Illini Theremixer

Karthik Achar, Shiv Kapur, Akhil Reddy Team 15

ILLINOIS Electrical & Computer Engineering COLLEGE OF ENGINEERING

Introduction – What is a Theremin?

- Created by Léon Theremin in the 1920s
- Project idea: repurposed analog theremin
 - Two outputs as control signals

Objective

- Control Signals:
 - Frequencies from Oscillators (Representing Relative Hand Placement)
- Functions:
 - Increase/Decrease Bass, Mid, Treble, Volume
- Components:
 - Hardware: Etherwave Antennas & Oscillators, ADC (AD7352)

ECE ILLINOIS

– Software: Microcontroller (Teensy 3.2)

Design Model

Physical Model

Front View

Side View

Block Diagram

Overview of Requirements and Verifications

Power Module	14 Volt AC Transformer	± 12 Voltage Regulator	+ 3.3 Voltage Regulator	+ 2.5 Voltage Regulator	
Hardware Module	Magnitude Detection Antenna	Magnitude Detection Oscillator	Function Select Antenna	Function Select Oscillator	
H/S Integration Module	Analog to Digital Converter		Fully Meets Requirem	nent	
Software Module	Micro- controller		Partially Meets Requi	rement	

Hardware: Antennas

Antenna Capacitance

Distance (cm)	0	1	2	3	4	5	10	15	20
Magnitude Oscillator Antenna Capacitance (pF)	87.17								2.31
Variable Oscillator Antenna Capacitance (pF)	120.01	9.06	7.93	7.62	7.48	6.75	6.07	5.67	5.52

Hardware: Function Oscillator

- Average Frequency: 431.31 kHz
- Average Peak to Peak: 3.51 V

Hardware: Magnitude Oscillator

- Average Frequency: 141.76 kHz
- Average Peak to Peak: 761.29 mV

Hardware: ADC

Hardware/Software: Integration

- AD8022 opamps
- AD7352 12-bit
 ADC
 - Outputs data via
 SPI protocol
- Teensy
 Microprocessor

Software: Flow Chart

Π

Software: Filters

- Function Select Input Signal
 - Bass Boosting → Low Pass Filter (100 Hz)
 - Mid Boosting → Band Pass Filter (400 to 600 Hz)
 - − Treble Boosting → High Pass Filter (800 Hz)
 - Volume Boosting → Modify Baseline Volume
- Magnitude Input Signal
 - Amplify output audio signal at higher frequencies
 - Attenuate output audio signal at lower frequencies

Software: Outputs of Filters

Original Audio

Σ

Project Successes & Challenges

Successes:

- Audio Filters
- ADC Sampling
- Oscillator
 Frequencies
- Antenna Sensitivity

Challenges:

- Antenna & Oscillator Integration
- FFT at high frequencies
- Buffer implementation

Hardware: Next Steps

- Enhance effect of antenna capacitance on oscillator frequency
- Design new PCB to reflect design changes and problems

- Buffer circuits
- Ground loops in mixed signal design

Software: Next Steps

- Implement FFT to measure control signal frequency
- Provide Additional Features:
 - Cut-Off Frequency Selection using a Potentiometer
 - Reset/Pause/Play/Skip Options using Buttons
 - Visual Display of Current Filters
 - New Mixing Effects

Conclusion: Lessons Learned

- Understanding individual modules and their role in the overall project
- Being adaptable to different circumstances and outcomes
- Teamwork and collaboration helps solve challenging problems

