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Abstract	
	
The objective of our project was to localize and map a given environment using multiple agents. 
We use two ground agents, a sky agent, and a controller agent to localize and map a given test 
environment. The sky agent is responsible for localizing the ground agent with a high level of 
confidence to ensure we know where the ground agent is located within the environment. The 
ground agent is responsible for mapping its current surroundings to update the global map of our 
test environment. Finally, our controller agent was responsible for collecting localization 
information from the sky agent and map data from the ground agent to build a global map and 
instruct ground agent movements. All three low-cost, low-resource agents work together to build 
a global map of topographical features.  
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1.	Introduction	
Many military base locations and military construction sites in developing countries are often 
GPS-denied and/or contested environments [1]. For such construction projects, collaborative 
robots pose an attractive solution for mapping topographical features in a large-scale 
construction space. However, without a robust mapping process for the environment, it would be 
impossible to develop a plan for distributed autonomous construction. An accurate and dynamic 
mapping of the region(s) of interest is necessary before autonomous construction robots can be 
deployed. In applications of collaborative robotics, keeping track of the state of the environment 
is often attempted using individual agents that simultaneously perform localization and mapping 
onboard. To do so, these agents require powerful computation capabilities and constant 
communication with both GPS satellites and D-GPS towers. However, there are applications of 
robots like these in locations that are GPS-denied or contested to the point that extraneous long-
range communication should be avoided or is unavailable entirely. Therefore, our problem 
statement is as follows: 
	
How do we keep track of a large, sparse map between several ground agents, without using 
GPS or long-range localization technologies? 
 
Our approach to this problem statement is to discretize localization to a sky agent and mapping 
to two ground agents. Our block diagram for our full system is outlined by Figure 1, where we 
can see that our project is divided into 6 main blocks: ground agent control subsystem, ground 
agent power subsystem, ground agent motion subsystem, ground agent sensing subsystem, 
controller agent command subsystem, and the sky agent subsystem. The ground agent control 
subsystem is mainly responsible for interfacing with our ESP32 Wi-Fi chip and ATMega2560 
microcontroller. The ground agent power subsystem is responsible for providing the correct 
amount of power to each of our subsystems onboard the ground agent. Our ground agent sensing 
subsystem is responsible for interfacing with the LIDAR, IMU, and motor controllers, and the 
ground agent motion subsystem is responsible for moving the robot via DC motors and a motor 
controller. The controller agent command subsystem is responsible for hosting the video 
processing and ROS structure involved with localization, and the sky agent subsystem is simply 
a USB camera plugged into the controller agent to provide a live video stream. 
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Figure 1: High-level block diagram 

	
Our high-level performance requirements are as follows: 
 

1. Sky agent should be able to localize the ground agent’s position within ±5cm and 
orientation within ±15° within an 8’ x 8’ space outdoors, not exceeding a 15° grade. 

2. System should be able to combine up to 64 LIDAR point clouds, each measuring 1’ x 1’, 
from multiple ground agents with zero overlap into the global map using location and 
orientation data obtained from the sky agent as well as inertial data from the Ground 
Agent to estimate slope at each sample point. 

3. System should be able to detect and create bounding boxes for objects within the stage 
similar in size to the ground agent (20cm2 to 0.1m2 top area). 

 
Throughout the course of the semester, no block-level changes were made to our project. 
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2	Design	

2.1	Sky	Agent	
Our sky agent is a USB webcam connected directly to our controller agent with a cable, so our 
design choices for the sky agent were limited to the kind of camera we wanted to use. We 
decided to use a 720p USB webcam to reduce the cost of our project. If cost weren’t a factor, a 
4k USB camera would be much more useful and help improve our video processing algorithm 
later described in Section 2.2.1, which explains the importance of video resolution in our project. 

2.2	Controller	Agent	
The controller agent is a laptop PC running Linux 16.04 and is responsible for two core 
components of our project: 1) processing the sky agent video to localizing ground agents and 2) 
hosting the ROS structure, which served as our data pipeline for LIDAR point clouds from 
ground agents and localization data from the sky agent. The main reason for using a Linux 
machine was because ROS is extremely well-documented for Linux 16.04 and can be integrated 
seamlessly into projects on a Linux machine. We could’ve chosen to use a Mac as our controller 
agent, but ROS does not formally support MacOS and ROS integration was a key component in 
our project. We did not have a Windows machine available for use as the controller agent and 
using the UIUC EWS Windows machines are out of the question because we would not be able 
to install the libraries and dependencies for necessary for ROS or OpenCV. 

