
WobbleBot
Team 25 – Marc Backas, Phillip Lovetere, and Mingrui Zhou

ECE 445 Design Document – Fall 2019

TA: David Null

1 Introduction

1.1 Objective

Problem: It is a challenge to build a robot that is capable of balancing atop a cylinder. Many

people studying robotics or controls would be interested in experimenting and improving upon a

robotic platform like this, and it does not currently exist.

Solution: We will build such a robot in an affordable way, using hardware and software that

enables precise realization of the control algorithm chosen by the researcher. The robot will

measure data, process it, and actuate its motor so that it will stay on top of the cylinder. Once this

project is complete, it will be an accessible development platform for those studying robotics and

controls.

1.2 Background

People have been designing these kinds of robots for years, using different kinds of

sensors, algorithms, and actuators to make them better and better. A good example of such a

robot is our very own Professor Dan Block’s Segbot [1]. Today, fast processors and algorithms

exist along with precision sensors and actuators, making these kind of robots possible.

This robot is an example of a dynamic, unstable system. In order to create and control

such a dynamic system, many design choices must be made. First, the system itself must be

designed and manufactured in a way that is predictable and controllable. An accurate system

model must be developed so that a good controller can be designed. The controller is then

installed into the system, used to precisely and predictably steer the unstable system towards

stability, as fast as possible. This particular robot was chosen for the complexity of the robot’s

dynamics. It will take intelligent system design, accurate system modeling, and excellent

controller design to create a robot that is capable of high performance at the task of balancing on

top of a cylinder.

1.3 High-level Requirements:

● The robot must be able to recover from an initial tilt angle of 40 degrees from vertical

● The robot must cost less than $200 to build

● The robot will be able to move a distance of 3 feet along the ground in less than 3

seconds. The robot and cylinder must be stationary at both the beginning and end of the

movement.

2 Design

2.1 Physical Design:

Figure 1: Physical Design Sketch

This sketch represents the physical design of the robot. It consists of three wheels attached to a

platform holding the PCB and (possibly) a battery. One of the three wheels is driven by a DC

gear motor. The robot rests atop a hollow cylinder.

Figure 2: Block Diagram

The design illustrated will satisfy the high level requirements. The fast, high accuracy orientation

sensor and motor encoder, paired with the fast processor and torque controlled motor system will

be able to return the robot to stability from a 40 degree tilt angle, and it will be able to drive the

robot quickly from one spot to another. All the components involved will have a sum cost of less

than 200 USD.

Figure 3: Motor Driver Schematic

Figure 4: Motor Driver Layout

2.1 Power System

This system will deliver power to all other blocks in our design so that the robot remains

functional. The system consists of a 12V 5A power supply and a 5V linear regulator.

2.1.1 Wall Power Supply

Supplies the power needed by all other blocks. Once it is connected to the PCB via a barrel

connector, it is directly connected to the motor driver and the linear regulator through copper

traces on the PCB.

Requirements Verification

1. Must provide 5A of current at 12V

continuously without overheating

2. Output voltage must remain within 5% of

12V

1,2. Plug in power supply to wall power

and attach resistive load such that current

draw is 5A. Ensure voltage remains

between 11.5V and 12.5V

2.1.2 Linear Regulator(LM1117-5.0/NOPB)

Sources the stable 5V signal needed to power the MCU and orientation sensor.

Requirements Verification

1. Must provide 30mA continuously while

staying cooler than 125 degrees Celsius.

2. Output voltage must remain between 4.5

and 5.5V

1,2. Attach power supply voltage at input

of regulator, attach resistive load such that

current draw is 30mA. Measure voltage

and ensure it is between 4.5 and 5.5V.

Measure temperature using infrared

thermometer, ensure it is below 125

degrees Celsius

2.2 Motor System

This system will exert the necessary torque, calculated by the processor system, on the drive

wheel to balance the robot.

2.2.1 Motor (ROBOT ZONE 638260)

Converts current output by motor driver into torque output to the drive wheel. The torque applied

will drive the robot toward stability atop the cylinder.

Requirements Verification

1. Must rotate at a max speed of 153rpm

2. Must provide at least 1.86 in-lbs. of

torque when stalled

3. Must provide torque output proportional

to the applied current

4. Must not exceed 60 degrees Celsius while

operating under load

1. Connect 12V power supply to motor

terminals, measure speed from encoder

signals with arduino

2. Connect 1 ft. lever arm to motor shaft,

measure force at end of lever with digital

scale

3. Apply different currents from 0 to 5 volts

and measure stalled torque. Plot data and

ensure the correlation is linear.

4. Apply 12V to stalled motor, measure

temperature using infrared thermometer

2.2.2 Motor Driver (TI-DRV8840)

Converts the digital control signal from the MCU into a precise current used to drive the motor.

