 10 hours of work per week for each person. For a total of 16 
weeks in the semester, the total labor cost would be 9,600 US Dollars. 

3.1.2 Parts Cost for a Single Prototype 

 
Table 2. List of Parts in the Project 

Description Manufacturer Digikey Part # Unit Price 
(Prototype)/$ 

Unit Price 
(Bulk)/$ Quantity Proto 

Sum/$ 

LED GREEN DIFFUSED 
T-1 3/4 T/H Lite-On Inc. 160-1706-ND 0.36 0.04416 4 1.44 

SWITCH ROTARY 
12POS 2.5A 125V C&K CKN10200-ND 5.97 3.85429 1 5.97 

ULTRASONIC SENSOR 
DISTANC US-100 Adafruit Industries LLC 1528-2789-ND 6.95 N/A 2 13.9 

USB-C BREAKOUT SparkFun Electronics 1568-1958-ND 4.5 N/A 1 4.5 

IC GATE OR 1CH 2-INP 
SOT23-5 Texas Instruments 296-1093-1-ND 0.33 0.07107 24 7.92 

IC GATE AND 1CH 2-INP 
SC70-5 Texas Instruments 296-8743-1-ND 0.33 0.07107 4 1.32 

IC INVERTER 1CH 
1-INP SC70-5 Texas Instruments 296-1090-1-ND 0.33 0.07107 2 0.66 

IC OSC SGL TIMER 
2.1MHZ 8-SOIC Texas Instruments 296-1336-1-ND 0.75 0.31971 9 6.75 

IC MCU 8BIT 32KB 
FLASH 28DIP Microchip Technology ATMEGA328P-

PU-ND 2.14 1.78 1 2.14 

IC REG LINEAR 3.3V 2A 
20HTSSOP Texas Instruments 296-18155-1-ND 10.81 6.13071 1 10.81 

Total  55.41 

 
Note that PCB costs and 3D printing are accounted for separately, and we plan to spend budgets on 
building two prototypes in case one gets damaged accidentally. Parts are still subject to changes after the 
completion of this document. Resistors and capacitors are not included. 
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https://www.digikey.com/products/en?keywords=%20160-1706-ND
https://www.digikey.com/product-detail/en/c-k/A11203RNCQ/CKN10200-ND/2043155
https://www.digikey.com/product-detail/en/adafruit-industries-llc/4019/1528-2789-ND/9808308
https://www.digikey.com/product-detail/en/sparkfun-electronics/BOB-15100/1568-1958-ND/9770720
https://www.digikey.com/product-detail/en/texas-instruments/SN74AHC1G32DBVR/296-1093-1-ND/276361
https://www.digikey.com/product-detail/en/texas-instruments/SN74AHC1G08DCKR/296-8743-1-ND/373799
https://www.digikey.com/product-detail/en/texas-instruments/SN74AHC1G04DCKR/296-1090-1-ND/276358
https://www.digikey.com/product-detail/en/texas-instruments/TLC555CDR/296-1336-1-ND/404959
https://www.digikey.com/product-detail/en/microchip-technology/ATMEGA328P-PU/ATMEGA328P-PU-ND/1914589
https://www.digikey.com/product-detail/en/microchip-technology/ATMEGA328P-PU/ATMEGA328P-PU-ND/1914589
https://www.digikey.com/product-detail/en/texas-instruments/TPS75233QPWPREP/296-18155-1-ND/773330


3.1.3 Total Cost for Two Prototypes 

As per the table above, two prototypes would cost $110.82, or $9,710.82 with labor taken into 
consideration. But since most parts can be reused, the testing budget will definitely not exceed that 
number. For parts in bulk, each button pad could be built for $40.15, a fair reduction from the $55.41 cost 
per prototype. 
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3.2 Schedule 
Table 3. Schedule with Work Distribution 

Week Adit Stephanie Yicong 

08/26/19 

 

09/02/19 

09/09/19 

09/16/19 

09/23/19 

09/30/19 Work on the design document 

10/07/19 
Working on GUI and 

assisting with hardware 
prototyping 

Hardware prototyping; figure out ultrasonic sensor 
spacing issues 

10/14/19 Refining the GUI and 
assisting with Eagle CAD Complete Eagle CAD design for early PCB order 

10/21/19 

Choosing and setting up 
database depending on 

requirements and constraints 
of different DB engines 

Continue testing 
hardware components, 
finalize CAD files for 
3D printing, submit 

button requirements to 
Machine Shop 

Continue testing 
hardware components 

and order parts 

10/28/19 IPR 
3D print physical 

design and 
modifications; IPR 

Test PCB with 
components; IPR 

11/04/19 
Link GUI to database and 

start creating functionality of 
software peripherals 

Complete third version of Eagle CAD design 

11/11/19 Prepare for mock demo 

11/18/19 
Write USB serial code for 
connection between USB 
port and microcontroller 