2.2.1	Ground	Agent	Localization	
Our localization algorithm uses contour detection to find the identifying arrow marker on top of 
each ground agent. Once the contours of the arrow have been found, we’re able to extract the 
center point of the arrow as the ground agent’s location and compute the orientation angle of that 
arrow to determine which direction our ground agent is facing. The algorithm is capable of 
distinguishing between each ground agent and providing unique localization data respectively by 
isolating the separate colors of the identifying arrow marker using a bitmask. The bitmask 
completely filters our anything within the video frame that isn’t a blue or red arrow, allowing us 
to get accurate and stable readings for each of our ground agents. 
One other algorithm considered was the Scale-Invariant Feature Transform (SIFT) algorithm [9]. 
SIFT is able to acquire the same location and orientation angle, but much more reliably than a 
contour-based feature detection algorithm. We initially tried to use SIFT but observed that we 
were getting terrible keypoint matching and feature detection in real-world performance. Upon 
further research, we found out that SIFT struggles to perform well with low resolution imagery. 
Given that our sky agent was a 720p camera, which was then further cropped as a result of image 
warping, the video frames were extremely low resolution and, as a result, SIFT performed 
poorly, which was the main reason why we chose to use a contour-based algorithm.  

2.2.2	ROS	Data	Pipeline	
The Robot Operating System (ROS) is an open-source framework that provides a 
communication infrastructure for message-passing between processes. We chose to use ROS 
because it allows us to easily define a structure or pipeline for data passing. This is useful 
because the controller agent is passed a stream of data from the localization code (as shown in 
Figure 3 by the Associated Output) and ground agents are also passing in entire LIDAR point 
clouds, and ROS makes it very simple to manage, organize, and identify the flow of various data. 
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Figure 2 shows a diagram of our ROS structure and the different kinds of data being passed 
between agents. Our project involves three separate agents, with some needing to interacting 
with more than one kind of data. Without ROS, data passing between processes and agents 
would be a significantly more difficult task. 
 

 
Figure 2: ROS Structure 

2.3	Ground	Agent	Sensing	Subsystem	

2.3.1	Inertial	Measurement	Unit	(IMU)	
In order to estimate the robot pitch, yaw, and roll on a sloped surface, we require at least an 
accelerometer capable of inertial measurement within 5 degrees. We decided that using the 
MMA845X family of accelerometers would minimize cost and space taken up in the robot, as 
this family of chips had the smallest form factor available when compared to similar chips like 
the SEN-09269 or LIS3DH. In considering the MMA845X family of accelerometers, we selected 
the MMA8451, which has the highest precision of the family, with a built-in 14-bit ADC. 
 
The design for data flow is outlined in Figure 3, where data is passed from IMU over I2C to the 
ATmega2560 microcontroller. The microcontroller does some basic data mapping and 
conversion of inertial data to Euler angles, and packages this data with LIDAR information for 
easy Serial access via Wi-Fi chip or USB Serial port. 
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Figure 3: IMU Data Pipeline 

2.3.2	LIDAR	
In the problem statement outlined in the introduction above, we emphasize the use cases of this 
project in topographical mapping. In homogenously colored or textured topographies, or in 
inconsistent lighting conditions, using single-lens or stereographic cameras might not be 
sufficient to capture features of a sloped ground surface. For these reasons, we elected to utilize a 
low-cost 2D LIDAR. Among low-cost 2D LIDARs, the RPLIDAR A2-M8 stood out as a good 
balance of accuracy and cost. At $300, it Is remarkably more affordable than industry standard 
2D LIDARs like the Hokuyo UST-10LX, which costs $1,600. However, the A2-M8 is still able 
to generate point clouds with an advertised angular resolution of 0.9 degrees and distance error 
of ~1%. [1] 
Upon testing the LIDAR, we found that the ATmega 2560’s UART serial buffer was not able to 
keep up with the transmission speed of the A2-M8, and only about 25% of each scan was 
captured by the microcontroller. Because we expected an angular resolution of about 1 degree, 
we were able to layer four scans into each frame to generate a complete representation of the 
space around each Ground Agent. This is evidenced in Figure 4 below, where each scan makes 
up about 90 points between 0 and 360, and the combination of 4 scans yields an acceptable 
angular resolution. 
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Figure 4: LIDAR Scan Resolution 

2.4	Ground	Agent	Motion	Subsystem	
The Ground Agent motion control input flow is outlined in Figure 5 below, where character data 
passed over Serial input, either from the ESP32 Wi-Fi chip or USB Serial port. This character 
data is parsed by the ATmega2560 microcontroller, which then maps these characters to motor 
control commands and sends these commands to the L298N motor controller. 