Requirements Verification

1. Must output at least 5A at 12V

continuously while staying below 160

degrees Celsius

2. Must output current proportional to

control signal (coefficient TBD) through

motor load

1. Connect 12V power supply to driver, set

current limit to 5A, load with motor, and

measure current and voltage with DMM,

and the temperature with an infrared

thermometer.

2. Specify all 32 current levels using

Arduino, and measure output current

through motor using DMM. Plot the data

and find the line of best fit. Ensure the

maximum error from the line is less than

5% of expected

2.2.3 Motor Encoders (included with motor)

Reports the shaft position of the motor to MCU. Necessary for MCU to compute proper control

signal.

Requirements Verification

1. Must report shaft position within 5%

accuracy at all times

2. Must report shaft position at least 100

times per second

1. Use Arduino to count pulses from

encoder. Allow motor shaft to rotate 10

full times. Ensure count number is 1973.

2. Use Arduino to poll the encoder count

number every 10ms. Set a GPIO pin high

while the processor is idling, and low

while it is busy, monitor the pin using an

oscilloscope and ensure the code runs in

less than 10ms each cycle.

2.3 Processor System

2.3.1 Microcontroller (ATmega328P)

The microcontroller (or MCU) will run the control algorithm, processing data prom the sensors

and generating a control signal for the motor driver.

Requirements Verification

1. Must process sensor data and output

control signal at 100Hz

2. Must communicate with orientation

sensor over UART at 100Hz

1. Use MCU to set a GPIO pin high while

the processor is idling, and low while it is

executing control signal calculation.

Monitor the pin using an oscilloscope and

ensure the duty cycle of the pin output is

always greater than 0.

2. Connect MCU to orientation sensor over

UART and poll data from it every 10ms,

ensuring the code runs smoothly using

same method.

2.3.2 Orientation Sensor (Adafruit BNO055 absolute orientation sensor)

Measures the tilt angle of the robot in the world reference frame, reporting it to the MCU. The

goal of the robot is to drive this angle to zero degrees from vertical

Requirements Verification

1. Must report tilt angle with less than 3%

accuracy at all times

2. Must report tilt angle at least 100 times

per second

1. Build a test platform with attached

inclinometer to measure actual tilt. Record

tilt angle from sensor. Record data pairs

into a table. Ensure the maximum error is

less than 3% for all angles.

2. Program MCU to poll the sensor at

100Hz, ensure new data is available from

the sensor at each poling time

Tolerance Analysis

A crucial component of our robot is the controller running on the microcontroller. It’s job is to

monitor the sensors of the robot and calculate the correct control signal to deliver to the motor

driver over each sampling period.

Let us define our system. One way to do this is with a state-space model:

�̇� = 𝐴𝑋 + 𝐵𝑈

The vector X contains the state variables: �̇�, 𝜃, �̇�, 𝜙, where 𝜃, �̇� represent the angular position

and velocity of the robot with respect to vertical, and 𝜙, �̇� represent the angular position and

velocity of the cylinder the robot rests upon. We want to predict, and ultimately control the

robot’s accelerations �̈�, �̈�, in order to keep the robot balanced. The ‘A’ matrix relates the robot’s

state variables to the derivatives of those state variables. The ‘B’ matrix relates the input control

effort to the state variables’ derivatives. To solve for these matrices, we use Lagrange’s

equations of the second kind:

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞�̇�
) =

𝜕𝐿

𝜕𝑞𝑗

Where 𝐿 = 𝑇 − 𝑉, 𝑎𝑛𝑑 𝑇 =
1

2
∑ 𝑚𝑗𝑣𝑗

2 , 𝑎𝑛𝑑 𝑉 = 𝑔 ∑ 𝑚𝑗ℎ𝑗. Once these equations are solved, we

have the A and B matrices representing the dynamics of the real physical system. Since our

system is discrete, and not continuous as our derivation suggests, we need to convert our

continuous model into a discrete one, which looks like:

𝑥[𝑘 + 1] = 𝐴𝑑𝑥[𝑘] + 𝐵𝑑𝑢[𝑘]

Using a zero-order hold technique for both sampling and giving control signals, the discretized

Ad and Bd model parameters reside in the equation:

[
𝐴𝑑 𝐵𝑑
0 1

] = 𝑒
𝑇∗[

𝐴 𝐵
0 0

]

Where T is the sampling period. We will use these to obtain a controller for the system. We

define our input 𝑈 = −𝐾𝑋, where K is our controller vector. The whole system then becomes:

�̇� = (𝐴 − 𝐵𝐾)𝑋

The eigenvalues of the matrix, 𝐴 − 𝐵𝐾, are the poles of the system. Our choice of the controller

K determines these poles. In order for the system to be dynamically stable, all the poles

(eigenvalues) must have large, negative real parts, and small imaginary components. To find the

eigenvalues of the system, we find the roots of the characteristic equation, or the values of s that

satisfy 𝑑𝑒𝑡[𝑠𝐼 − (𝐴 − 𝐵𝐾)] = 0. By defining our desired characteristic equation as

(𝑠 − 𝑝1)(𝑠 − 𝑝2)(𝑠 − 𝑝3)(𝑠 − 𝑝4)

where 𝑝1,2,3,4 are the desired poles of the closed loop system, we can then solve for the

parameters in K, and derive our controller. We will now test our controller in simulation.