Solder components to PCB and test 

11/25/19 (Break)  

12/02/19 Final stages of software and hardware integration testing 

12/09/19 Prepare for final presentation and complete final report 
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4 Ethics and Safety 

Abiding to IEEE ethics, we are responsible for implementing and maintaining professional and ethical 
standards by which we follow throughout our design process and afterwards. As a team, we will ensure 
that all data and communications are truthful, following #3 of the IEEE Code of Ethics [6]. This includes 
communications between each other, professors, TAs, classmates, and future users. To create a safe 
working environment for our team and future users, we are aware of our individual technical skillset and 
will not take on technical tasks that we are not qualified to complete. Assistance will be required in these 
cases to avoid any unsafe practices that would violate #6 of the IEEE Code of Ethics [6]. 
 
Our team values our compliance with the IEEE Code of Ethics through honesty, safety, and our technical 
work output. We will uphold #7 of the IEEE Code of Ethics to stay true to each other and our individual 
accountability and contributions within the project [6]. We are each responsible for our individual work 
and will face proper consequences for discrediting another’s ideas or causing extreme setback for our 
team’s progression. 
 
According to #1 and #2 of the IEEE Code of Ethics, we agree to be transparent with any party affected by 
our work whether it regards safety, our design, or conflicts of interest [6]. It is with utmost importance 
that we are honest and straightforward with all affected parties, especially when it comes to safety as that 
is our highest priority in this process. Clarity and guidance will result if a party misunderstands the 
makeup of our design, technical and physical, the purpose of our product or its safety concerns. 
 
We are also in agreement with the ACM Code of Ethics and Professional Conduct. While this code 
similarly reflects that of the IEEE Code of Ethics, it points out leadership responsibilities that we as a 
team must display. Our top priority is to ensure the safety and well-being of all users as listed in #3.1 of 
the ACM Code of Ethics and Professional Conduct [7]. As leaders, we take complete ownership of our 
product and strive toward creating a safe and educational environment. 
 
Our display of commitment to the ethical and professional standards outlined will continue during and 
after our project design and implementation. 
 
The project proposed contains safety hazards that all users must be aware of. The user interface includes 
several sensors which should be kept dry at all times. Moisture and other types of liquid have the potential 
to leak into the interior of the PC Buttonpad and could cause damage to the circuitry inside. Corrosion, 
mechanical failure, electrical shortages, or the creation of fire may occur in this instance. If any liquid 
leak is suspected, immediately shut off the PC and unplug the device from the PC. To prevent this from 
happening, we plan on creating a physical model that will seal any gaps between the interior circuitry and 
exterior of the device. 
 
The metallic buttons are connected to capacitive touch sensors which can malfunction if pressed with too 
much pressure or if excess layers of dirt, grease, etc. are accumulated on the surface. Excessive forces 
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placed upon these buttons can result in damages, disconnections, and loss in overall functionality of this 
product. To prevent the occurrence of these instances, the buttons are placed on a ledge within the 3D 
model for additional support. However, this does not completely avoid the damaging of our product 
through forcible touch - disconnections are still possible. The capacitive touch sensors rely on the 
detection of capacitance change measured across the metallic buttons. If these buttons accumulated thin 
layers of dirt on their surfaces, the capacitive difference would decrease and eventually make it hard to 
tell the difference between a touch and no touch. Standard hygiene measures are recommended for the 
user, such as washing hands, to maximize the button efficiency. In the case that buttons do get damaged, 
do not disassemble the device, as one incorrect wire placement could lead to overheating elements. 
 
Overheating can also occur if 3.3 V of power is not provided to the design components. This can also 
happen if  more than 5 V of power is provided through the USB port to the voltage regulator. Each 
module of our device is designed around a 3.3 V power input from the USB, so any more or less voltage 
could affect the current flowing through the system. Since the device relies on PC power, there is no 
worry that the voltage through the USB port will exceed 5 V. It is important for the user to plug the 
device into the correct USB port at 5V when connecting it to the PC monitor. A voltage conversion from 
5 V to 3.3 V will be made to ensure that there is no fluctuation in the voltage. 
 
Our team has successfully completed the Lab Safety Training required for access to any lab. Following 
campus policy #RB-13, Campus Environmental Health and Safety, we take full responsibility for 
maintaining a healthy and safe environment for ourselves and the rest of the University of Illinois at 
Urbana-Champaign community [8]. 
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