 
Figure 5: Motion Control Pipeline 

2.4.1	L298N	Motor	Driver	
We originally planned on constructing our own dual-channel h-bridge motor driver, but because 
our motors were rated for up to 2.5 A combined current draw, this would necessitate the use of 
power MOSFETs and heatsinking, which could be hazardous if improperly constructed. We 
elected instead to use the L298N Dual H-Bridge motor driver, which safely provides 2A to each 
channel with an integrated heatsink. This was the lowest cost motor driver we could find, where 
alternatives like the Cryton 10A dual-channel motor driver we originally planned on using cost 
around four times the price of the L298N. The L298N is controlled via PWM signal and digital 
inputs from the microcontroller, shown in Figure 6, and controls its outputs from the digital 
inputs given in Table 1: 
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Figure 6: L298N Control Pins 

Table 1   L298N Input Mapping 
ENA IN1 IN2 Output Behavior 

0 N/A N/A   Motor A is off 
1 0 0 Motor A is stopped (brakes) 
1 0 1 Motor A is on and turning backwards 
1 1 0 Motor A is stopped (brakes) 
1 1 1 Motor A is on and turning forwards 

 

2.4.2	Tracked	Chassis	
We decided to purchase a pre-fabricated chassis to minimize the mechanical design component 
of this project. A chassis that included integrated motors and encoders would be ideal to prevent 
integration issues between the motors and drivetrain. Given that our Ground Agents are intended 
for outdoor use in rough terrain, we opted for a tracked chassis over a wheeled one, which also 
simplified the control necessary for motion and steering. Beyond these factors, we purchased the 
Mountain Ark chassis based on its high availability of spare parts, light aluminum construction, 
and relatively low profile, which was needed to ensure that our LIDAR would be able to map 
objects close to the ground. 

2.5	Ground	Agent	Control	Subsystem	

2.5.1	Microcontroller	and	FTDI	USB-to-UART	Interface	
We decided that the programmable microcontroller on each Ground Agent would be the 
ATmega2560. The microcontroller exists mainly as a hub to buffer, store, package, and pass on 
sensor data from the Ground Agent Sensing Subsystem to the onboard Wi-Fi Chip. In 
considering competitors to the ATmega2560, including the ATmega328P and PIC32 boards, we 
found that the ATmega2560 has an optimal number of UART ports (4 ports on the ATmega2560 
vs. 1 port on the ATmega328P and 2 ports on the PIC32) [2]. Having at least three UART ports 
allows us to be able to communicate with the LIDAR, ESP32 Wi-Fi chip, and a Serial monitor 
for logging, debugging, and flashing purposes. While other PIC32 chips have more than 2 UART 
ports (the PIC32MX575F256H has 6 UART ports) [3], these alternatives are not programmable 
or supported by common open source IDE’s and logging software to the same extent that 
ATmega microcontrollers are by the Arduino IDE and community resources. The Arduino IDE 
and online support resources were very useful in our design process, and we ultimately decided 
to use the most capable microcontroller supported by this system, the ATmega2560.  
We wanted to be able to quickly upload new code to the microcontroller from a PC and found 
that a USB cable was the easiest method besides purchasing a programmer, so we needed a 
USB-to-UART interface. We selected the FTDI 232R as it was a well-documented, low-cost 
method for communicating with an ATmega microcontroller over USB. 
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2.5.2	Wi-Fi	Chip	
The Wi-Fi chip is needed to interface the microcontroller with the Controller Agent. It must 
handle sending LIDAR and IMU data packages to the Controller Agent, as well as receiving 
control inputs from the Controller Agent. We decided to use 2.4 GHz Wi-Fi over alternatives like 
5GHz Wi-Fi or Bluetooth based on the volume of data we expect to pass from a Ground Agent 
at a given time, and the greater range that 2.4GHz Wi-Fi has over both 5GHz and Bluetooth, 
which would aid in potential scaling of the mapping environment for this project. As the LIDAR 
would produce the most data needing to be passed over Wi-Fi, we estimate the maximum 
desired throughput of our communication in Equation 1: 
 

