MIDI Controller Sequencer

Team 2: Nathan Zychal, Martin Lamping, Devin Alexander

Introduction

Problem Statement

- Musical instruments often have a difficult and arduous learning curve.
 - Keeps many participants from ever knowing the joy of musical composition.
- Can a device be made to:
 - \circ $\,$ Teach the user basic music theory
 - Quickly allow them to compose new melodies

Solution

MIDI Sequencer with Motorized Linear Potentiometers

- An easy to use sequencer that allows for creating melodies and music.
- Simplifies learning curve often associated with instruments
- Potential to be used as a teaching tool
- An intuitive and innovative design:
 - Allows for fast switching between musical properties and melodies.
- Portability

High Level Objectives

- User input data directly affects MIDI OUT data.
- Adaptive potentiometer position: Detents
- LCD screen displays relevant information.
- Potential to be adapted to an easy to build DIY kit
- Capable of fitting into existing rack unit (4U)
- Portability

Current Alternatives

- The market currently offers alternatives with common pitfalls:
 - Difficult to learn
 - Non adaptive user feedback
 - Rarely has a dedicated display
 - Not a useful music theory teaching tool

ECE ILLINOIS

Software Flowchart

Resulted in 4 PCB Designs

1) Power 2) Control 3) Potentiometer 4) Auxiliary

ECE ILLINOIS

MIDI Background Information

- Musical Instrument Digital Interface (MIDI)
- Common protocol for interacting with multiple musical instruments through one digital interface.
- Popularized in the 1980's
 - First protocol to help connect electronic instruments
 - Still widely used today

Test/Design Considerations

- EMI Concerns
 - How would 16 motors' EMI affect readings of nearby potentiometers?
- Timing
 - How would we maintain a constant tempo with other software running?
- Physical dimensions and board spacing
 - How do we make the user interface compact enough to fit standard rack mount?
- Circuit Protection
 - How do we protect components against surge scenarios?

Trigger Edge Trig Level 3.0 50% Hold Off 0 Horz Pos 0.0

Time mS/Div 2.0 Curves PWR-DI Run

Exit

EMI Testing

•Test bench description: measured induced voltpikes across 1 K Ω resistor held in worst case scenario below the motor.

•Unshielded PCB test case.

• 2 mV spike in voltage.

Time mS/Div 2.0 🖨 Curves PWR-OI Run Stop

EMI Data

Exit

PCB shielded with plastic.Result: 1 mV spike in voltage.

EMI Data

•Shielded trial with conductive ground plane.

•Result: There was a complete reduction in induced spike.

Timing Data

• Timing tasks were crucial for successful data handling.

Task	Time (sec)
Sample ADC	108 μs - 1896 μs
Sample Button	108 μs -1896 μs
Change Step LED	3996 μs - 4004 μs
Change Motor	8 ms
Blink Tempo LED	Variable based on BPM
Service Encoders	~ 500 µs
Update LCD Screen	~ 26548 μs

Physical dimensions and board spacing

- User interface
 - We figured out a relative spacing that fits all hardware
 - Space the boards to make it possible to mount in standard form factor
 - Hex standoffs and micro board position was crucial to wiring.

Detents

- Motorized potentiometers provide detent emulation.
- Motors worked successfully with a single potentiometer mock up and single board consisting of four potentiometers.
 - Some of the motors on two boards didn't work as intended.

Detent Position Calculation:

Detent spacing = 1024/(Num Detents)

Num Detents = 13 for one octave = 25 for two octaves

Inter Board Communication (I2C)

- Addressing is done by soldering shorts to VCC or GND.
- Quick communication between microcontroller board and other boards (non standard use).
- Twisted data with ground lines for equal capacitive loads and no coupling.

Faceplate V1

- Initial 2D and 3D model of faceplate.
- This model did not have adequate spacing or sufficient holes for housing all hardware.
- 4U rack unit design.

User Interface

- Fits into 4U rack unit
- User Inputs
 - 16 Motorized Pots
 - Rotary Encoders
 - Buttons
- User Outputs
 - LCD
 - 16 Motorized Pots -> Detents
 - LED Array

Faceplate V2

Final Laser Cut Faceplate

Control Module RV

- Supports I2C frequency of 100 KHz
- Sets data on clock rise or fall (due to oscillator).
- digitalread() and digitalwrite() critical for timing.
- Reads interrupts in the form of digital signals.
- Motor logic controlled through analog pins.
- MIDI Circuitry verified

Challenges Encountered

- 1st PCB order delayed
- Soldering by hand
 - \circ ordered stencils for final board run
- Timing
- Software
- Package Identification
- Wiring Complexity
 - High probability for shorting and errant connections

Progress Post Demo

- Fixed timing drift/errors
 o ensured the correct tempo
- Play / Pause
- LED sequence

Conclusions

- Independently verified and confirmed successful workings of all subsystems:
 - Microcontroller functionality for LED light up sequence tested and verified.
 - Microcontroller functionality for LED light up button sequence tested and verified.
 - MIDI circuitry tested on separate PCB, tested and verified.
 - Motor controlled via microcontroller tested and verified.
 - LCD fully illuminated and correct display of data tested and verified

Future Work

- OLED screen
- MIDI circuitry integration with final microcontroller board.
- PID Motor control
- Adaptive potentiometer feedback
- Continuous feedback
- Polyphony
 - \circ Chords
 - Harmonizer

Adaptive Feedback

- This project has the ability to provide continuous feedback
- Generally reserved for analog instruments
- Future project iterations may contain the following :
 - \circ recoil
 - \circ pluck
 - \circ wah

Demo Video

Questions?