Figure 5: simulated robot

Figure 6 and 7 robot and cylinder angular position and velocity w/o sensor error

Figure 7: same data with .1*pi constant tilt sensor error

From the simulated results, it is clear the control algorithm designed is tolerant to significant

errors in sensor data.

Cost Analysis:
Based on a 100k salary per group member and 8-week time window in which the project is

performed, plus an estimated upper limit of $200 for every component making up the robot, this

project will cost:

(100,000 * 3 group members) / ((12 months/year)/(2 months/project)) = $50,000

• $200 for the robot

= $50,200

The estimated upper-limit of $200 is based on the cost of the $50 motor and $30 orientation

sensor(the two most expensive components present), combined with a fairly wide buffer for the

unforseen(i.e. something breaking, etc.).

Schedule

Week Marc Phillip Mingrui

7-Oct
Build motor driver
boards

Work on main board
schematic and layout

Create the initial object of Robot and

cylinder.

14-Oct

Build and test motor
system, submit early
bird pcb

Orientation sensor
testing and
characterization

Add into movement, player can move

around, robot and cylinder can be

touched and pick up.

21-Oct Debug motor system
main board soldering
and testing

Connection system goes in, player can

hold robot and can keep robot on the

cylinder for sure (with physical

consideration)

28-Oct

connect motor
system with python
and log data for
testing

continue main board
work

Add physic formula into the robot and

cylinder, making this play like in real

life

4-Nov final pcb round main board debug help with susbsytem debugging

11-Nov
Assemble robot with
machine shop

orienation sensor
interface debug

analyze/debug software timing

requirements

18-Nov mock demo motor driver board interface debug

25-Nov Fall break fall break

2-Dec Final demo debug Data logging testing and debug

9-Dec Final presentation final paper

3 Safety and Ethics

Our robot contains hard, possibly fast moving parts which could cause injury to a person in the

event of a collision. This event would go against IEEE #9 “to avoid injuring others.”[2] To avoid

this, people will be kept clear of the robot’s trajectory while it is powered on, and a group

member will be prepared to disconnect power rapidly if the robot begins to behave dangerously.

Our project has the potential of furthering others' knowledge in the area of control systems and

robotics, but only if it is made available for use. This concerns IEEE code of ethics #5, “to

improve the understanding by individuals and society of the capabilities...of conventional and

emerging technologies, including intelligent systems.”[2] To abide by this, our hardware and

software designs will be open source, freely available for duplication by anyone interested in the

topic.

Our project team consists of three students who wish to gain valuable technical experience.

Although there are many individual areas of work to be done, it is possible for one or more group

members to take responsibility for the project’s completion away from the others, denying them

of the experience they wish to gain. This would go against the IEEE code of ethics #10, which

requires its members to “assist colleagues and co-workers in their professional development.”[2]

To prevent this, our group will ensure the work to be done is shared equally, and allocated

according to each member’s overall career development goals.

References

[1]U. Control Systems Instructional Laboratory at University of Illinois, "UIUC Segbot - Home",

Coecsl.ece.illinois.edu, 2019. [Online]. Available:

http://coecsl.ece.illinois.edu/segbot/segbot.html. [Accessed: 20- Sep- 2019].

[2] Ieee.org, "IEEE IEEE Code of Ethics", 2016. [Online]. Available:

http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 9-19 Sep-2019]

	1 Introduction
	1.1 Objective
	1.2 Background
	1.3 High-level Requirements:

	2 Design
	2.1 Physical Design:
	2.1 Power System
	2.1.1 Wall Power Supply
	2.1.2 Linear Regulator(LM1117-5.0/NOPB)

	2.2 Motor System
	2.2.1 Motor (ROBOT ZONE 638260)
	2.2.2 Motor Driver (TI-DRV8840)
	2.2.3 Motor Encoders (included with motor)

	2.3 Processor System
	2.3.1 Microcontroller (ATmega328P)
	2.3.2 Orientation Sensor (Adafruit BNO055 absolute orientation sensor)

	Tolerance Analysis
	Schedule

	3 Safety and Ethics
	References