10 #$%&%'$()
)*+$(,

· ./0	,*2#**)
#$%&%'$(

· 3	)&456*
0.8	,*2#**)

· .9:'%)
)&456*

= 16	𝑘𝐵𝑝𝑠																																	(1)	
	

Given that the typical transmission output is 20 Mbit/sec for the ESP-32 Wi-Fi chip at 2.4GHz 
bands, the above throughput of 16kBps is easily attainable.	
We selected the ESP-32 Wi-Fi chip over competitors like the ESP-8266 due to the fact that the 
ESP-32 is the successor to the ESP-8266, with higher typical clock frequency and addition of 
SRAM and Flash memory. [4]	

2.6	Ground	Agent	Power	Subsystem	
The power subsystem structure is outlined in Figure 7 below, where two TPS54290 Switching 
Buck converter chips provide the three power supply levels required by the system. Here, output 
inductors and capacitors, bias and output resistors, and pull-down resistors and capacitors 
provide the optimal operation conditions as specified in the TPS54290 datasheets [5]. 

 
Figure 7: Power Supply Circuit Schematic 

2.6.1	Lithium	Polymer	Battery	
We determined that each Ground Agent requires a battery, as tethered power would not be an 
option in the field. In order to leave an acceptable voltage buffer between our battery voltage and 
any voltage regulator that we would decide to use, we decided that a 4-cell battery (4S) would 
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provide this buffer more safely than a 3-cell (3S) battery would. In the analysis of Ground Agent 
power consumption outlined in Table 2, we found that a 5000mAh would reliably be able to 
power each Ground Agent for over an hour of constant usage, an acceptable mapping time period 
for multiple mapping runs before recharging. 

Table 2   Component Power Draw Characteristics 

Component Model Voltage 
Range (V) 

Average 
Voltage 

(V) 

Maximum 
Current (mA) 

Average 
Current 

(mA) 

 
LIDAR 

 
RPLIDAR 

A2M8 

 
4.9 - 5.5 5 600 Operating, 

1500 Start-up 450 

Motor 
Controller Qunqi 5 - 35  
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2400 - 9000 
 

400 - 2400 

IMU Arduino 
MMA8451 3.3 - 5 5 165 0.006 - 0.165 

Wi-Fi Chip ESP-32 2.2 - 3.6 3.3 1200 500 
Microcontroller Atmega 2560 1.8 - 5.5 5 200 0.14 - 10 

Switching 
Converter TI TPS54290 4.5 - 18 10 10 1.65 

10 Switching 
USB to UART 

FTDI FT232RL 0.5 - 6 4.0 - 5.25 24 2 

System Characteristics 10 ~12000 ~3400 
 
In selecting the type of battery, our main motivators were safety, weight, and power density. We 
found that Lithium Polymer (LiPo) batteries offered an excellent combination of low weight, 
relative safety, and high-power density when compared to Lithium Ion, Lead Acid, and Nickel-
Metal Hydride batteries, at a trade-off of higher cost. Lithium Polymer batteries also have the 
potential to damage themselves or stop working if their cell voltages drop below a manufacturer 
specified threshold of 3.0 V. In order to prevent coming anywhere near this voltage, we use low-
voltage alarms set to alert at 3.3 V. 

2.6.2	Switching	Buck	Converter	
In the early design of our system, we found that we required 3 power supplies; a 9 V supply at 
2.5 A, a 5 V supply at 2.5 A, and a 3.3 V supply at 1.5 A. This was needed to power our motors, 
control circuitry, and Wi-Fi chip, respectively. We initially planned on using a voltage divider 
circuit to produce these supplies. After learning more about power regulators, we decided upon a 
switching regulator over a linear voltage regulator to optimize efficiency. Calculating the 
potential power dissipation for our three desired power supply lines from the 14.8 V battery seen 
in Equation 2 below, we found that our maximum power dissipation would be approximately   
27 W for each Ground Agent, while a Switching regulator would produce less dissipation at 90% 
efficiency [5]. 

