Ceres

A Motorized System for Plant Root Research

Team 4: Jimmy He Nachiket Joshi Nathaniel Keri April 30, 2019

Introduction

- SoyFACE images roots to assess plant health and gather data for gene mapping research.
- There are currently 5,000 stalks of corn, each growing beside an imaging tube.

Introduction

Can you stick a 10 pound camera 6 feet underground and pull it out cm-by-cm 800,000 times a week?

We can't.

Interns dislike the process.

Overview

Objectives

Design

Project Build and Tests

Successes and Challenges

Questions

Objectives

Objectives

- 1. Autonomous
- 2. Scalable
- 3. Low-Cost

Design

High Level Design

- 3 Major Components
 - Management Platform
 - Camera Assembly
 - Base Station

Figure 1: Main Components

Figure 2: Homing Mechanism

Figure 3: Spool Design

Figure 4: Removable Battery

PCB Design

Figure 5: Base Station PCB

Figure 6: Camera Assembly PCB

PCB Design

Figure 7: Base Station PCB

Figure 8: Camera Assembly PCB

Lateral Balancing - Not Included

Figure 9: Lateral Deviation

Figure 10: Lateral Velocity

Management Platform Dataflow

 $\textbf{Figure 11:} \ \ \mathsf{Management} \ \ \mathsf{Platform} \ \ \mathsf{Dataflow}$

Project Build and Tests

Walkthrough

Final Product

- Management Platform is shipped as a self-contained Docker Stack
- Enclosures of the Imaging Appliance are 3D printed
- Imaging Appliances are manually assembled glued into the enclusure

Unit Tests

CA Testing Setup HTTP Server Testing Setup Camera Assembly Server Docker Stack HTTP Server Mock HTTP MOTT Host Data Base File Broker Mock MOTT Server base Station System Test Runner Test Runner

- Components tested individually and independently
- Behavior of the remaining system simulated by a Python script
- Tests conducted and verified automatically

PCB Design

Figure 12: Base Station PCB

Figure 13: Camera Assembly PCB

Successes and Challenges

Successes

- Our group was able to effectively work orthogonally with each other.
- We were able to automate everything up until integration.

Challenges and Solutions

- The end-stop switch would not trigger when we expected it to.
 - We will use an optical switch.
- The stitching algorithm did not work as expected.
 - We will work on image calibration.
- Due to network congestion, the camera assembly took longer than expected to send an image to the management platform.
 - Restructure camera assembly to cache images and sending the cached images after all the images have been taken.
- The camera design was more complex than necessary.
 - Simplify camera design based off our results.

Can you take

800,000 images a day?

CERES CAN

Questions?

Questions?