(14.8	𝑉	 − 	9	𝑉) · 2.5	𝐴	 = 	14.5	𝑊                                            (2) 
(9	𝑉 − 	5𝑉) 	∗ 	2.5	𝐴 = 	10	𝑊 

(5	𝑉 − 	3.3	𝑉) 	∗ 	1.5	𝐴 = 	2.55	𝑊 
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3.	Design	Verification 

3.1	Ground	Agent	Localization	
Our goal was to be able to localize the ground agent’s position within ±5cm and orientation 
within ±15°. In Table 3, we can see that we were able to successfully detect and localize our 
ground agent in this video frame. The measured orientation angle of the ground agent for this 
specific example was 105° (0° being the 12:00 position) and the output given by our code meets 
our verification requirement of ±15° in Table 10. 

Table 3   Ground Agent Localization Output 
Localized Ground Agents Associated Output 

  
 

 
 

 

3.2	ROS	Structure	
Our goal was to be able to verify that our ROS Structure can pass at least 16kB of data from one 
node to another without loss or corruption of data. We chose to test this by passing one full 
LIDAR scan measuring 134.3 kB in size from the ground agent node to the controller agent 
(Figure 2 shows a detailed diagram of our ROS structure). The reason we chose to test our 
structure with a LIDAR point cloud between the controller agent and the ground agent is because 
one full LIDAR scan is the largest data packet that’ll be passing through our ROS structure at 
any given point in time. Table 4 shows the terminal outputs of the data being sent by the ground 
agent and the data that was received by the controller agent. As we can see, the data that was sent 
was received without loss or corruption. 
 

Table 4   ROS Structure Verification 
Active Nodes 

 
Data Packet Sent by Ground Agent Node Data Packet Received by Controller Agent 

Node 



11 
 

  
 

3.3	Ground	Agent	Sensing	Subsystem	

3.3.1	IMU	
Our IMU is required to satisfy a high-frequency querying scheme and provide accurate pitch 
data. The Serial Logs below and corresponding code show that the IMU is being queried at 
115200 baud rate without missed or duplicate sensor data. In order to validate the accuracy of 
pitch data, we orient the robot pitch from -45 degrees to +45 degrees in 5-degree increments and 
calculate the IMU-generated pitch angles. We expect the pitch values to be within the 5-degree 
band of the ground truth, which is indeed the case, as evidenced by our testing output in Figure 
8. In this verification test, our mean error was 1.525 degrees, or 4.7% across all measurements, 
well below our goal mean error of 5 degrees from Table 10. 

 
Figure 8: IMU Measurement Verification 

3.3.2	LIDAR	
To validate the accuracy of our LIDAR scans, the Ground Agent is set in a prescribed, structured 
environment of obstacles. We then compare the Point Clouds to this test environment to verify 
that all obstacles of the correct scale (per HLR3) are recognized by LIDAR returns, and that we 
have at least 360 samples per LIDAR frame. The following test environment setups and LIDAR 
point clouds demonstrate the verification of proper operation according to Table 10. 
 
 



12 
 

Table 5   LIDAR Testing 
Environment 1: Straight-Sided Objects 

 

 

 
 
We observe in Table 5 above that the Ground Agent is able to characterize the faces of all four 
obstacles, including the smaller white box with the narrow side facing the LIDAR. The Ground 
Agent is also able to pick up returns from the couch on the left side of the image and surrounding 
cardboard boxes. In all objects, the LIDAR point clouds are dense and uniform along the 
reflective edge. 

Table 6   LIDAR Testing 2 
Environment 2: Rounded Objects 

  
 

 

 
In Table 6 above, we challenge the Ground Agent to characterize very small rounded objects, at 
and below the bottom range of our HLR3 specification. In all 6 objects, the Ground Agent is able 
to characterize the roundedness of the faces, and captures nearly a semicircular return for these 
objects, which will allow for more robust LIDAR stitching. 
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3.4	Ground	Agent	Motion	Subsystem	

3.4.1	Directional	Control	via	Serial	Input	
The Ground Agent is able to take character-based commands via a Serial Port of the 
Atmega2560. These character commands {‘F’, ‘B’, ‘L’, ‘R’, ‘S’} represent a 10-cm forward 
step, 10-cm backward step, left turn in place, right turn in place, and stop command. As 
demonstrated in Final Demo and revalidated below in Figure 9, our log output on this serial port 
reveals that the Ground Agent is responsive to all of the above commands. 
 

 
Figure 9: Serial Character Command Verification 

 
Furthermore, testing across 10 of each of the commands and measuring the physical movement 
of the Ground Agent, we observe this motion to be in-spec regarding the requirement for motion 
precision, as evidenced below in Table 7. 
 

Table 7   Motion Precision Validation 

Iteration 
Forward 
Distance 

(mm) 

Backward 
Distance 

(mm) 

Left Turn 
(Drift of 
Center of 

Mass) (mm) 

Right Turn 
(Drift of 
Center of 

Mass) (mm) 

Stopping 
Distance 

(mm) 

1 106 98 30 44 15 
2 109 103 43 40 32 
3 108 106 54 42 33 
4 99 95 35 43 16 
5 106 102 41 53 13 
6 107 104 40 35 18 
7 110 98 37 28 17 
8 105 104 47 34 30 
9 106 105 49 21 23 
10 106 107 51 38 18 

Mean 106.2 102.2 42.7 37.8 21.5 
 

3.4.2	Safe	Acceleration	and	Velocity	Limiting	
The Ground Agent velocity is limited by the PWM signal provided by the Atmega2560 through 
an L298N H-Bridge Motor Driver. In practice, this PWM signal is limited in Duty Cycle to 
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(100/255) = 39%. Figure 10 below shows the rotary speed and Figure 11 the corresponding 
linear velocity of the Ground Agent for the full range of PWM values, verifying that our Duty 
Cycle produces a ground velocity well below our velocity limit. 

 
Figure 10: Rotational Speed Verification 

 
Figure 11: Ground Velocity Verification 

3.4.3	Turning	In-Place	
Testing of 360-degree turn drift of center-of-mass followed the scheme of the command testing, 
where we attempt 10 360-degree turns with the Ground Agent and validate that each of these 
turns results in a drift of center-of-mass bounded by ± 5cm. Table 8 below verifies that our in-
place turning is in-spec. 

Table 8   Turn Precision Validation 
Iteration Drift Distance 

(mm) 
1 21 
2 14 
3 43 
4 49 
5 25 
6 53 
7 44 
8 41 
9 58 
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10 40 
Mean 38.8 

 

3.5	Ground	Agent	Power	Subsystem	
Following the RV protocol delineated below, we supply a voltage of 13.2V to the Power Supply 
Subsystem in place of the LiPo Battery and plot the Supply Voltages from a sweep with 
incremental change of 0.2V up to peak voltage of 16.4V. In Figure 12, we see that our 3.3 V and 
5 V supplies remain within specification, with means of 3.29 V and 5.01 V respectively. 
 

 
Figure 12: Power Supply Sweep Validation 

 
The supply for our motor controller, requiring between 5 V and 35 V, has a mean of 13.7 V and 
a range of ± 3.21 V. The reason for this fluctuation is due to the specificity of output inductor 
values for the switching buck converter. As we only had access to a 10 	µH inductor due to 
ordering issues, this resulted in imperfect power conversion across the specified battery band, 
though it still resulted in acceptable operation of the motor driver. 
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4.	Costs	

4.1	Parts	
Our total parts cost was $1234.62, as shown in Table 9.	

	
Table	9			Parts	Costs 

Part Manufacturer Model Retail 
Cost 
($) 

Bulk 
Purchase 
Cost ($) 

Qty Actual 
Cost ($) 

LIDAR SLAMTEC RPLIDAR 
A2-M8 329.00  299.00 2 658.00 

LiPo Battery Turnigy Graphene 5000mAh 
4S 45C 74.32 74.32 3 222.96 

Microcontroller Atmel ATMega2560 12.35 10.14 4 49.40 

Webcam Logitech C310 27.49 27.49 1 27.49 

Wi-Fi Chip Espressif ESP32 
WROOM-32 3.80 3.80 4 15.20 

Chassis w/DC 
Motors & Encoders 

Mountain_Ark Tracked Chassis 49.99 49.99 2 99.98 

Motor Controller Qunqi L298N Motor Driver 6.99 6.99 3 20.97 

IMU Adafruit MMA8451 7.95 7.95 2 15.90 

DC-DC Regulator Texas Instruments TPS54290 6.03 6.03 8 48.25 

USB to UART 
Chip 

FTDI FT232R 4.50 4.50 4 18.00 

70” Tripod Albott 70” Tripod 43.99 43.99 1 43.99 

Ceramic Resonator Murata CSTCE16M0V53-
R0CSTCE16M0V53-
R0 

0.50 0.5 4 2.00 

100nF Capacitor Yageo AS0805KKX7R9BB
104 0.46 0.12 20 5.52 

10 µH Inductor Bel Signal SCIHP1367-100M 1.74 1.16 4 6.96 

Total 1234.62 

 

4.2	Labor	
Utilizing the expected BS Computer Engineering salary for UIUC graduates, Equation 3 shows 
an estimated $9,600 of labor cost.  

2	𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑠	 ∗ 	 $T0
U$V#

	∗ 	12 U$V#)
W**X

	∗ 	10	𝑤𝑒𝑒𝑘𝑠	 = 	$9,600              (3) 
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5.	Conclusion	

5.1	Accomplishments	
At the conclusion of this project, our Ground Agents are able to collect rich LIDAR and IMU 
data, then process and package this data in real-time. They are able to move through their 
environment freely, power all necessary onboard components, and receive and act upon motion 
instructions that are given over Serial input. The Wi-Fi board on the Ground Agent is able to post 
data to an IP address on its local network. The Sky agent is able to communicate with the 
Controller Agent over the ROS structure implemented and provide image data with low latency. 
The Controller agent is able to warp the Sky Agent image to a degree necessary to localize and 
estimate the pose of both Ground Agents. It is also able to pull down data from a given IP 
address and post this data to an internal ROS topic for processing. The Controller Agent can send 
motion instructions to a ROS topic for posting and send or receive LIDAR data to and from a 
ROS topic.  

5.2	Uncertainties	
The central failing in our system is the lack of integration between the ATMega2560 
microcontroller and the ESP-32 Wi-Fi board. We were not able to get reliable communication of 
Serial data over UART between these components without the use of a 5 V to 3.3 V bidirectional 
Logic-Level Converter, which we were not able to construct or purchase due to timing 
constraints regarding shipping. Our power output was also uncertain at times due to irregular 
behavior in at LIDAR or drive motor start-up. This was due to the use of combined generic RLC 
components to approximate the desired values to ensure proper regulator operation. In order to 
verify the correct RLC component sizes, we wrote a software script to perform the necessary 
calculations and generate RLC component sizing.	

5.3	Ethical	considerations	
Our project has one main risk in ethics violation, and that’s regarding privacy. At a high level, 
our system can map and localize any given area using multiple ground agents and an eye-in-the-
sky. Unfortunately, it is possible that an individual, or a group of individuals, with malicious 
intent can use our technology to acquire localized map data of a property or region without 
consent. This is a direct violation of principle 1.6 in ACM’s Code of Ethics, which states that 
computing professionals have a responsibility to respect the privacy of the public and other 
professionals. [8] Misuse of our technology is also a violation of IEEE’s Ethics Code #1, which 
states that engineers should hold the welfare of the public paramount and strive to comply with 
ethical design. [6] This is reiterated in the IEEECS Code of Ethics section 3.12, mentioning that 
we must ‘Work to develop software and related documents that respect the privacy of those who 
will be affected by that software. [7] This is why we ensure that all intermediate data, not 
including the final global map, is deleted, and that the final result of the process, a global map, 
will be carefully marked indicating that data was collected, reminding the user of privacy 
constraints with this system. 

5.4	Future	work	
In the future, there are four main improvements we’d like to make to our project. First, it’d be 
very beneficial to upgrade to a higher resolution 4K camera for our sky agent. As described in 
Section 2.2.1, the extremely low-resolution video feed we were working with had a direct impact 
on the performance of the SIFT algorithm. By upgrading to a 4K camera, we’d be able to 
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observe significantly better performance from SIFT, which is more robust than our contour-
based algorithm. Secondly, it would be helpful to integrate RViz, a visualization tool within 
ROS, into our ROS structure to visualize the global map being built in real-time. Thirdly, it’d be 
interesting to scale our project to more than two ground agents and observe what kinds of 
performance increase/decrease is achieved. Lastly, our project would benefit from a more 
ruggedized ground agent chassis because the low-cost chassis we used for our project repeatedly 
broke and fell apart which increased time spent repairing the physical robot. Investing in a higher 
quality robot chassis would vastly improve the mechanical reliability of our ground agents. 
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Appendix	A	 Requirement	and	Verification	Table	
 

Table 10   System Requirements and Verifications  
Requirement Verification Verification 

status  
(Y or N) 

Controller Agent 
Ground agent LIDAR point cloud ROS 
node is recognized, and pipeline is able 
to pass at least 16kB of data to this 
node 

1. Initialize and run ROS structure 
2. Check that PC recognizes the 

node for ground agent 
3. Push a data packet of at least 

16kB in size from PC 
4. Check that the entire data packet 

was received by ground agent’s 
node without lose 

Y 

Ground agent movement command 
ROS node is recognized and receives 
movement commands without loss 

1. Initialize and run ROS structure 
2. Check that PC recognizes the 

node for ground agent 
3. Push chain of movement 

commands to ground agent from 
PC 

4. Check that all movement 
commands are received in order, 
without loss 

Y 

Sky agent’s ROS node is recognized 
and pushing location and orientation 
data to PC without loss 
 

1. Initialize and run ROS structure 
2. Check that the PC recognizes 

the node for sky agent 
3. Push location and orientation 

data to PC from sky agent 
4. Check that location and 

orientation data is received 
without loss 

 

Y 

Sky Agent 
Sky agent is able to localize one ground 
agent and provide location coordinates 
and orientation angle 
 

1. Achieve birds-eye view with sky 
agent 

2. Ensure that ground agent 
markers are detected 

3. Determine orientation angle and 
location of ground agent 
markers 

 

Y 

Sky agent is able to distinguish 
between 2 separate ground agents and 
provide distinct orientation angles and 

1. First, make sure that sky agent is 
able to localize one ground 
agent 

Y 
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location coordinates for both ground 
agents according to high-level 
requirements. 
 

2. Filter incoming video stream to 
distinguish specific colors as 
unique ground agents 

3. Localize each unique agent 
separate and push localization 
data for each individual ground 
agent 

 
Ground Agent Power Subsystem 

Distribute 12-15 V DC (± 5%) @ 2.5 A 
(± 20%) to the Motor Controller. 
 
Distribute 5 V DC (± 10%) @ 2.5 A (± 
20%) to the Microcontroller, LIDAR, 
and IMU. 
 
Distribute 3.3 V DC (± 10%) @ 1.5 A 
(± 20%) to the Hall Effect Sensors and 
Wi-Fi chip. 

1. Connect the system power leads 
to a power supply in the bottom 
of expected battery range, 12.4 
V. 

2. Measure the output of each of 
the regulator’s and verify that 
output voltage and ripple 
current are within specification. 

3. Repeat this process sweeping 
power supply up to 16.4 V, peak 
of expected battery range. 

Y 

Ground Agent Motion Subsystem 
Directionally Controllable via char 
command codes. Commands: {in-place 
left turn, in-place right turn, forward 
10cm, back 10cm, stop}. Turns must be 
executed with minimal center-of-mass 
drift (± 5cm), motion must be executed 
with precision (± 2.5cm) and stopping 
must be immediate (± 2.5cm). 

1. Utilize a test environment 
including obstacles of the scale 
mentioned in high-level 
requirements.  

2. Log the commands from the 
MCU serial port and confirm 
that each command results in 
behavior in the set mentioned in 
Requirement 

Y 

Not accelerate or decelerate rapidly 
during operation. Not reach velocities 
above 1 m/s. 
 

1. Power up the robot and operate 
in the staged environment.  

2. Observe closely to see whether 
or not the robot moves in an 
unsafe acceleration scheme.  

3. Observe the robot velocity 
measurement from Hall Effect 
Sensors. 

Y 

Be able to turn in place, staying 
centered on the same spot, ± 5cm. 
 

1. Power up the robot and operate 
in the staged environment.  

2. Attempt to turn the robot 360 
degrees and observe the starting 
and ending center locations. 

Y 

Ground Agent Sensing Subsystem 
IMU: Provide an accurate inertial 
measurement of 3-dimensional pose 

1. Utilize a testbench circuit 
including the IMU and a power 

Y 
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when completely halted, within 5 
degrees, at an I2C transmission rate of 
115200 Hz. 
 

supply to log the 3-axis inertial 
measurements on a physical 
testbench of 5 degree offset 
incline orientations.  

2. Log data and compare logs to 
ground truth. 

LIDAR: Provide an accurate 
representation of at least the immediate 
radial foot around the LIDAR, 
providing data to the control system 
with at least one sample per degree. 
 

1. Utilize a test environment 
including obstacles of the scale 
mentioned in high-level 
requirements.  

2. Log the LIDAR data from the 
MCU serial port, and plot to 
verify the scan is representative 
of the environment, including all 
obstacles of the scale mentioned 
or larger, with at least one 
sample per degree of the scan. 

Y 

 
 
 


